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INTRODUCTION 

One of the most important subject in theoretical ecology is the description 

of competition among any number of species in an habitat 

Many simple theories are available. Among them the volterra equations for 

n-species is a relevant subject, particulary in reference to the mathematical 

aspect. 

The problem of two species has been already analyzed by the early studies 

of Volterra, (1). However for more species, even though in the case of three 

and four species, no much studies have been done, particulary from the 

point of view of the cyclic behavior. 

The same Volterra examined different systems, however he did not find 

cycles in the general case. 

In a previous study, (2), we examined a particular case for three and four 

species and we found the existence of cycles under suitable condition. 

Nevertheless the cycle layed  in a special kind of surface, and two of the 

especies had the same phase. 

In the present paper we introduce and study a more general case for three 

species competing in an habitat by means of the Volterra equations. The 

technique is as in the previous paper but with a different approach, the 

elimination of one of the variable through one integral of the system. This 

is performed using linear partial differential equations. The result is that the 

third variable under consideration is given as a function of the other 

primitive two. 

It remains a systems of two ordinary differential equation much more 

complex than those studied by Volterra in his initial analysis. We integrate 

such equation following the procedure of Goel, Maitra and Montroll, (3). In 

thasway we obtain an integral without variable separation in the general 

case, and after some analysis we obtain the cycle. 

Different cases are considered and the period is also evaluated in a new 

approximated form. 

 



THE MODEL FOR THE THREE SPECIES SYSTEM 

Consider the Volterra system of differential equations governing the 

interaction between three species: 

 

𝑑𝑥

𝑑𝑡 
 = 𝑥 (𝜖1 −  𝑎

1 2
𝑦 − 𝑎1 3 𝑧) (1) 

𝑑𝑦

𝑑𝑡
= 𝑌 (−𝜖2  +  𝑎2 1𝑥 −  𝑎2  3z) 

𝑑𝑧 

𝑑𝑡
= 𝑧 (−𝜖3 +  𝑎3 1𝑥 +  𝑎3 2𝑦 +  𝑎3 3 z) 

 

Where 𝑥 is the number of individuals of the first species which is prey for 

the second and third species; 𝑦 is the number of individual of the second 

sepecies which in turns is prey for the third species. 

All the constants in the system (1), which phenomenological express the 

competing laws, are non-negative. The 𝜖1 
′ 𝑠 are the corresponding growth 

rates for each species. On the other hand the 𝑎𝑖 𝑗′𝑠 represents interrelation 

among them. 

Our first task is obtain an integral which may be related with the fact that a 

variable can be expressed in terms of the other two. Therefore we let: 

𝑧 = 𝑓 (𝑥, 𝑦) (2) 

We need to determine such a function𝑓. Derivation of equation (2) with 

respect to time, yields: 

𝑑𝑧

𝑑𝑡
=  

𝜕𝑓

𝑎𝑥

𝑑𝑥

𝑑𝑡
+ 

𝑎𝑓

𝑎𝑦 

𝑑𝑦

𝑑𝑡
 

(3) 

Replacing on the left and right side the derivates with respect to time by the 

corresponding expressions given in systems (1), we obtain the following 

first order partial differential equation for the function𝑓: 



𝑧 (−𝜖3 + 𝑎3 1 𝑥 + 𝑎3 2 𝑦 − 𝑎3 3 𝑧) =  
𝜕𝑓

𝜕𝑥
 𝑥 (𝜖1 −  𝑎1 2𝑦 +  𝑎1 3 𝑧) 

                                                                              + 
𝜕𝑓

𝜕𝑦
 𝑦(−𝑒2  

+ 𝑎2 1 𝑥 −

 𝑎2 3 𝑧) 

(4) 

We try to solve such a equation by proposing the following system: 

𝑎3 3 𝑧 =   
𝜕𝑓

𝜕𝑥
𝑎1 3 𝑥 + 

𝜕𝑓

𝜕𝑦
𝑎2 3 𝑦 (5) 

And  

𝑧 ( −𝜖3 + 𝑎3 1 x + 𝑎3 2 𝑦) =  
𝜕𝑓

𝜕𝑥
 𝑥 (𝜖1 −  𝑎2 3 𝑦) 

                                           + 
𝜕𝑓

𝜕𝑦
 𝑦 (−𝜖2 + 𝑎2 1 𝑥) (6) 

It is clear that if 𝑓 is a solution of (5) and (6), then it is also a solution of 

(4). Thus we are going to solve the system (5) and (6). 

