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Introduction 

Since the Surgeon General’s report in 1964, cigarette use has been declining in the US and in 

most high-income countries across the rest of the world (Antman, Arnett, Jessup, & Sherwin, 

2014; Spanagel, 2017) (M. Ng et al., 2014) (Jha & Peto, 2014). There have been multiple studies 

of cigarette smoking as the primary risk factor for many diseases including lung cancer and heart 

disease, contributing to 5 million deaths globally (Jha & Peto, 2014). The risk of cigarette smoking 

is not limited to regular smokers alone, a higher risk of cancer and cardiovascular disease also 

exists for intermittent smokers (Schane, Ling, & Glantz, 2010). Moreover, the effects of 

secondhand smoke are also a public health concern since mere exposure has been linked to an 

increased risk in lung cancer and stroke (Kim, Ko, Kwon, & Lee, 2018). Children are particularly 

vulnerable because they breathe at a faster rate than adults and secondhand smoke has been 

associated with increased rates of bacterial infections, acute respiratory illness and rates of 

hospitalization of asthma attacks (Cao, Yang, Gan, & Lu, 2015; Z. Wang et al., 2015).   

The only other substance to approximate the public health burden of tobacco use is alcohol use.  

There are an estimated 2.4 billion people across the globe who use alcohol (Gowing et al., 2015; 

Griswold et al., 2018; Jha & Peto, 2014). Alcohol use has been clearly linked to risk for a wide 

variety of diseases (e.g., liver cirrhosis), but also to unintentional injuries such as traffic accidents 

and falls (Griswold et al., 2018; Rehm, 2011). 

Twin studies routinely find that nicotine and alcohol use are heritable (Polderman et al., 2015) 

with ~50% of the phenotypic variance being accounted for by additive genetic effects. Despite 

this substantial heritability, prior to 2019 only a handful of specific genetic variants or genomic 

regions have been reliably found to be associated with substance use or dependence.  The 

decreasing cost of array genotyping and genome sequencing since the mid-2000s (Mardis, 2011) 

has led to a marked increase in the number of studies that use these technologies to study 

genetic associations for complex traits and disease.  

The standard analytical approach for gene-disease mapping has become the genome-wide 

association study (GWAS). Very simply, GWAS is a series of correlations between individuals’ 

genotypes, most commonly single-nucleotide polymorphisms (SNPs), with the phenotype of 

interest. GWAS and GWAS meta-analyses have successfully found several functional, and 

potentially causal variants associated with substance dependence (Laura J. Bierut et al., 2010; 

Hancock et al., 2018; Walters et al., 2018). However, these variants account for a tiny fraction of 

the phenotypic variation, prompting the conclusion that behavioral phenotypes are highly 

polygenic; many variants, each of small effect, work in conjunction to influence the phenotype. In 

fact, the effect of any single variant is so small that very large study samples are necessary to 

detect them (Visscher et al., 2017). Alcohol and nicotine dependence are clinically relevant 

phenotypes and tend to have higher heritability estimates than measures of consumption 



 

(Verhulst, Neale, & Kendler, 2015; Vink, Willemsen, & Boomsma, 2005) which would make them 

more ideal GWAS candidate phenotypes. However, there is substantial difficulty in achieving the 

desired sample size in substance abuse as cases would require clinical diagnosis and further 

work would be needed to find a suitable control (Dick, Meyers, Rose, Kaprio, & Kendler, 2011). It 

is more practical to work with simple substance use phenotypes that are regularly collected in 

biomedical studies using short survey questions (“Do you smoke regularly?” or “How many drinks 

per week do you typically consume?”) and are common in medical records as part of regular 

health check-ups or hospital intakes. There have been GWAS meta-analyses of alcohol and 

nicotine use that have found several significant loci (Schumann et al., 2016; Tobacco and 

Genetics Consortium, 2010) and we aim to increase the sample size further in order to capture 

more substance use associated variants. 

In the first chapter, we used GWAS meta-analysis to discover common variants (variants with 

allele frequency > 0.1%) that are associated with alcohol and nicotine use. It is the largest GWAS 

meta-analysis of alcohol and nicotine use to date combining summary statistics from over 30 

GWASs and reached over 1.2 million participants of European descent.  

For nicotine use, we examined cigarette smoking from initiation to cessation. The four 

phenotypes are 

• Smoking Initiation: Binary phenotype on whether the participants have ever been a 

regular smoker (also commonly defined as having smoked more than 100 cigarettes). 2 

coded as regular smoker and 1 as never a regular smoker. 

• Age of initiation: Quantitative phenotype on when the participants started regularly 

smoking. Individuals who are not regular smokers were set to missing. 

• Cigarettes per Day: Binned phenotype (1-5) on how many cigarettes smoked per day. 

Individuals who are not regular smokers were set to missing. 

• Smoking cessation: Binary phenotype on whether the participants is a current or former 

regular smoker. 2 coded as current and 1 as former. Individuals who are not regular 

smokers were set to missing. 

We had one alcohol use phenotype which measures heaviness of use. 

• Drinks per week: Quantitative phenotype on how many alcoholic drinks per week they 

consume. Studies were asked to left-anchor and log transform this phenotype. 

We discovered 566 conditionally independent variants in 406 loci associated with nicotine and 

alcohol use. Using these results, we performed cell, tissue, gene-set, and pathway enrichment 

analyses on each set of meta-analysis results to understand the specific biological mechanisms 

of those traits. An advantage to including both alcohol and nicotine use phenotypes is that we can 



 

jointly explore the results for any common variants that may contribute to a more general 

substance use factor. Alcohol and nicotine use are highly comorbid behaviors (Meyerhoff et al., 

2006) so there may be common variants that are affecting both substances pleiotropically. We 

examined the genetic correlations between the phenotypes and did a pleiotropy analysis to see if 

any genes overlap across the five traits. Lastly, to see the utility of these results, we calculated 

polygenic risk scores (PRS) with the meta-analyses results and it significantly predicted the same 

phenotypes in two other independent samples. 

Previous large-scale GWAS meta-analysis of alcohol and nicotine use have found several 

significant loci (Schumann et al., 2016; Tobacco and Genetics Consortium, 2010) but the 

heritability derived from these SNPs are far from the heritability estimated from twin studies. SNP-

based heritability from published GWAS meta-analysis results are generally under 10% (Zheng et 

al., 2017), much less than the 30-60% (Grant et al., 2009; Polderman et al., 2015; Verhulst et al., 

2015; Vink et al., 2005) typically found in twin studies. The discrepancy between heritabilities 

estimated from twin studies and genotyped variants has been termed the “missing heritability” 

(Eichler et al., 2010; Gibson, 2012; Maher, 2008). One hypothesis is the effect of each individual 

variant is much smaller than previous expectations and we may need hundreds of thousands of 

individuals to detect them. Another common hypothesis concerns the genetic architecture 

underlying the trait where rare variants with large effects are what’s contributing to the missing 

heritability. There are examples of highly penetrant mendelian diseases that are due to low 

frequency variants such as cystic fibrosis, therefore, it stands to reason that the same may be 

true for behavioral traits as well. From an evolutionary theory perspective, if the variant has a 

large deleterious effect then it is expected to be selected against in a population and thus exists 

at a lower frequency (Gibson, 2012). 

In the second chapter, we performed exome meta-analysis in parallel to the first chapter in order 

to find rare variants that may be associated specifically with nicotine use. We examined 4 nicotine 

use phenotypes: 

• Smoking Initiation: Binary phenotype on whether the participants have ever been a 

regular smoker (also commonly defined as having smoked more than 100 cigarettes). 2 

coded as regular smoker and 1 as never a regular smoker. 

• Cigarettes per day (CPD; quantitative trait) average number of cigarettes smoked per day 

by ever smokers. 

• Pack-years (quantitative trait; Packs per day x Years smoked, with a pack defined as 20 

cigarettes); years smoked is typically formed from age at smoking initiation to current age 

for current smokers or age at cessation for former smokers. 



 

• Smoking cessation: Binary phenotype on whether the participants is a current or former 

regular smoker. 2 coded as current and 1 as former. Individuals who are not regular 

smokers were set to missing. 

The exome-metanalysis was done simultaneously as the GWAS meta-analysis and found 40 

common loci (also implicated in the GWAS meta-analysis) associated with nicotine use but no 

conclusive rare variant associations. We also checked for conditionally independent rare variants 

within previously associated loci and found one low-frequency variant (allele frequency~1%). In 

order to characterize these loci, we queried the GWAS catalogue, QTL in GTEx V7, Brain xQT, 

and BRAINEAC and also performed pathway enrichment analysis. Lastly, we used mendelian 

randomization with our results and some key phenotypes associated with smoking. We found 

causal associations between smoking initiation and educational attainment. 

In order to understand the mechanisms of these addictions, there have been many animal 

studies, most commonly mice, that model drug addiction from use to relapse (Lynch, Nicholson, 

Dance, Morgan, & Foley, 2010). The biology and chemistry of alcohol and nicotine have been 

studied extensively (Benowitz, Hukkanen, & Jacob, 2009; Cederbaum, 2012; Edenberg, 2007), 

yet there are still gaps in the knowledge of how and why there are individual differences in the 

metabolism of these substances. The underlying biology of substance metabolism may be 

common amongst mammalian species, but human-specific traits and behaviors are much harder 

to model and replicate in mice. 

A common method to measure these underlying mechanisms in humans is to examine 

endophenotypes that are associated with the complex phenotype of interest. Endophenotypes 

are stable, simple, and heritable traits within individuals that are useful as measures associated 

with a more complex phenotype; some examples of endophenotypes are biomarkers such as 

cotinine and brain-based measures like electroencephalography. These endophenotypes are 

viewed as measures that are closer to acute underlying biological pathways or cognitive 

processes which may be expressed as part of the heterogeneity of a complex phenotype. 

There have been studies linking alcohol use disorder and various brain-based endophenotype in 

the literature (Carlson, Iacono, & McGue, 2002; Malone, Iacono, & McGUE, 2001).  In the third 

chapter, we associated the results from the imputed GWAS meta-analyses to these 

endophenotypes in order to understand its connection to substance use. None of the associations 

were significant after correcting for multiple tests. 

 

 

 



 

Chapter 1 

Tobacco and alcohol use are leading causes of mortality that influence risk for many complex 

diseases and disorders (Ezzati, Lopez, Rodgers, Vander Hoorn, & Murray, 2002). They are 

heritable (Hicks, Schalet, Malone, Iacono, & McGue, 2011; Polderman et al., 2015) and 

etiologically related (Kenneth S. Kendler, Prescott, Myers, & Neale, 2003; Kenneth S. Kendler, 

Schmitt, Aggen, & Prescott, 2008) behaviors that have been resistant to gene discovery efforts 

(Bierut et al., 2012; Jorgenson et al., 2017; Schumann et al., 2016; T. E. Thorgeirsson et al., 

2016; Thorgeir E. Thorgeirsson et al., 2010; Tobacco and Genetics Consortium, 2010). 

An analysis overview is provided in Supplementary Fig. 1; all independent associated variants are 

in Supplementary Tables 1–5; and quantile-quantile, Manhattan, and LocusZoom plots are shown 

in Supplementary Figs. 2–12. Smoking initiation phenotypes included age of initiation of regular 

smoking (AgeSmk; n=341,427; 10 associated variants) and a binary phenotype indicating 

whether an individual had ever smoked regularly (SmkInit; n=1,232,091; 378 associated 

variants). Heaviness of smoking was measured with cigarettes per day (CigDay; n=337,334; 55 

associated variants). Smoking cessation (SmkCes; n=547,219; 24 associated variants) was a 

binary variable contrasting current versus former smokers. Available measures of alcohol use 

were simpler, with drinks per week (DrnkWk; n=941,280; 99 associated variants) widely available 

and similarly measured across studies. See the Supplementary Note and Supplementary Tables 

6 and 7 for phenotype definition details. An analysis overview is provided in Supplementary Fig. 

1; all independent associated variants are in Supplementary Tables 1–5; and quantile-quantile, 

Manhattan, and LocusZoom plots are shown in Supplementary Figs. 2–12. 

The four smoking phenotypes were genetically correlated with one another (Fig. 1 and 

Supplementary Table 8). DrnkWk was not highly genetically correlated with the smoking 

phenotypes (rg~0.10) except for SmkInit (rg~0.34, p=6.7×10−63), suggesting that sequence 

variations affecting alcohol use and those affecting initiation of smoking overlap substantially. The 

phenotypes were highly genetically correlated across constituent studies (Supplementary Table 

9), suggesting a minor effect of phenotypic heterogeneity in the present results, even across 

Western Europe and the United States. Smoking phenotypes were genetically correlated in 

expected directions with many behavioral, psychiatric, and medical phenotypes (Fig. 1 and 

Supplementary Table 10). Genetic variation associated with increased alcohol use was 

associated with greater levels of risky behavior (rg=0.20, p=1.8×10−7 ) and cannabis 

use(rg=0.36, p=6.2×10−10), but with less risk of disease for almost all diseases (Fig. 1 and 

Supplementary Table 10). 

 



 

 

Fig. 1 Genetic correlations between substance use phenotypes and phenotypes from other large 
GWAS. Genetic correlations between each of the phenotypes are shown in the first five rows, 
with heritability estimates displayed down the diagonal. All genetic correlations and heritability 
estimates were calculated using LD score regression. Purple shading represents negative genetic 
correlations, and red shading represents positive correlations, with increasing color intensity 
reflecting increasing correlation strength. A single asterisk reflects a significant genetic correlation 
at the P < 0.05 level. Double asterisks reflect a significant genetic correlation at the Bonferroni-
correction P < 0.000278 level (corrected for 180 independent tests). Note that SmkCes was 
oriented such that higher scores reflected current smoking, and for AgeSmk, lower scores reflect 
earlier ages of initiation, both of which are typically associated with negative outcomes 

 

Using a novel method to evaluate multivariate genetic correlation at the locus (versus global) 

level, we observed 150 loci that affected multiple substance use phenotypes (Fig. 2 and 

Supplementary Table 11). Patterns of pleiotropy across phenotypes were highly diverse, with only 

three loci significantly associated with all five phenotypes. These three loci included associations 

implicating phosphodiesterase 4B (PDE4B) and cullin 3 (CUL3). PDE4B regulates cyclic AMP 

second messenger availability and thereby affects signal transduction, and it is downregulated by 

chronic nicotine administration in rats (Polesskaya, Smith, & Fryxell, 2007). CUL3 has wide-



 

ranging effects, including on ubiquination and protein degradation, and de novo mutations in 

CUL3 are associated with rare diseases affecting response to the mineralocorticoid aldosterone 

(Boyden et al., 2012), which itself is affected by smoking (W. Wang et al., 2016) and is associated 

with alcohol use (Aoun et al., 2018). In addition to testing for pleiotropy, we also used MTAG 

(Turley et al., 2018) to leverage the observed genetic correlations to increase power for locus 

discovery. Using this method, we discovered 1,193 independent, genome-wide significantly 

associated common variants (minor allele frequency (MAF), >1%; AgeSmk, 173; CigDay, 89; 

SmkCes, 83; SmkInit, 692; DrnkWk, 156) listed in Supplementary Table 12 and described further 

in the supplementary information.  

 

Fig. 2 Pleiotropy. Depicted here are results from the multivariate analysis of pleiotropy. For each 
locus, the method returns the best-fitting solution of which phenotypes were associated with that 
locus. All loci with one or more associated phenotypes are shown here. For example, every locus 
associated with AgeSmk was found to be pleiotropic for other phenotypes (green, blue, red, 
purple, and fuchsia bars), and no locus showed association with only AgeSmk (no dark gray bar 
for AgeSmk). When sample sizes are unequal across phenotypes, the method also improves 
power for those phenotypes with smaller samples. The total numbers of loci associated with each 
trait (whether pleiotropic or not) from these analyses were 40 (AgeSmk), 48 (SmkCes), 72 
(CigDay), 111 (DrnkWk), and 278 (SmkInit). Full information is in Supplementary Table 11. 

 

Phenotypic variation accounted for by our initial 566 conditionally independent genome-wide 

significant variants from the initial genome-wide association study (GWAS) ranged from 0.1% 



 

(SmkCes) to 2.3% (SmkInit; see Fig. 3). SNP heritability calculated using linkage disequilibrium 

(LD) score regression (Bulik-Sullivan et al., 2015) ranged from 4.2% for DrnkWk to 8.0% for 

CigDay (Fig. 3 and Supplementary Table 13), consistent with estimates made using individual-

level data (Yang, Lee, Goddard, & Visscher, 2011), SNP heritabilities calculated from the largest 

individual contributing studies (Supplementary Table 13), and prior work (Zheng et al., 2017). The 

results suggest that these phenotypes are highly polygenic, and that the majority of the heritability 

is accounted for by variants below standard GWAS thresholds.  

 

 

 

 

Fig. 3 Heritability and polygenic prediction. The light gray bars reflect SNP heritability, estimated 
with LD score regression. The light blue and gold bars reflect the predictive power of a PRS in 
Add Health and the HRS, respectively. Despite the 41 year generational gap between participants 
from these two studies, and major tobacco-related policy changes during that time, the polygenic 
scores are similarly predictive in both samples. Error bars are 95% confidence intervals estimated 



 

with 1,000 bootstrapped repetitions. Dark gray bars represent the total phenotypic variance 
explained by only genome-wide significant SNPs. 

 

To further investigate the polygenicity, polygenic risk scores (PRS; Supplementary Table 14) 

were computed on the National Longitudinal Study of Adolescent to Adult Health (Add Health) 

(Harris, Halpern, Haberstick, & Smolen, 2013) and the Health and Retirement Study (HRS) 

(Sonnega et al., 2014) datasets, which are representative of their birth cohorts in the United 

States and represent exposures to different tobacco policy environments. Add Health participants 

were born, on average, in 1979; average birth year in the HRS was 1938. Despite these 

generational differences, the polygenic score performed similarly in both samples. It accounted 

for approximately 1%, 4%, 1%, 4%, and 2.5% of variance in AgeSmk, CigDay, SmkCes, SmkInit, 

and DrnkWk, respectively, about half of the estimated SNP heritability of these traits (Fig. 3). 

More concretely, in Add Health and the HRS, respectively, a 1s.d. increase in the CigDay risk 

score resulted in two and three additional daily cigarettes; a 1s.d. increase on the SmkInit risk 

score resulted in a 12% and 10% increased risk of regularly smoking; and a 1s.d. increase on the 

DrnkWk risk score reflected one additional drink per week in both datasets. 

Cell and tissue enrichment (Finucane et al., 2015) was observed across all five phenotypes within 

core histone marks from multiple central nervous system tissues (Supplementary Figs. 13–15 and 

Supplementary Tables 15 and 16). Enrichment was observed in tissues from cortical and sub-

cortical regions in the central nervous system. Structure and function of these regions have been 

robustly associated with individual differences in frequencies, magnitudes, and clinical 

characteristics of alcohol use, and substance use/misuse generally, in human imaging research. 

Our results include significant enrichment across phenotypes and histone marks in the 

hippocampus (Wilson, Bair, Thomas, & Iacono, 2017), inferior temporal pathways (Feldstein 

Ewing, Sakhardande, & Blakemore, 2014), dorsolateral and medial prefrontal cortex (Goldstein & 

Volkow, 2011), caudate, and striatum (Volkow & Morales, 2015). Consistent with gene and 

pathway findings described below, alcohol and nicotine use affect dopaminergic and 

glutamatergic neurotransmission among these brain regions, compromising reward-based 

learning and facilitating drug-seeking behavior (Volkow & Morales, 2015). Enrichment within other 

cell or tissue groups and specific cell or tissue types included immune and liver cells, but was less 

consistent across analytical approaches.  