By the Lagrange method, the solution of (5) is an arbitrary function: 

𝑓 (𝑘1  , 𝑘2) = 0 

 

Where 𝑘1    𝑎𝑛𝑑  𝑘2  are integral constants of the system? 

𝑑𝑥
𝑎   𝑥
13

 = 
𝑑𝑦
𝑎  𝑦
23

 =
𝑑𝑧
𝑎  𝑧
33

 (7) 

 

From the first two equalities, we have that: 

Log 𝑦1/𝑎 23 = log 𝑥1/𝑎  13 + 𝑘1 

And from the last two, it turns out that 

𝑙𝑜𝑔   𝑧 1/𝑎33 = 𝑙𝑜𝑔  𝑦1/𝑎 23 + 𝑘2 

Thus: 



𝑧 =  𝑦 𝑎33𝑎23 𝐹 (
𝑦1 𝑎23

𝑥1𝑎13
) 

(8) 

Where the function f is arbitrary and to be determined by equation (6) 

Using the expression of z given by equation (8) in the partial differential 

equation (6) we have that: 

𝑓(Ω)( −𝜖3 +  𝑎3 1𝑥 +  𝑎3 2𝑦) =  −
1

𝑎13
𝑓′(Ω)Ω  (𝜖1 - 𝑎12 y) 

+ 
𝑎33

𝑎23
 𝑓 (Ω)(– 𝑒2 +  𝑎21𝑥) +  

1

𝑎23
𝑓′(Ω)Ω(−𝜖2 +  𝑎2 1 𝑥)(9) 

 

Where introducing the new variable: 

Ω =   
𝑦1/𝑎23

𝑥1/𝑎13
 

The function 𝑓  satisfies the following first order differential equation: 

𝑓 (Ω) (−𝜖3 + 𝜖2 𝑎33 / 𝑎23) + 𝑎31 −  𝑎21 𝑎33 /  𝑎23) 𝑥 + 𝑎32𝑦 =

𝑓′ (Ω) Ω { ( −𝜖2/ 𝑎23 − 𝜖1  / 𝑎13) + 𝑎21  / 𝑎23 𝑥 + 𝑎12   / 𝑎13 𝑦} 

 

Calling: 

 

 𝛿1  =   −𝜖3 + 𝜖2𝑎33 / 𝑎23  , 𝜌1 =  −𝜖2/ 𝑎23  − 𝜖1/ 𝑎13  ,

𝜌3 =  𝑎12 / 𝑎13 

 𝛿2 =  𝑎31 − 𝑎21𝑎33 / 𝑎23  , 𝜌2 =  𝑎21/ 𝑎23 

 

The previous equation becomes 

 

𝑓′(Ω)

𝑓 (Ω)
= 1/Ω {

𝛿1 + 𝛿2𝑥+ 𝑎32𝑦

𝜌1 +  𝜌2 𝑥 + 𝜌3𝑦
} 



 

= 1/Ω{
(𝛿1+ 𝑎32𝑦)  Ω𝑎13+ 𝜌2𝑦𝑎13/ 𝑎23 

(𝜌1+ 𝜌3𝑦)  Ω𝑎13+ 𝜌2𝑦
𝛼13/ 𝑎23

} 

(10) 

 

Imposing the constraints: 

𝛿2 =  𝜌2 , 𝛿1 =  𝜌1  𝑎𝑛𝑑  𝑎32 =  𝜌3 

(11) 

 

Then the previous equation becomes: 

 

𝑓′(Ω)

𝑓 (Ω)
=  

1

Ω
 

(12) 

 

Whose integral is: 

 

𝑓 (Ω) = 𝑐Ω 

Where C is an arbitrary constant 

Replacing Ω ,  we obtain: 

 

𝐶𝑜 =  
𝑦(𝑎33+1)/𝑎23

𝑥1/𝑎13
 

(13) 

Where now: 



 

𝐶𝑜 =  
𝑧𝑜𝑥𝑜

1/𝑎13

𝑦𝑜
(𝑎33+1)/𝑎23

 

 

For a problem starting from a point (𝑥𝑜  , 𝑦𝑜 , 𝑧𝑜 ) 

 