We manually reviewed all of the genes implicated by the GWAS or gene-based tests (see 

Supplementary Tables 1–5 for the full catalog of implicated genes and Supplementary Tables 17–

21 for gene and gene set test results). We replicated known associations between multiple 

variants in the nicotine metabolism gene CYP2A6 with CigDay (P=4.0×10−99) and SmkCes 

(P=1.6×10−48). We replicated an association signal in the alcohol metabolism gene ADH1B 



 

associated with DrnkWk, identifying in that locus 11 conditionally independently associated 

variants (lowest P <2.2×10−303).  

All drugs of abuse activate the mesolimbic dopamine system reward pathway (Koob & Volkow, 

2010), and dopamine-related genes have long been popular candidate genes. We found that 

variants near the widely studied dopamine receptor D2 (DRD2) (Koob & Volkow, 2016) were 

associated across phenotypes, including CigDay, SmkCes, and DrnkWk (P=6.5×10−12, 

1.1×10−10, and 4.9×10−11, respectively), but not with AgeSmk or SmkInit, suggesting that these 

variants are less relevant in early stages of nicotine use. Other specific dopamine-related genes 

only showed associations with smoking phenotypes, including multiple associations between 

CigDay and SmkCes with dopamine β-hydroxylase (DBH; P=9.8×10−24 and 1.2×10−35, 

respectively) (Tobacco and Genetics Consortium, 2010), an enzyme necessary to convert 

dopamine to norepinephrine. SmkInit was associated with variation near protein phosphatase 1 

regulatory subunit 1B (PPP1R1B; P=3.9×10−8), a signal transduction gene that affects synaptic 

plasticity and reward-based learning in the striatum (Fernandez, Schiappa, Girault, & Le Novère, 

2006; Yagishita et al., 2014) and contributes to the behavioral effects of nicotine in mice (Zhu et 

al., 2005). In pathway analyses, dopamine gene sets were enriched only in SmkInit, where the 

exemplar ‘reactome dopamine neurotransmitter release cycle’ pathway was enriched 

(P=9.2×10−5; Fig. 4 and Supplementary Table 18). 

 

 



 

 

Fig. 4 Correlations among exemplary DEPICT gene sets. (a,b) There were 68 clusters available 
for SmkInit (a) and 10 for DrnkWk (b) (CigDay, AgeSmk, and SmkCes did not have >1 exemplary 
set). Purple shading represents negative correlations, and red shading represents positive 
correlations, with increasing color intensity reflecting increasing correlation strength. Cluster 
names are truncated for space, with a full list of all names in Supplementary Table 18. The 
number after each name is the number of gene sets in each cluster. The matrix naturally falls into 
three red superclusters along the diagonal. The largest supercluster contains primarily gene sets 
related to neurotransmitter receptors, ion channels (sodium, potassium, calcium), 
learning/memory, and other aspects of central nervous system function. The middle supercluster 
includes gene sets defined by regulation of transcription and translation, including RNA binding 
and transcription factor activity. The final supercluster is composed primarily of gene sets related 
to development of the nervous system. 

Neuronal acetylcholine nicotinic receptors are the initial site of nicotine action in the brain and 

have long been implicated in nicotine use and dependence (Stoker & Markou, 2013). With the 

exception of CHRNA7, all central-nervous-system-expressed nicotinic receptor genes were 

significantly associated with one or more smoking phenotypes, many reported here for the first 



 

time. Enrichment was also noted for nicotinic-receptor-related pathways and genes in smoking 

phenotypes (Supplementary Tables 17–21). There was no evidence of association between 

nicotinic receptor genes or pathways with DrnkWk, despite the use of nicotinic receptor partial 

agonists (for example, varenicline) in the treatment of alcohol dependence (Litten et al., 2013).  

Associations with SmkInit highlighted structures and functions related to long-term potentiation 

and reward-related learning and memory, systems that affect reward processing and addiction 

(Hyman, Malenka, & Nestler, 2006; Kalivas, 2009; Koob & Volkow, 2016). Glutamate is an 

important neurotransmitter mediating these processes, and exemplar pathways related to 

glutamate were significantly enriched in SmkInit (for example, ‘extracellular-glutamate-gated ion 

channel’, P=9.9×10−7 ; ‘post-NMDA receptor activation events’, P=5.5×10−5 ; and ‘DLG4 PPI 

subnetwork’, P=4.5×10−12; Supplementary Table 18). DLG4 affects NMDA receptors and 

potassium channel clusters and has a central role in glutamatergic models of reward-related 

learning (Kalivas, 2009). Individual associated genes related to these pathways included 

glutamate ionotropic receptor NMDA type subunit 2 (GRIN2A; P=3.4×10−11) and homer 

scaffolding protein 2 (HOMER2; P=3.1×10−14), which affects addictive behavior in mice (Kalivas, 

2009; Szumlinski et al., 2017) and regulates glutamate metabotropic receptor 1 (GRM1). 

Pathways enriched in SmkInit also included sodium-, potassium-, and calcium voltage-gated 

channels (Fig. 4 and Supplementary Table 18), essential to neuronal excitability and signaling.  

Alcohol is known to affect glutamatergic signaling pathways (Gass & Olive, 2008), and more than 

half of the enriched pathways for DrnkWk clustered within the exemplar ‘glutamate ionotropic 

receptor kainate type subunit 2 (GRIK2) PPI subnetwork’ (Fig. 4 and Supplementary Table 18). 

However, not all DrnkWk-enriched pathways involved the brain as glucose and carbohydrate 

processing pathways were associated with DrnkWk but no smoking phenotype, perhaps 

suggesting that alcohol consumption is influenced by individual differences in one’s ability to 

process calorie-rich alcoholic beverages. Finally, we discovered variation in and around gene-rich 

regions, including corticotropin-releasing hormone receptor 1 (CRHR1; P=1.6×10−17) and 

urocortin (UCN; P=8.1×10−45), associated with DrnkWk, but not smoking. UCN encodes an 

endogenous ligand for CRHR1 and CRHR2 (ref. (Vaughan et al., 1995)). CRH affects hormones 

involved in the stress response, including cortisol, and has been associated with the stress 

response and relapse to drug taking in animals (Logrip, Koob, & Zorrilla, 2011; Volkow, Koob, & 

McLellan, 2016).  

Specific mechanisms by which implicated genes influence substance use in humans are largely 

unknown, even for those genes reported above involving systems, such as neurotransmission, 

reward-related learning and memory, and the stress response. To prioritize genes for functional 

experimentation, we tabulated conditionally independent genome-wide significant non-

synonymous variants (Table 1). In the 406 GWAS loci, 4% of sentinel variants were 



 

nonsynonymous, representing a significant enrichment (P=2.5×10−10; 0.4% of variants with 

MAF>0.1% in the imputation panel(McCarthy et al., 2016) were non-synonymous). Several genes 

in Table 1 have been previously associated with substance use/addiction (see Supplementary 

Table 22 for a list of previous associations), and two variants have been functionally validated 

(rs1229984 and rs16969968) (Edenberg, 2007; Lassi et al., 2016). The others have not, but in 

some cases their genes interact with established molecular targets of addiction and may 

themselves be suitable targets for further investigation. For example, rs1024323 in G-protein-

coupled receptor kinase 4 (GRK4) was associated with CigDay (P=8.7×10−9 ) and lies within a 

locus associated with AgeSmk. GRK4 is involved in the regulation of G-protein-coupled 

receptors, including metabotropic glutamate receptor 1 (GRM1) (Sallese et al., 2000), GABAB 

receptors (Perroy, Adam, Qanbar, Chénier, & Bouvier, 2003), and dopamine receptors D1 

(DRD1) and D3 (DRD3) in the kidneys and cerebellum, and is involved in essential hypertension 

(Yang, Villar, Armando, Jose, & Zeng, 2016). GRK4 is also expressed in the midbrain and 

forebrain (GTEx Consortium et al., 2017; Yang et al., 2016), but no research has evaluated its 

impact on substance use behavior. To take one more example, the non-synonymous variant in 

SLC39A8 affects zinc and manganese transport, is highly pleiotropic for complex phenotypes, 

and may impair inflammation, glutamatergic neurotransmission, and regulation of various metals 

in the body (Costas, 2018).  

Conclusion 

Ultimately, substance use is embedded in a complex web of causal relations (Kong et al., 2018) 

(for example, see Fig. 1), and caution must be exercised in drawing strong causal conclusions. 

However, our findings represent a major step forward in understanding the etiology of these 

complex, disease-relevant behaviors. In particular, statistical and interpretive power were both 

enabled by simultaneously studying multiple related substance use behaviors representing 

different stages of use and different substances. More precise measurements, including 

evaluating age and environment as moderators for these dynamic phenotypes (Vrieze, Hicks, 

Iacono, & McGue, 2012), functional research, and complementary gene mapping approaches (for 

example, sequencing) will aid in the discovery of mechanisms by which implicated genes may 

affect substance use and related disease risk. 