On the other hand, the relation (11) yields 

𝑎31 =  𝑎21 /  𝑎23 (1+𝑎33) ,−𝜖3 + 𝜖2𝑎33/ 𝑎23 =  −𝜖2/ 𝑎23−𝜖1/ 𝑎13 

And 

𝑎32 =  𝑎12/ 𝑎13 

(14) 

Thus, replacing the value of z give by (13) in the first two equations of (1), 

it remains to solve the systems: 

𝑑𝑥

𝑑𝑡
= 𝑥(𝑒1 −  𝑎12𝑦 − 𝐷 

𝑦𝑎

𝑥𝛽 ) 

𝑑𝑦

𝑑𝑡
= 𝑦 (−𝜖2 +  𝑎21𝑥 − 𝐸 

𝑦𝑎

𝑥𝛽 ) 

(15) 

 

Where: 

D = 𝑎13𝐶𝑜 ,   𝐸 = 𝑎23𝐶𝑜 

𝛼 = (𝑎33 + 1)/𝑎23 , 𝛽 = 1/𝑎13 

 

We are going to integrate (15) by using the relevant and important method 

of Goel, Maitra and Montroll developed in reference (3). Writing the 

equations (15) as: 



 

𝑑𝑥

𝑑𝑡
= 𝜖1𝑥 + 𝑎/ 𝛽1 𝑥𝑦 − 𝐷 

𝑦𝑎

𝑥𝛽−1
 

𝑑𝑦

𝑑𝑡
=  −𝜖2𝑦 + 𝑎 /𝛽2 𝑥𝑦 − 𝐸 

𝑦𝑎+1

𝑥𝛽
 

(16) 

Where: 

−𝑎 /𝛽1 =  𝑎12   ,   𝑎/𝛽2 =  𝑎21 

and calling: 

𝑞1 =  𝜖2/𝑎21𝑎𝑛𝑑  𝑞2 =  𝜖1 /𝑎12 

 

On the other hand we define: 

𝑣1 = log
𝑥

𝑞1
  𝑎𝑛𝑑 𝑣2 = log

𝑦

𝑞2
 

 

Which, replaced into the first of equations (16) yields: 

𝑞1 exp(𝑣1) 
𝑑𝑣

𝑑𝑡
=  𝜖1𝑞1 exp(𝑣1) + 𝑎/𝛽1𝑞1 exp(𝑣1) 𝑞2 exp(𝑣2) 

-D 𝑞2
𝛼/𝑞1

𝛽−1
exp(𝛼𝑣2 − (𝛽1 − 1) 𝑣1) 

 

𝐸𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑞1  /𝛽1 𝑒𝑥𝑝(𝑣1), 𝑤𝑒 𝑜𝑏𝑡𝑎in: 

𝑑𝑣

𝑑𝑡
1 = 𝑎𝑞2(exp(𝑣2) − 1 −  

𝛽1  𝐷𝑞2
𝑎−1

𝑎𝑞1
𝛽 exp(𝛼𝑣2 −  𝛽𝑣1 ) ) 

(17) 

 

Performing a similar operation in the second of equations (16), we obtain 



𝛽2 
𝑑𝑣1

𝑑𝑡
= 𝑎𝑞1 (exp(𝑣1) − 1 − 

𝛽2𝐸𝑞2
𝑎

𝑎 𝑞𝑏+1
exp(𝛼𝑣2 −  𝛽𝑣1) )                 

(18) 

 

H = 
−𝛽1𝐷𝑎2

𝑎−1

𝑎𝑞1
𝛽          J = 

−𝛽2𝐸𝑞2
𝛼

𝑎𝑞1
𝛽+1  

 

The equations (17) and (18) become: 

𝛽1

𝑑𝑣1

𝑑𝑡
= 𝑎𝑞2(exp(𝑣2) − 1 + 𝐻 exp(𝑎𝑣2 −  𝛽𝑣1) ) 

𝛽2 
𝑑𝑣2

𝑑𝑡
= 𝑎𝑞1(exp(𝑣1) − 1 + 𝐽 exp(𝛼𝑣2 −  𝛽𝑣1 ) )           (19) 

 

Now multiplying the left hand side of the first equation of (19) by the right 

hand side of the second equation and viceversa, we get: 