  



 

Phenotype Gene rsID Chr Position REF ALT AF Beta P N Q 

CigDay 

(SmkCes) 
CHRNA5 rs16969968a 15 78,882,925 G A 0.34 0.075 1.2 × 10−278 330,721 0.34 

CigDay HIST1H2BE rs7766641 6 26,184,102 G A 0.27 −0.014 2.9 × 10−10 335,553 0.78 

CigDay 

(AgeSmk) 
GRK4 rs1024323 4 3,006,043 C T 0.38 −0.012 8.7 × 10−9 337,334 0.17 

SmkInit REV3L rs462779a 6 111,695,887 G A 0.81 −0.019 4.5 × 10−29 1,232,091 0.67 

SmkInit 

(DrnkWk) 
BDNF rs6265 11 27,679,916 C T 0.20 −0.016 2.8 × 10−19 1,232,091 0.13 

SmkInit RHOT2 rs1139897 16 720,986 G A 0.23 −0.012 1.8 × 10−15 1,232,091 0.61 

SmkInit 

(DrnkWk) 
ZNF789 rs6962772a 7 99,081,730 A G 0.15 −0.015 2.1 × 10−14 1,232,091 0.92 

SmkInit BRWD1 rs4818005a 21 40,574,305 A G 0.58 −0.010 3.9 × 10−14 1,232,091 0.75 

SmkInit ENTPD6 rs6050446 20 25,195,509 A G 0.97 0.035 8.8 × 10−13 1,225,969 0.33 

SmkInit RPS6KA4 rs17857342a 11 64,138,905 T G 0.38 −0.010 9.8 × 10−12 1,232,091 0.16 

SmkInit FAM163A rs147052174 1 179,783,167 G T 0.02 0.037 2.3 × 10−10 1,232,091 0.59 

SmkInit PRRC2B rs34553878 9 134,907,263 A G 0.11 0.016 1.2 × 10−9 1,232,091 0.28 



 

SmkInit ADAM15 rs45444697a 1 155033918 C T 0.21 0.010 5.3 × 10−9 1,232,091 0.46 

SmkInit MMS22L rs9481410a 6 97,677,118 G A 0.76 0.010 1.1 × 10−8 1,232,091 0.04 

SmkInit QSER1 rs62618693 11 32,956,492 C T 0.04 −0.020 2.1 × 10−8 1,232,091 1.00 

DrnkWk ADH1B rs1229984 4 100,239,319 T C 0.96 0.060 2.2 × 10−308 941,280 0.05 

DrnkWk GCKR rs1260326 2 27,730,940 T C 0.60 0.008 8.1 × 10−45 941,280 0.10 

DrnkWk SLC39A8 rs13107325 4 103,188,709 C T 0.07 −0.009 1.5 × 10−22 941,280 0.33 

DrnkWk SERPINA1 rs28929474 14 94,844,947 C T 0.02 −0.012 1.3 × 10−11 941,280 0.50 

DrnkWk 

(SmkInit) 
ACTR1B rs11692465 2 98,275,354 G A 0.09 0.008 2.5 × 10−11 937,516 0.40 

DrnkWk TNFSF12-13 rs3803800 17 7,462,969 A G 0.79 0.004 1.5 × 10−10 941,280 0.67 

DrnkWk HGFAC rs3748034 4 3,446,091 G T 0.14 −0.005 1.7 × 10−8 941,280 0.65 

Table 1 Non-synonymous sentinel variants. The sentinel variant in approximately 4% of loci was non-synonymous. Shown here are all non-
synonymous sentinel variants, and all non-synonymous variants in near-perfect LD with a sentinel variant. If the listed gene was also associated 
(through single variant or gene-based test) with another phenotype, that phenotype is listed in parentheses. Several genes have been implicated 
in previous studies of substance use/addiction, including CHRNA5, BDNF, GCKR, and ADH1B. Phenotype abbreviations are defined in Fig. 1. 
Chr, chromosome; REF, reference allele; ALT, alternate allele; AF, allele frequency of ALT; Q, Cochrane’s Q statistic P value. aThese variants 
were not themselves sentinel, but were in near-perfect LD with a sentinel variant (r2 > 0.99, from the 1000 Genomes European population). The 
scale of Beta is on the unit of the standard deviation of the phenotype. For binary phenotypes the standard deviation was calculated from the 
weighted average prevalence across all studies included in the meta-analysis (available in Supplementary Table 7



 

Chapter 2 

Introduction 

Smoking is a major risk factor for many diseases, including common respiratory disorders such 

as chronic obstructive pulmonary disease (COPD) (Wain et al., 2017, 2015), cancer (McKay et 

al., 2017) and cardiovascular diseases (O’Donnell & Nabel, 2011), and is reported to cause 1 in 

10 premature deaths worldwide (Reitsma et al., 2017). A greater understanding of the genetic 

etiology of smoking behavior has the potential to lead to new therapeutic interventions to aid 

smoking prevention and cessation, and thereby reduce the global burden of such diseases. 

Previous genome-wide association studies (GWASs) identified 14 common SNVs (Bloom et al., 

2014; Hancock et al., 2018; Siedlinski et al., 2011; Thakur, Sengupta, Grizenko, Choudhry, & 

Joober, 2012; Thorgeir E. Thorgeirsson et al., 2010; Timofeeva et al., 2011; Tobacco and 

Genetics Consortium, 2010; Wain et al., 2015)(with minor allele frequency, MAF >0.01) robustly 

associated with smoking behavior-related traits (P < 5 × 10−8). The 15q25 (CHRNA3/5-CHRNB4) 

region has the largest effect, explaining ~1% and 4–5% of the phenotypic variance of smoking 

quantity (Munafo, Tilling, Taylor, Evans, & Davey Smith, 2018) and cotinine, a biomarker of 

nicotine intake (Keskitalo et al., 2009), respectively. Overall, genetic loci identified to date explain 

~2% of the estimated genetic heritability of smoking behavior (Tobacco and Genetics 

Consortium, 2010), which is reported to be between 40–60% (Carmelli, Swan, Robinette, & 

Fabsitz, 1992; Kaprio, Koskenvuo, & Sarna, 1981; Vink, Willemsen, & Boomsma, 2005). A recent 

study suggested that an important proportion (~3.3%) of the phenotypic variance of smoking 

behavior-related traits was explained by rare nonsynonymous variants (MAF <0.01) (Brazel et al., 

2019). Hence, well-powered studies of rare variants are needed. 

To investigate the effect of rare coding variants on smoking behavior, we studied 346,813 

participants (of which 324,851 were of European ancestry) from 61 cohorts (Supp. 

Tables 40 and 41) at up to 235,116 SNVs from the exome array. As we had access to UK 

Biobank, we also interrogated SNVs present on the UK Biobank and UK BiLEVE Axiom arrays to 

identify additional associations across the genome beyond the exome array. To our knowledge, 

these datasets are an order of magnitude larger than the previous studies (Tobacco and Genetics 

Consortium, 2010), and constitute the most powerful exome-array study of smoking behavior to 

date. 

Method 

 



 

Participants 

Our study combined study-level summary association data from up to 59 studies of European 

ancestry and two studies of South Asian ancestry from three consortia (Consortium for Genetics 

of Smoking Behaviour (CGSB), GWAS & Sequencing Consortium of Alcohol and Nicotine use 

(GSCAN) and the Coronary Heart Disease (CHD) Exome+ consortium), INTERVAL and UK 

Biobank. In total, up to 324,851 individuals of European ancestry and 21,962 South Asian 

individuals were analyzed in the discovery stage (Fig. 5). Further information about the 

participating cohorts and consortia is given in Supp. Table 40 and the Suppl Material. All 

participants provided written informed consent and studies were approved by local Research 

Ethics Committees and/or Institutional Review boards. 

Fig. 5 Study design including the discovery and replication stages. NB: Gene-based studies, 
conditional analyses, and replication in African American ancestry samples not shown here for 
clarity. *GFG and NAGOZALC studies contributed additional custom content 



 

Phenotypes 

We chose to analyze the following four smoking behavior-related traits because of their broad 

availability in existing epidemiological and medical studies, as well as their biological relevance 

for addiction behaviors: 

1. Smoking initiation (binary trait: ever vs never smokers). Ever smokers were defined as 

individuals who have smoked >99 cigarettes in their lifetime, which is consistent with the 

definition by the Centre for Disease Control (Centers for Disease Control and Prevention 

(CDC), 2008); 

2. Cigarettes per day (CigDay; quantitative trait: average number of cigarettes smoked per 

day by ever smokers); 

3. Pack-years (quantitative trait; Packs per day x Years smoked, with a pack defined as 20 

cigarettes); years smoked is typically formed from age at smoking commencement to 

current age for current smokers or age at cessation for former smokers. 

4. Smoking cessation (binary trait: former vs current smokers). 

 

In UK Biobank, phenotypes were defined using phenotype codes 1239, 1249, and 2644 for 

smoking initiation and smoking cessation, and 1239, 3436, 3456 for CigDay and pack-years. 

CigDay was inverse normal transformed in the CHD Exome+, INTERVAL and CGSB studies and 

categorized (1–10, 11–20, 21–30, and 31+ CigDay) by the GSCAN studies and UK Biobank 

(Supp. Table 41). All studies performed an inverse normal transformation of pack-years. 

Summary statistics of study level phenotype distributions are provided in Supp. Table 40. 

Genotyping and quality control 

Fifty-nine cohorts were genotyped using exome arrays (up to 235,116 SNVs) and two (UK 

Biobank and INTERVAL) were genotyped using Axiom Biobank Arrays (up to 820,000 SNVs; 

Supp. Table 41). In total, ~1.06M SNVs were analyzed including ~64,000 SNVs on both the 

Axiom and Exome Arrays. Furthermore, two studies (NAGOZALC and GFG) genotyped their 

participants using arrays with custom content, increasing the total number of variants analyzed to 

1,207,583 SNVs. Individual studies performed quality control (QC; Supp. Material, Supp. 

Table 41) and additional QC was conducted centrally (i) to ensure alleles were consistently 

aligned, (ii) that there were no major sample overlaps between contributing studies, and (iii) 

variants conformed to Hardy–Weinberg equilibrium and call rate thresholds. We also examined 

the distribution of the effect sizes and test statistics across cohorts to ensure the test statistics 

were well-calibrated. 



 

Study level analyses 

Each study (including the case-cohort studies (Staley et al., 2017)) undertook analyses of up to 

four smoking traits using RAREMETALWORKER (Feng, Liu, Zhan, Wing, & Abecasis, 2014) or 

RVTESTS (Zhan, Hu, Li, Abecasis, & Liu, 2016) (Supp. Table 41), which generated single variant 

score statistics and their covariance matrices within sliding windows of 1Mb. CigDay and pack-

years were analyzed using linear models or linear mixed models. Smoking initiation and smoking 

cessation were analyzed using logistic models or linear mixed models. All studies adjusted each 

trait for age, sex, at least three genetic principal components and any study-specific covariates 

(Supp. Table 41). Chromosome X variants were analyzed using the above-described approach, 

but coding males as 0/2. This coding scheme ensures that on average females and males have 

equal dosages and so is optimal for genes that are inactivated (due to X chromosome 

inactivation) and is valid for genes that do not undergo X chromosome activation. Males and 

females were analyzed together adjusting for sex as a covariate. 

Single variant meta-analyses 

Fixed effects meta-analyses across the individual contributing studies of single variant 

associations were undertaken using the Cochran-Mantel-Haenszel method in RAREMETAL. Z-

score statistics were used in the meta-analysis to ensure that the association results are robust 

against potentially different units of measurement in the phenotype definitions across studies 

(Willer, Li, & Abecasis, 2010). We performed genomic control correction on the meta-analysis 

results. Variants with P < 1 × 10−6 in tests of heterogeneity were excluded. Variants 

with P ≤ 5 × 10−8 were taken forward for replication. In addition, rs12616219 was also taken 

forward for replication as its P-value was very close to this threshold (smoking 

initiation, P = 5.49 × 10−8). None of the rare SNVs were genome-wide significant, therefore we 

also took forward the rare variant with the smallest association P-value, rs141611945 

(P = 2.95 × 10−7; MAF <  0.0001). 

Replication and combined meta-analysis of discovery and replication data 

As UK biobank genetic data were released in two phases, we took the opportunity to replicate 

findings from the discovery stage in a further 275,596 individuals made available in the phase two 

release of UK Biobank genetic data. To avoid potential relatedness between discovery and 

replication samples, the replication samples were screened and individuals with relatedness 

closer than second degree with the discovery sample in the UK Biobank were removed (Bycroft 

et al., 2018). Phenotypes were defined in the same way as the discovery samples (described 

above). Since the exome array and the UK Biobank Axiom arrays do not fully overlap, we used 

both genotyped exome variants (approx. 64,000) as well as the additional ~90,000 well-imputed 



 

exome array variants from UK Biobank (imputation quality score >0.3) for replication of single 

variant and gene-based tests. The rare ATF6 variant was absent from the UK Biobank array and 

is more prevalent in Africans (MAF = 0.01) than Europeans (MAF = 0.0007). Therefore, replication 

was sought in 1,437 individuals of African American-ancestry from the HRS and COGA studies. 

Analysis methods for replication cohorts were the same as for discovery cohorts, including 

methods to analyze chromosome X (Supp. Table 41). The criteria set for the replication were (i) 

the same direction of effect as the discovery analysis and (ii) P ≤ 0.0045 in the replication studies 

(Bonferroni-adjusted for eleven SNVs at α = 0.05). 

Finally, in order to fully utilize all available data, we carried out a combined meta-analysis of the 

discovery and replication samples across the exome array content using the same protocols 

mentioned above. 

Conditional analyses 

To identify conditionally independent variants within previously reported and novel loci a 

sequential forward stepwise selection was performed (Jiang et al., 2018). A 1 MB region was 

defined around the reported or novel sentinel variant (500 kb either side) and conditional analyses 

performed with all variants within the region. If a conditionally independent variant was identified, 

(P < 5 × 10−6; Bonferroni-adjusted for ~10,000 independent variants in the test region) the analysis 

was repeated conditioning on both the most significant conditionally independent variant and the 

sentinel variant. This stepwise approach was repeated (conditioning on the variants identified in 

current and earlier iterations) until there were no variants remaining in the region that were 

conditionally independent. The same protocol was followed for the novel SNVs identified in this 

study. 

Gene-based analyses 

For discovery gene-based meta-analyses, we utilized three statistical methods as part of the 

RAREMETAL package: the Weighted Sum Test (WST) (Madsen & Browning, 2009), the burden 

test (Morris & Zeggini, 2010) and the Sequence Kernel Association test (SKAT) (Wu et al., 2011). 

EPACTS (v.3.3.0) (Zhan & Liu, 2015) was used to annotate variants (for use in gene-based meta-

analyses), as recommended by RAREMETAL. Two MAF cut-offs were used, one used low-

frequency (MAF < 0.05) and rare variants, the second only used rare variants (MAF < 0.01). 

Nonsynonymous, stop gain, splice site, start gain, start loss, stop loss, and synonymous variants 

were selected for inclusion. A sensitivity analysis to exclusion of synonymous variants was also 

performed. Gene-level associations with P < 8 × 10−7 were deemed statistically significant 

(Bonferroni-adjusted for ~20,000 genes and three tests at α = 0.05). To examine if the gene 



 

associations were driven by a single variant, the gene tests were conducted conditional on the 

SNV with the smallest P-value in the gene, using the shared single variant association statistic 

and covariance matrices (Feng et al., 2014; Jiang et al., 2018). 

Mendelian randomization analyses 

To evaluate the causal effect of SmkInit and CigDay on BMI, schizophrenia and educational 

attainment (EA), we conducted Mendelian randomization (MR) analyses using three 

complementary approaches available in MR-Base (Hemani et al., 2018): inverse variance 

weighted regression (Pierce & Burgess, 2013), MR-Egger (Bowden, Davey Smith, & Burgess, 

2015; Rees, Wood, & Burgess, 2017), and weighted median (Bowden, Smith, Haycock, & 

Burgess, 2016). We used both the previously reported smoking-associated SNVs and the SNVs 

from the current report (as provided in Tables 2-5 and Supp. Table 42) as instrumental variables. 

The BMI (Locke et al., 2015), schizophrenia (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014) and educational attainment (Okbay et al., 2016) data came from 

previously published publicly available data. To assess possible reverse causation, we also used 

outcome associated SNVs as instrumental variables and conducted MR analyses using SmkInit 

and CigDay as outcome. We considered P < 0.05/3 = 0.017 as statistically significant (Bonferroni-

adjusted for three traits). 

In silico functional follow up of associated SNVs 

To identify whether the (replicated) SNVs identified here affected other traits, we queried the 

GWAS Catalog (MacArthur et al., 2017) (version: e91/28/02/2018, downloaded on 01/03/18) for 

genome-wide significant (P < 5 × 10−8) associations using all proxy SNVs (r2 ≥ 0.8) within 2 Mb of 

the top variant in our study. 

eQTL lookups were carried out in the 13 brain tissues available in GTEx V7 (Battle, Brown, 

Engelhardt, & Montgomery, 2017), Brain xQTL (dorsolateral prefrontal cortex) (Ng et al., 2017) 

and BRAINEAC (Trabzuni et al., 2011) databases, all of which had undergone QC by the 

individual studies. We did not perform additional QC on these data. In brief, GTEx used Storey’s 

q-value method to correct the FDR for testing multiple transcripts based upon the empirical P-

values for the most significant SNV for each transcript (Ongen, Buil, Brown, Dermitzakis, & 

Delaneau, 2016; Storey & Tibshirani, 2003). BRAINEAC calculated the number of tests per 

transcript and used Benjamini–Hochberg procedure to calculate FDR per transcript using a 

FDR < 1% as significant. BRAINxQTL used P < 8 × 10−8 as a cut-off for significance for any given 

transcript. SNVs that met the study specific significance and FDR thresholds, which were in LD 

(r2 > 0.8 in 1000 Genomes Europeans) with the top eQTL or the sentinel eQTL for a given 



 

tissue/transcript combination were considered significant. The genes implicated by these eQTL 

databases and/or coding changes (e.g., missense and nonsense SNVs) were put into 

ConsensusPathDB (Kamburov, Wierling, Lehrach, & Herwig, 2009) to identify whether these 

genes were over-represented in any known biological pathways. Replicated missense SNVs were 

also put into PolyPhen-2 (Adzhubei et al., 2010) and FATHMM (unweighted) (Shihab et al., 2013) 

to obtain variant effect prediction. 

Results 

Single variant associations 

In the discovery meta-analyses, we identified 15 common SNVs that were genome-wide 

significant (P < 5 × 10-8) for one or more of the smoking behavior traits, of which 9 were novel 

(Table 2, Supp. Table 42). Seven novel loci were identified for smoking initiation, one for both 

CigDay and pack-years and one for smoking cessation (Figs. 5, 6, Table 2 and Supp. Figure 19). 

Results for the significant loci were consistent across participating cohorts and there was at least 

nominal evidence of association (P < 0.05) at the novel loci within each of the contributing 

consortia (Supp. Table 43). Full association results for all novel SNVs across the four traits are 

provided in Supp. Table 44. No rare variants were genome-wide significant; the rare variant with 

the smallest P-value was a missense variant in ATF6, rs141611945 (MAF < 0.0001, 

CigDay P = 2.95 × 10−7). 

 

 



 

dbSNP ID 

(Exome ID)  

Chr:Pos  EA/OA  Gene  Consequen

ce  

Trait  Discovery stage  Replication stage  

            N  EAF  DoE  P-value  Beta (SE)  P-value  

rs141611945 

(exm118559)  

1:161771868  G/A  ATF6  Missense  CigDay  128,746  0.0065% 

MAC = 9  

+  2.95 × 10−

7  

0.184 

(0.169)  

*P = 0.276 in 

African 

American 

samples  

rs1190736 ** 

(exm1659559)  

X:136113464  A/C  GPR101  Missense  CigDay 

(PY)  

99,037 

(96,824)  

46.6% 

(47.0%)  

-  1.40 × 10−

11 

(4.98 x 10−

9)  

−0.028 

(0.0041) 

−0.027 

(0.0049) 

−0.028 

(0.0073)  

All samples: 

8.20 x 10−12 

(2.70 x 10−11

) Males only: 

1.90 x 10−8 

(6.0 x 10−8) 

Females 

only: 

1.10 x 10−4 

(7.1 x 10−4)  

rs462779 

(exm572256)  

6:111695887  A/G  REV3L  Missense  SmkInit  346,682  80.1%  -  4.52 × 10−

8  

−0.023 

(0.0034)  

9.7 x 10 −12  

rs216195 

(exm1276230)  

17:2203167  G/T  SMG6  Missense  SmkInit  335,406  27.3%  -  2.80 × 10−

8  

−0.008 

(0.0029)  

8.5 x 10-3  

rs11539157 

(exm1643833)  

X:68381264  A/C  PJA1  Missense  SmkInit  289,917  16.5%  +  1.39 × 10−

11  

0.022 

(0.0026) 

0.0158 

(0.0033) 

0.0185 

(0.0039)  

All samples: 

5.40 x 10−17 

Males only: 

1.30 x 10−6 

Females 



 

only: 