𝛽1
𝑑𝑣1

𝑑𝑡
{𝑞1(exp(𝑣1) − 1 + 𝐽 exp(𝛼𝑣2 −  𝛽𝑣1)) } = 

𝛽2

𝑑𝑣2

𝑑𝑡
{𝑞2(exp(𝑣2) −  1 +  𝐻 exp(𝛼𝑣2 −  𝛽𝑣1) ) } 

 

But: 

𝑑

𝑑𝑡
(exp(𝑎𝑣2 −  𝛽𝑣1)

=  𝛼 exp(𝛼𝑣2 −  𝛽𝑣1) 
𝑑𝑣2

𝑑𝑡
−  𝛽 exp  (𝛼𝑣2 −  𝛽𝑣1) 

𝑑𝑣1

𝑑𝑡
 

 

Then: 

𝑑

𝑑𝑡
 {𝛽1𝑞1(exp(𝑣1) −  𝑣1)} +  𝛽1𝑞1 𝐽 exp (𝛼𝑣2 −  𝛽𝑣1) 

𝑑𝑣1

𝑑𝑡
= 



𝑑

𝑑𝑡
{𝛽2𝑞2(exp(𝑣2) −  𝑣2) +

𝐻

𝛼
exp(𝛼𝑣2 −  𝛽𝑣1 ) ) } +

 𝛽𝛽2𝑞2
𝐻

𝛼
exp (𝛼𝑣2 −  𝛽𝑣1) 

𝑑𝑣1

𝑑𝑡
(20)(20) 

 

 

We now call 𝛹1to the left hand side and 𝛹2 to the right hand side of 

equality (25). The function 𝛹1 has been already obtained by Volterra in his 

original writing and is shown in Figure 1 of reference (2). For the sake of 

completeness, it is also shown in figure 1a. Analogously, 𝛹2depens on the 

variable x, which is more general than in the original Volterra’s treatment. 

The function 𝛹2 depending parametrically on x, and is shown in part b of 

Figure 1. 

 

From the geometrical representation of functions 𝛹1 and 𝛹2ub figure 1, it 

is clear that a suitable interval limited by the points 𝑥0and 𝑥1 , there are 

exactly two values of  𝑦 such that: 

𝛹1 (x) = 𝛹2 (𝑥, 𝑦) (26) 

 

The end points 𝑥0, 𝑥1 , are to be determined and have the particulary 

property that there is only one value of y for which the equality (26) holds 

true. Thus, the existence of the cycle is guarantee. 

Now we wish to prove the previous assertion about the existence of  both 

points 𝑥0 , 𝑥1.  In order to do so, let us compute the point 𝑦0 where the 

function 𝛹2 reaches a minimum for a given value of  𝑥. This point is 

obtained from the condition: 

 

𝜕𝛹2

𝜕𝑦
= 0 

 

Which yields 



−
1

𝑐2𝑦0
+ 𝑐2 + 𝑀𝛼 

𝑦0
𝑎−1

𝑥𝛽
= 0 

 

or equivalently 

𝑦0
𝛼 +  

𝑐2  𝑥
𝛽

𝑀𝛼
𝑦0 =  

𝑥𝛽

𝑐2 𝑀 𝛼
 

 

We now wish to show that there is only a primitive value of  y  satisfying 

(27). Thus, there exist only one minimum value of 𝛹2 (𝑥, . ). Consider as in 

the figure 2, the value 𝑥𝛽𝑐2 𝑀𝛼 , in the ordinate, them the first two terms in 

thr the real and positive values of  y. 

The function 𝑦0 (𝑥) is a strictly monotonically increasing function of x, and 

it is shown in figure 3. 

On the other hand, at the minimum we have from equation (27) 

𝑀
𝑦0

𝛼

𝑥𝛽
=  −

𝑐2

𝛼
𝑦0 + 1/ 𝑐2 𝑎 

and the function 𝛹2 takes the value: 

 -1/ 

𝜖2 

𝛹3(𝑦0) =  𝛹2(𝑥, 𝑦0) = 𝑃 
𝑐2𝑦0

exp (𝑐2𝑦0 + 1/𝑐2𝛼 − 𝑐2/𝛼 𝑦0)
 

 

The variation of  𝛹3 as a function of  𝑦0 is given in figure 4. Thus the 

composition: 𝛹2 (𝑥, 𝑦0(𝑥)), as a function of 𝑥 takes the form shown in the 

figures 5. 

Now comparing the functions 𝛹2 (𝑥, 𝑦0 (x) ) in figure 5 and in figure 1a, 

we have that under appropriate conditions of 

 



4. Period Computation 

Continuig with the particular case of the previous paragraph, in this section 

we wish to study an approximation for obtaining of the period of the cycle 

shown by this model of the competition between three species. 

From the relation (25), with 𝛼 = 1 and 𝛽 = 1/2, and taking natural 

logarithm we have: 

1/ 𝜖1 log(𝑐1 𝑥) − 1/ 𝜖1𝑐1 𝑥 = log(𝑃) − 1/𝜖2 log(𝑐2𝑦) + 1 /𝜖2 (𝑐2 +

 
𝑐3

𝑥1/2) 𝑦    (29) 

 

Where the constants are: 

𝑐1 =  𝑎21𝜖2 , 𝑐2 =  𝑎12 /𝜖1 ,  𝑐3 = 𝐻 𝜖2𝑎12 /(𝜖1𝑎21) 

 

Now taking the linear approximation: 

Log y = a + by (30) 

 

Where the parameters a and b are adjusted for each of the four parts shown 

in figure 7, where the cycle in the plane (x,y) is graphically shown, (this is 

the proyeccion of the actual cycle solution in the phase space (x,y,z). 

Using the approximation, equation (30), in equation (29), one obtain for the 

variable y: 

 

𝑦 =  
𝐴 + 1 𝜖1 𝑙𝑜𝑔𝑥 − 𝑐1𝜖1𝑥 − 𝐵

𝐶 + 𝑐3/ 𝜖2𝑥1/2
 

(31) 

Where the constants are: 

𝐴 = 1 /𝜖1 log 𝑐1 

𝐵 log 𝑃 − 𝑎/ 𝜖2 − 1 /𝜖2 log 𝑐2 



𝐶 =  −𝑏/𝜖2 + 𝑐2 /𝜖2 

 

With the approximated value of  y in the respective regions we replace it in 

the first basic differential equation of  system (15) obtaining: 

𝑑𝑡 =  
𝑑𝑡

𝜖1𝑥 − (𝑎12𝑥 + 𝐷𝑥1/2)
(1/𝜖1 log(𝑥)− 𝑐1/𝜖1𝑥+𝐴−𝐵)

(𝑐3/ 𝜖2𝑥1/2+𝐶)

 

(32) 

In order to integrate (32), we again approximate the logarithm: 

Log x= g + fx 

 

Where the parameters are adjusted accordingly. Thus, one obtains: 

𝑑𝑡 =  
(𝑀 /𝑥1/2 + 𝐶) 𝑑𝑥

𝜖1𝑥 (𝑀/ 𝑥1/2 + 𝐶) − (𝑎12𝑥 − 𝐷𝑥1/2)(𝑁 + 𝑄𝑥)
 

(33) 

With: 

𝑀 =  𝑐3 /𝜖2 , 𝑄 = 𝑓 /𝜖1 − 𝑐1/𝜖2 𝑎𝑛𝑑 𝑁 = 𝑔/ 𝜖1 + 𝐴 − 𝐵 

 

Now, calling: 

 

𝐻1 =  𝜖1 𝑀 − 𝐷𝑁    ,    𝐻2 =  𝜖1𝐶 − 𝑎12𝑁 

𝐻3  =  −𝐷𝑄          𝑎𝑛𝑑    𝐻4 =   −𝑎12𝑄 

 

The previous equation (33), becomes: 

 



𝑑𝑡 =  
(𝑀 𝑥1/2 + 𝐶)𝑑𝑥

𝐻1𝑥1/2 + 𝐻2𝑥 + 𝐻3 𝑥
3/2 + 𝐻4𝑥2

 

(34) 

Whith the change of variable: 

𝑢 =  𝑥1/2 

 

We derive the following integral, which is cosier to be evaluated: 

 

𝑑𝑡 =  
2 𝑀 𝑑𝑢

𝑢(𝐻1 + 𝐻2𝑢 + 𝐻3𝑢2 + 𝐻4𝑢3)
+

2 𝐶 𝑑𝑢

(𝐻1 + 𝐻2𝑢 + 𝐻3𝑢2 + 𝐻4𝑢3)
 

(35) 

4- An Example 

Here we consider an example of the entire interaction system trated from 

different points of view in the previous sections. In the present example, we 

require the following values of the parameters of interaction equations (1): 