2.20 x 10−6  

Non - Exome - chip SNVs  

rs12616219  2:104352495  A/C  TMEM182  Intergenic  SmkInit  112,811  46.4%  -  5.49 × 10−

8  

−0.015 

(0.0027)  

5.5 x 10 −8  

rs1150691  6:28168033  G/A  ZSCAN9  Missense  SmkInit  112,811  34.8%  -  4.95 × 10−

8  

−0.007 

(0.0028)  

8.0 x 10-3  

rs2841334  9:128122320  A/G  GAPVD1  Intronic  SmkInit  112,811  20.9%  -  2.28 × 10−

8  

−0.009 

(0.0033)  

7.5 x 10-3  

rs202664  22:41813886  C/T  TOB2  Intergenic  SmkCes   51,043  19.9%  -  1.02 × 10−

8  

−0.011 

(0.0050)  

2.1 x 10-2  

rs11895381  2:60053727  A/G  BCL11A  Intergenic  SmkInit  112,811  34.2%  -  5.61 × 10−

9  

−0.007 

(0.0028)  

1.2 x 10-2  

rs12780116  10:104821946  A/G  CNNM2  Intronic  SmkInit  112,811  13.9%  +  9.19 × 10−

10  

0.017 

(0.0039)  

1.1 x 10 −5 

 

Table 2. Novel smoking trait associated SNVs that replicated with P < 0.005 and had consistent direction of effect in discovery and replication are 

highlighted in bold. The replication sample size for smoking initiation (SmkInit), cigarettes per day (CigDay), pack-years (PY), and smoking 

cessation (SmkCes) were 275,596, 80,015, 78,897, and 123,851 respectively. Chromosome (Chr) and position (Pos) for hg19 build 37. EA effect 

allele, OA other allele, Gene closest gene, N number of individuals, EAF effect allele frequency in the pooled samples, MAC minor allele count, 

DoE direction of effect, SE standard error. All SNVs had heterogeneity P > 0.02 in the discovery stage. *Replication was sought in 1,437 

individuals of African American-ancestry from the HRS and COGA studies; **The beta(se) for the association of rs1190736 with PY in the 

replication stage was −0.026 (0.0039)



 

 

 

 

Fig. 6 A concentric Circos plot of the association results for SmkInit (SI; outer ring), CigDay (CPD) 

and SmkCes (SC ; inner ring) for chromosomes 1–22 (Pack-years results, which can be found in 

Supp. Figure 19, are omitted for clarity). Each dot represents a SNV, with the X and Y axes 

corresponding to genomic location in Mb and -log10P-values, respectively. Labels show the 

nearest gene to the novel sentinel variants identified in the discovery stage and taken forward to 



 

replication. The top signals were truncated at 10−10 for clarity. Novel and previously reported 

signals are highlighted in red and dark blue, respectively. Grey rings on the y-axis increase by 

increments of 2 (initial ring corresponding to P = 0.001, then 0.00001 etc.); and the outer and 

inner red rings correspond to the genome-wide significance level (P = 5 × 10−8) and P = 5 × 10−7, 

respectively. Image was created using Circos (v0.65) 

Eleven SNVs (including rs12616219 near TMEM182 with P = 5.49 × 10−8, and the rare variant, 

rs141611945) were taken forward for replication in independent samples (Table 2). The latest 

release of European UK Biobank individuals not included in the discovery stage (smoking 

initiation, n = 275,596; smoking cessation n = 123,851; CigDay n = 80,015; pack-

years n = 78,897), was used for replication of the common variants (Fig. 6). Five of the common 

variants replicated (four for smoking initiation and one with CigDay and pack-years) at P < 0.0045. 

Two coding variants (rs11539157, rs1190736) were predicted to be ‘probably damaging’ by 

PolyPhen-2 and FATHMM. The remaining five SNVs were at least nominally associated 

(P < 0.01) in the replication samples and had consistent direction of effect across discovery and 

replication. Replication for the rare variant rs141611945 could not be carried out in UK Biobank 

as the SNV nor its proxies (r2 > 0.3) were available. Thus we initiated replication in African 

American samples of the COGA (n = 476) and HRS (n = 961) cohorts (overall MAF≈0.01). The 

direction of effect was consistent in the two replication cohorts and consistent with the discovery 

meta-analysis but a meta-analysis of the two replication cohorts yielded a P = 0.28. Further data 

are required to replicate this association. 

We also performed a meta-analysis combining the discovery and replication samples (up to 

622,409 individuals). LD score regression showed that the λ (intercept) for all traits was ~1.00, 

which indicated that confounding factors inflating the results was not an issue (Bulik-Sullivan et 

al., 2015; Zheng et al., 2017). The combined analysis identified 35 additional novel SNV-smoking 

trait associations, 33 with smoking initiation, one with CigDay and one with smoking cessation 

at P < 5 ×10-8 (Table 3). We note that among our four SNVs that did not replicate, rs216195 

(in SMG6) was genome-wide significant in the combined meta-analysis of discovery and 

replication studies (P = 2.41 × 10−9; Table 3). 

We also calculated the phenotypic variance explained for novel and known variants. Results can 

be found in the ‘Calculation of Phenotypic Variance Explained’ section in the Supplementary 

Material. 



 

dbSNP ID 

(Exome-chip 

ID)  

Chr:Pos  EA/OA  Gene  Consequence  Trait  EAF  Beta 

(se) in 

replication 

stage  

P-value in combined 

meta-analysis (P-value 

in 

Discovery/Replication 

stage)  

Notes  

Combining only genotyped Exome - chip content on the Axiom array  

rs1514175  1:74991644  G/A  TNNI3K  Intronic  SI  0.57  −0.011 

(0.003)  

5.42 × 10−9 

(9.03 x 10−5/1.0 x 10−5)  

Previously 

associated with 

BMI  

rs7096169  10:104618695  G/A  BORCS7 

(CNNM2# in 

Table 1)  

Intronic  SI  0.31  0.016 

(0.003)  

2.17 × 10−13 

(3.38 × 10−7/7.3 × 10−9)  

r2 = 0.28 between 

rs7096169 and 

rs12780116 

(Table 2) in 1000 

Genomes EUR. 

Previously 

associated with 

Schizophrenia. 

rs7096169 an 

eQTL for ARL3, 

BORCS7, and 

AS3MT in ≥1 of the 

brain tissues in 

GTEx  

rs2292239  12:56482180  G/T  ERBB3  Intronic  SI  0.66  0.0121 

(0.003)  

2.78 × 10−8 

(7.56 × 10−5/1.5 × 10−5)  

Previously 

associated with 

type-1 diabetes and 

years of 

https://www.nature.com/articles/s41380-018-0313-0#MOESM1


 

educational 

attainment. 

rs2292239 is an 

eQTL for RPS26 

and SUOX in ≥4 of 

the brain tissues in 

GTEx  

rs216195  17:2203167  G/T  SMG6 #  Missense  SI  0.29  −0.0076 

(0.003)  

2.41 × 10−9 

(2.80 × 10−8/8.5 × 10−3)  

Same SNV as in 

Table 2 

Combining well - imputed Exome - chip content on the Axiom array  

rs2960306 

(exm383568)  

4:2990499  T/G  GRK4  Missense  CPD  0.34  −0.024 

(0.005)  

1.06 × 10−9 

(3.99 × 10−5/3.8 × 10−6)  

rs2960306 is an 

eQTL for GRK4 in 

four of the brain 

tissues in GTEx  

rs4908760  1:8526142  A/G  RERE  Intronic  SI  0.35  0.0078 

(0.003)  

1.76 × 10−8 

(3.36 × 10−6/4.7 × 10−3)  

Previously 

associated with 

Vitiligo  

rs6692219 

(exm127721)  

1:179989584  C/G  CEP350  Missense  SI  0.028  −0.0257 

(0.008)  

4.69 × 10−9 

(1.08 × 10−6/1.3 × 10−3)  

  

rs11971186  7:126437897  G/A  GRM8  Intronic  SI  0.20  −0.0080 

(0.003)  

1.45 × 10−8 

(1.38 × 10−6/3.9 × 10−3)  

  

rs150493199 

(exm249655)  

2:179721072  A/T  CCDC141  Missense  SC  0.0098  0.048 

(0.134)  

1.28 × 10−8 

(6.45 × 10−8/0.72)  

  

Non - Exome - chip SNVs  

rs3001723  1:44037685  A/G  PTPRF  Intronic  SI  0.21  0.0159 

(0.003)  

6.64 × 10−11 

(0.00015/4.1 × 10−8)  

Previously 

associated with 

Schizophrenia and 



 

Years of 

educational 

attainment  

rs1937455  1:66416939  G/A  PDE4B  Intronic  SI  0.30  −0.0146 

(0.0027)  

1.23 × 10−9 

(0.00073/5.6 × 10−8)  

  

rs72720396  1:91191582  G/A  BARHL2  Intergenic  SI  0.16  −0.0150 

(0.003)  

9.86 x 10−9 

(5.63 × 10−5/1.9 × 10−6)  

  

rs6673752  1:154219177  C/G  UBAP2L  Intronic  SI  0.055  −0.027 

(0.004)  

1.1 × 10−11 

(NA/1.1 × 10−11)  

  

rs2947411  2:614168  G/A  TMEM18  Intergenic  SI  0.83  0.0189 

(0.004)  

4.97 × 10−10 

(0.00017/7.1 × 10−8)  

Previously 

associated with 

BMI  

rs528301  2:45154908  A/G  SIX3  Intergenic  SI  0.38  0.0136 

(0.002)  

4.12 × 10−11 

(1.77 × 10−6/3.8 × 10−7)  

  

rs6738833  2:104150891  T/C  TMEM182 #  Intergenic  SI  0.33  −0.018 

(0.003)  

8.66 × 10−14 

(1.63 × 10−6/4.4 × 10−11)  

r2 = 0.69 between 

rs6738833 and 

rs12616219 

(Table 2) in 

European samples 

of the 1000 

Genomes Project  

rs13026471  2:137564022  T/C  THSD7B  Intronic  SI  0.18  0.0127 

(0.003)  