𝜖1 =  3          𝑎12 = 2      𝑎13  = 2     𝑥(0) = 2    

         𝜖2 =  .5         𝑎21 = 1     𝑎23 = 1      𝑦(0) = 1.5 

𝜖3 = 2         𝑎31 = 1      𝑎32 = 1      𝑧(0) = 1 

(36) 

 

And we recall that  𝑎33 =  0 

This set of parameters satisfy the conditions imposed on them by the 

theory, namely equations (11), (14) and (21). We note that for these values 

of the parameters we have: 

𝛼 = 1/ 2     𝑎𝑛𝑑   𝛽 = 1 

 



 

In order to obtain a graphic description of the variables x(t),  y(t)  and z(t), 

we use a general method namely, we consider them as analytic functions in 

the variable t: 

 

𝑥(𝑡) =  ∑ ̈ 𝑥𝑘 𝑡
𝑘 

𝑘 = 0 

𝑦(𝑡) =  ∑̈𝑦𝑘 𝑡
𝑘 

𝑘 = 0 

𝑧(𝑡) =  ∑̈𝑧𝑘𝑡𝑘 

𝑘 = 0 

Replacing these expressions in the system (1), we obtain after identifying 

coefficient that the recurrence relations are given by: 

𝑥𝑘+1 =  
1

𝑘 + 1
 (𝜖1𝑥𝑘 − 𝑎12

𝑘
Σ

ℓ = 0
𝑥ℓ𝑦𝑘−ℓ) 

𝑦𝑘+1 =  
1

𝑘 + 1
 (−𝜖2𝑦𝑘 + 𝑎21

𝑘
Σ

ℓ = 0
𝑦ℓ𝑧𝑘−ℓ) 

𝑧𝑘+1 =  
1

𝑘 + 1
(𝑎31/𝑎13𝜖1𝑥𝑘 − 𝑎32/ 𝑎23𝜖2𝑦𝑘 − 𝜖3𝑧𝑘) + 

1

𝑘 + 1
 ((𝑎32𝑎21/𝑎23 − 𝑎31𝑎12/𝑎13)

𝑘
Σ

ℓ = 0
𝑥ℓ𝑦𝑘−ℓ − 𝑎33

𝑘
Σ

ℓ = 0
𝑧ℓ𝑧𝑘−ℓ)  − 

𝑎31/𝑎13𝑥𝑘+1 − 𝑎32 /𝑎23𝑦𝑘+1 

 

If one is interested, it is possible to solve analytically and exactly such 

recursive relations, but applied as in reference (5) for non-linear system. 



However, we are not interested at this point in these analytic aspect of the 

numerical analysis. We are only interested in obtaining the graphic solution 

of the problem. 

Using (37) with the parameters already established using standard 

computacional methods, the graphic of the function is obtained and drawn 

in figure 8. 

From here, using the corresponding values of the variables the cycle is 

obtained and shown in figure 5. 

The computation of the approximated period is done explained in the 

previous paragraph, resulting in the set of parameters: 

𝑐1 = 2    𝑐2 =  .667𝑐3 =  .628 

𝐴 =  .231              𝑃 =  .015𝐻 = 1.332 

𝑀 = 1.258           𝐷 = 1.884 

 

For the interval A, shown in figure 5, the interval of variation of x is: 

(1.606, .378) 

While y varies in the interval: 

(1.535 , .615) 

Therefore the adjusting parameters we have chosen were: 

𝑔 =  −1.23𝑓 = 1.14 

𝑎 =  −1.008𝑏 =  .615 

 

From here it results: 

𝐻1 = 1. 52, 𝐻2  =  −4.202,   𝐻3  =  .541, 𝐻4 =  .574 

 

The roots of the denominator o (35) are 



𝑢0 =  .389, 𝑢1 = 2.025  𝑎𝑛𝑑  𝑢2 =  −3.357 

 

The limit of integration is: 

 

𝑢′ = 1.267  𝑎𝑛𝑑 𝑢′′ =  .615 

 

Integrating by rational functions the expression (35), one obtains for the 

time of the first region: 

 

𝑇𝐴 =    .682 

 

In a similar form one proceeds in the parts B, C and D one my obtain: 

𝑇𝐵  =   .403 

𝑇𝐶 =  . 794 

𝑇𝐷  =   2.693 

Resulting the period 

T = 2.693 

 

The real period is T = 2.748 
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