2.45 × 10−8 

(0.00028/3.0 x 10−5)  

  

rs6724928  2:156005991  C/T  KCNJ3  Intergenic  SI  0.32  −0.011 

(0.003)  

4.47 × 10−8 

(0.0019/4.8 × 10−5)  

  

rs13022438  2:162800372  G/A  SLC4A10  Intronic  SI  0.27  0.0146 

(0.003)  

1.41 × 10−11 

(0.0005/8.1 × 10−8)  

  



 

rs1869244  3:5724531  A/G  LOC105376939  Intergenic  SI  0.32  0.0123 

(0.003)  

2.76 × 10−9 

(0.00040/4.1 x 10−6)  

  

rs35438712  3:85588205  T/C  CADM2  Intronic  SI  0.25  0.017 

(0.003)  

1.99 × 10−13 

(1.15 × 10−5/3.2 × 10−10)  

  

rs6883351  5:22193967  T/C  CDH12  Intronic  SI  0.34  0.0129 

(0.003)  

4.69 × 10−8 

(0.0010/1.4 × 10−6)  

  

rs6414946  5:87729711  C/A  TMEM161B  Intronic  SI  0.32  −0.0137 

(0.003)  

5.27 × 10−10 

(3.63 × 10−5/2.8 × 10−7)  

  

rs11747772  5:166992708  C/T  TENM2  Intronic  SI  0.25  0.0144 

(0.003)  

6.20 × 10−9 

(0.011/2.2 × 10−7)  

  

rs9320995  6:98726381  G/A  POU3F2  Intergenic  SI  0.18  0.0150 

(0.003)  

1.70 × 10−8 

(0.00079/6.1 × 10−7)  

  

rs10255516  7:1675621  G/A  ELFN1  Intergenic  SI  0.33  −0.0139 

(0.003)  

2.86 × 10−10 

(0.0021/1.8 × 10−7)  

  

rs10807839  7:3344629  G/A  SDK1  Intronic  SI  0.19  0.0162 

(0.003)  

8.93 × 10−11 

(0.0026/4.4 × 10−8)  

  

rs6965740  7:117514840  T/G  CTTNBP2  Intergenic  SI  0.31  −0.0126 

(0.003)  

9.66 × 10−9 

(5.56 × 10−6/2.8 × 10−6)  

  

rs11776293  8:27418429  T/C  EPHX2  Intronic  SI  0.12  −0.0200 

(0.003)  

2.23 × 10−12 

(0.00011/8.9 × 10−9)  

rs11776293 is an 

eQTL for CHRNA2 

in cerebellum in 

GTEx  

rs1562612  8:59817068  G/A  TOX  Intronic  SI  0.35  −0.0112 

(0.003)  

1.15 × 10−9 

(1.42 × 10−5/2.9 × 10−5)  

  

rs3857914  8:93184065  C/T  RUNX1T1  Intergenic  SI  0.19  0.0157 

(0.003)  

1.54 × 10−9 

(0.065/7.1 × 10−8)  

  



 

rs2799849  9:86752641  C/T  RMI1  Intergenic  SI  0.22  −0.0156 

(0.003)  

1.94 × 10−8 

(0.026/4.8 × 10−8)  

  

rs6482190  10:22037809  A/G  LOC107984214  Intronic  SI  0.17  0.0146 

(0.003)  

8.85 × 10−9 

(0.0021/9.5 × 10−7)  

  

rs4523689  11:7950797  G/A  OR10A6  Intergenic  SI  0.27  −0.012 

(0.003)  

7.77 × 10−9 

(0.00030/2.2 × 10−5)  

  

rs933006  13:38350193  A/G  TRPC4  Intronic  SI  0.32  −0.0143 

(0.003)  

3.50 × 10−8 

(0.022/9.6 × 10−8)  

  

rs557899  15:47643795  A/C  SEMA6D  Intronic  SI  0.26  0.0157 

(0.003)  

2.99 × 10−13 

(4.46 × 10−5/1.0 × 10−8)  

  

rs76608582  19:4474725  A/C  HDGFRP2  Intronic  SI  0.029  −0.0360 

(0.007)  

8.50 × 10−9 

(0.012/4.3 × 10−8)  

  

Table 3. Chromosome (Chr) and position (Pos) for each SNV is given for hg19 build 37. Only SNVs reaching genome-wide significance 
(P < 5 × 10-8, in bold) in the combined meta-analysis are shown. Magnitude of the effect size estimates are not presented as traits were 
transformed in differently by the three consortia analyzed. SNVs identified in the discovery stage of this study (see Table 1) are denoted #. The 
discovery sample size for smoking initiation (SI), CPD, pack-years (PY), and smoking cessation (SC) were 346,813, 128,746, 131,892, and 
121,543, respectively; and the replication sample size for SI, CPD, PY, and SC were 275,596, 80,015, 78,897, and 123,851, respectively. NB: 
rs6673752 (intronic to UBAP2L) was not available in the discovery cohorts. EA effect allele, OA other allele, Beta(se) beta and standard error for 
association in the replication stage. All SNVs had heterogeneity P > 0.0001.Bold font highlights the genome-wide significant P-values from the 
meta-analysis of discovery plus replication studies



 

 

Associations at known smoking behavior loci 

We assessed evidence for associations at the 14 SNVs previously reported for smoking behavior-

related traits. Seven were genotyped on the exome array and proxies (r2 > 0.3; ±2 Mb) were 

identified for the remaining seven (Supp. Table 42). All showed nominal evidence of association 

at P < 0.05 and six of these were genome-wide significant in the meta-analysis of the trait for 

which it was previously reported (Supp. Tables 42 and 44). 

Conditional analyses identified five independent associations within three previously reported loci 

and all five replicated (Table 4). At the 19q13 (RAB4B) locus, there were three variants in or 

near CYP2A6 associated with CigDay independently of the established variant (rs7937) and each 

other: rs8102683 (conditional P = 4.53 × 10−16), rs28399442 (conditional P = 2.63 × 10−12) and 

rs3865453 (conditional P = 4.96 × 10−10) and rs28399442 was a low-frequency variant. The same 

SNVs also showed evidence of independent effects with pack-years, albeit with larger P-values 

(P < 5 × 10−6; Supp. Table 6). At the TEX41/PABPC1P2 locus, rs11694518 

(conditional P = 3.43 × 10−7) was associated with smoking initiation independently of the 

established variant (rs10427255). At 15q25, rs938682 (P = 7.78 × 10−21) was associated with 

CigDay independently of the established variant (rs1051730) and (in agreement with a previous 

report (J. C. Wang et al., 2009)) is an eQTL for CHRNA5 in brain putamen basal ganglia tissues 

in GTEx. 

 

 

 

 

 



 

Gene 

region  

dbSNP ID  Chr:Pos  EA/O

A  

Consequenc

e  

Trai

t  

EAF  P 

(unconditional

)  

SNV(s) 

conditione

d on  

Discovery 

Conditiona

l P [DoE]  

Conditiona

l P in 

replication 

[DoE]  

19q13 

(RAB4B)  

rs8102683  19:4136376

5  

C/T  Intergenic  CP

D  

74.8

%  

4.53 × 10−16  rs7937  1.44 × 10−13 

[+]  

3.5 × 10-4 

[+]  

  rs2839944

2  

19:4135445

8  

A/C  Intronic 

(CYP2A6)  

CP

D  

1.3%  2.27 × 10−12  rs7937, 

rs8102683  

2.63 × 10−12 

[+]  

8.1 × 10−14 

[+]  

  rs3865453  19:4133855

6  

T/C  Intergenic  CP

D  

6.54

%  

2.96 × 10−12  rs7937, 

rs8102683, 

rs28399442  

4.96 × 10−10 

[−]  

2.3 × 10−13 

[−]  

TEX41 - 

PABPC1P

2  

rs1169451

8  

2:14612552

3  

T/C  Intergenic  SI  29.5

%  

2.90 × 10−9  rs10193706  3.43 × 10−7 

[−]  

4.0 × 10−31 

[−]  

15q25 

(CHRNA3)  

rs938682  15:7888292

5  

A/G  Intronic 

(CHRNA3)  

CP

D  

76.4

%  

1.83 × 10−69  rs1051730  7.77 × 10−21 

[+]  

1.0 × 10−13 

[+]  

Table 4. SNVs with P < 5 × 10−8 are highlighted in bold. The discovery sample size for smoking initiation (SI) and CPD was 346,813 and 128,746, 
respectively. The replication sample size for SI and CPD were 275,596 and 80,015, respectively. Chr Chromosome, Pos position for hg19 build 
37, EA effect allele, OA other allele, EAF effect allele frequency in the pooled samples, DoE Direction of effect 



 

Gene-based association studies 

Gene-based collapsing tests using MAF < 0.01 variants, did not identify any associated genes at 

the pre-specified P < 8 × 10−7 threshold. Of the top four gene associations, three were novel 

(CHRNA2, MMP17, and CRCP) and one was known (CHRNA5), and had P < 7 × 10−4, with 

CigDay and/or pack-years (Supp. Table 45). Analyses conditional on the variant with the 

smallest P-value in the gene, revealed the associations at CHRNA2, MMP17 and CRCP were 

due to more than one rare variant (conditional P < 0.05; Supp. Table 45). In contrast, 

the CHRNA5 gene association was attributable to a single variant (rs2229961). 

Mendelian randomization analyses 

We conducted MR analyses to elucidate the potential causal impact of SmkInit and CigDay on 

BMI, schizophrenia and EA using the MR-Egger, median weighted and inverse variance weighted 

methods. We found a causal association between SmkInit and EA using both the median 

weighted and inverse variance weighted methods (P < 0.0001; Supp. Table 46) but not with MR-

Egger (P = 0.2). There was an association of SmkInit with BMI using MR-Egger only (P = 0.01; 

Supp. Table 46), but there was evidence of horizontal pleiotropy (P = 0.001) and no support from 

the other methods. Similarly, increased CigDay was only associated with reduced BMI using the 

weighted median approach (P = 0.009) and not the other methods (P > 0.017). We also tested if 

schizophrenia, EA or BMI causally influence CigDay or SmkInit using SNVs associated with 

schizophrenia, EA and BMI, respectively, as instrumental variables. No evidence of such reverse 

causation was found (Supp. Table 46). These results were consistent with previous analyses 

(Gage et al., 2017). There was no evidence of a causal effect of SmkInit on schizophrenia, or 

CigDay on educational attainment (Supp. Table 46). 

Functional characterization of novel loci 

Using proxies with r2≥0.8 in 1000 Genomes Europeans, we queried the GWAS catalogue 

(MacArthur et al., 2017) (P ≤ 5 × 10−8) for pleiotropic effects of our novel sentinel SNVs. Two, 

rs11539157 and rs3001723 were previously associated with schizophrenia (Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014), suggesting shared biological 

pathways between schizophrenia and smoking behaviors (Table 3). This fits with the known 

association of smoking with schizophrenia (Kelly & McCreadie, 2000). Two, rs1514175 and 

rs2947411 have previously been associated with BMI (Speliotes et al., 2010), and extreme 

obesity (Wheeler et al., 2013). 

eQTL lookups in GTEx V7 (13 Brain tissues with ≥80 samples) (Battle et al., 2017), Brain xQTL 

(Ng et al., 2017) and BRAINEAC (Trabzuni et al., 2011) databases revealed that the A allele at 



 

rs462779, which decreases risk of smoking initiation, also decreased expression of REV3L in 

cerebellum in GTEx (A allele P = 4.8x10-8; β = −0.40) and was in strong LD with the top eQTL 

for REV3L in cerebellum (r2 = 0.86 with rs9487668 in 1000 Genomes Europeans). The smoking 

initiation-associated SNV, rs12780116, was an eQTL for BORCS7 in four brain tissues, 

and NT5C2 in the cerebellar hemisphere (A allele P = 4.5 × 10−7; β = −0.32) and the cerebellum 

(P = 5.6 × 10−6; β = −0.415; in strong LD with the top eQTL, r2 = 0.97 with rs11191546). The G 

allele of a second variant in the region, rs7096169 (intronic to BORCS7 and only in weak LD with 

rs12780116, r2 = 0.18 in 1000G Europeans) increases smoking initiation and reduces expression 

of BORCS7 and AS3MT in eight brain tissues (including dorsolateral prefrontal cortex in the Brain 

xQTL and was the top BORCS7 eSNP in GTEx in the Cerebellar Hemisphere, Cerebellum, and 

Spinal cord cervical-C1). The same variant also reduced expression of ARL3 in cerebellum in 

GTEx (Table 3). 

Biological pathway enrichment analyses carried out in ConsensusPathDB (Kamburov et al., 

2009) using the genes implicated by the eQTL databases (Table 3) and/or a coding SNVs 

(i.e., PJA1, GPR101) showed that the (i) pyrimidine metabolism and (ii) activation of nicotinic 

acetylcholine receptors pathways are enriched for these smoking behavior associated genes 

(false discovery rate <0.01; P < 0.0001). 

Discussion 

Smoking is the most important preventable lifestyle risk factor for many diseases, including 

cancers (Hecht, 1999; McKay et al., 2017), heart disease (Ockene & Miller, 1997; O’Donnell & 

Nabel, 2011)and many respiratory diseases such as COPD (Wain et al., 2017, 2015). Not 

initiating is the best way to prevent smoking-related diseases and genetics can play a 

considerable part in smoking behaviors including initiation. We have performed the largest 

exome-wide genetic association study of smoking behavior-related traits to date involving up to 

622,409 individuals, and identified and replicated five associations, including two on the X-

chromosome (Table 2). We identified a further 35 novel associations in a meta-analysis of 

discovery and replication cohorts (Table 3). We validated 14 previously reported SNV-smoking 

trait associations (Supp. Table 42) and identified secondary independent associations at three 

loci, including three in the 19q13 region (rs8102683, rs28399442, and rs3865453; Table 42). 

Gene-based tests improve power by aggregating effects of rare variants. While no genes reached 

our Bonferroni-adjusted P-value threshold, we identified three candidate genes with multiple rare 

variant associations for future replication: calcitonin gene-related peptide-receptor component 

(CRCP) with CigDay and CHRNA2 and MMP17 with pack-years (Supp. Table 45; also see 



 

‘Genes of Interest’ section in Supp. Material). CRCP’s protein product is expressed in brain 

tissues amongst others and functions as part of a receptor complex for a neuropeptide that 

increases intracellular cyclic adenosine monophosphate levels (Uhlen et al., 

2015). MMP17 encodes a matrix metalloproteinase that is also expressed in the brain and is a 

member of the peptidase M10 family, and proteins in this family are involved in the breakdown of 

extracellular matrix in normal physiological processes (O’Leary et al., 2016). Given, we were not 

able conclusively to identify rare variant associations, even larger studies, are required to identify 

rare variants associated with smoking behaviors. In addition, phenotypes such as cotinine levels 

(Ware et al., 2016)and nicotine metabolism speed (Loukola et al., 2015) could be interrogated 

using methods such as MTAG (Turley et al., 2018) to improve power. 

As recommended by UK Biobank, we analyzed UK Biobank samples by adjusting for genotyping 

array because a subset of (extreme smokers in) UK Biobank were genotyped on a different array 

(UK BiLEVE). However, this adjustment could potentially introduce collider bias in analyses of 

smoking traits. Given that the UK BiLEVE study is relatively small compared to the full study, and 

the genetic effect sizes for smoking-associated variants are small, we expect the influence of 

collider bias to be small (Munafo et al., 2018). Nevertheless, we performed sensitivity analyses to 

assess the impact of collider bias. Firstly, we performed a meta-analysis excluding the UK 

BiLEVE samples, and secondly, we re-analyzed UK Biobank without adjusting for genotype array. 

As expected, the estimated genetic effects from these additional analyses were very similar to our 

reported results suggesting collider bias is not a concern (Suppl. Table 47). 

Follow-up of the replicated SNVs in the literature and eQTL databases implicated some 

potentially interesting genes: NT5C2 is known to hydrolyze purine nucleotides and be involved in 

maintaining cellular nucleotide balance, and was previously associated with schizophrenia (Aberg 

et al., 2013). REV3L, encodes the catalytic subunit of DNA polymerase ζ (zeta) which is involved 

in translesion DNA synthesis. Previously, polymorphisms in a microRNA target site 

of REV3L were shown to be associated with lung cancer susceptibility (Zhang et al., 2013). We 

showed that decreased expression of REV3L may also lower the probability of smoking initiation. 

The SNV, rs11776293, intronic in EPHX2, was associated with reduced SmkInit in the combined 

meta-analysis, and is in LD with rs56372821 (r2 = 0.83), which is associated with reduced 

cannabis use disorder (Demontis et al., 2019). rs216195 (in SMG6) was genome-wide significant 

in the discovery and the combined meta-analysis. SMG6 is a plausible candidate gene as it was 

previously shown to be less methylated in current smokers compared to never smokers 

(Steenaard et al., 2015). The combined meta-analysis also identified a rare missense variant 

in CCDC141, rs150493199 (MAF < 0.01; Table 3). Coding variants in CCDC141 were previously 



 

associated with heart rate (van den Berg et al., 2017) and blood pressure (Hoffmann et al., 2017; 

Warren et al., 2017). 

Smoking behaviors represent a complex phenotype that are linked to an array of socio-cultural 

and familial, as well as genetic determinants. Kong et al., recently reported that ‘genetic-nurture’ 

i.e., effects of non-transmitted parental alleles, affect educational attainment (Kong et al., 2018). 

They also show that there is an effect of educational attainment and genetic nurture on smoking 

behavior. Four of our sentinel SNVs (or a strong proxy; r2 > 0.8) were associated with years of 

educational attainment (Okbay et al., 2016) (rs2292239, rs3001723 (P < 5 × 10−8), rs9320995 

(P = 8.90 x 10−7), and rs13022438 (P = 3.79 × 10−6), in agreement with this paradigm and our MR 

analyses indicated that initiating smoking reduced years in education. Future family studies will 

be required to disentangle how much of the variance explained in the current analysis is due to 

direct versus genetic nurturing effects. 

Our study primarily focused on European ancestry, but we also included two non-European 

studies but these non-European studies lacked statistical power on their own to identify ancestry-

specific effects. Therefore, we did not perform ancestry-specific meta-analyses. Nevertheless, our 

results offered cross ancestry replication. One of the associations identified in the conditional 

analyses, rs8102683 (near CYP2A6), confirmed an association with CigDay that was previously 

identified by Kumasaka et al. in a Japanese population (Kumasaka et al., 2012) but this is the first 

time it was associated in Europeans (rs8102683 is also correlated with rs56113850 (r2 = 0.43), a 

SNV identified previously by Loukola et al. (Loukola et al., 2015) in a genetic association study of 

nicotine metabolite ratio in Europeans). As more non-European studies become available, it 

would be of great interest to perform non-European ancestry studies, in order to fine-map causal 

variants for smoking-related traits. 

CigDay and pack-years are two correlated measures of smoking. In the ~40,000 individuals from 

UK Biobank with CigDay and pack-years calculated, correlation between CigDay and pack-years 

was 0.640. Interestingly, while pack-years was inversely correlated with smoking cessation 

(−0.18) i.e., the more years a smoker has been smoking the less likely they were to cease, 

CigDay was positively correlated with smoking cessation (0.13) i.e., heavier smokers were more 

likely to stop smoking. In contrast, the DBH SNV, rs3025343, (first identified via its association 

with increased smoking cessation (Tobacco and Genetics Consortium, 2010)) was associated 

with increased pack-years (P = 1.29 × 10−14) and increased CigDay (P = 2.93 × 10−9) in our study. 

The association at DBH also represents the first time that a SNV has a smaller P-value for pack-

years (n = 131,892) compared to CigDay (n = 128,746). These findings may help elucidate the 

genetic basis of these correlated addiction phenotypes. 



 

We performed the largest exome-wide genetic association study of smoking behavior-related 

traits to date and nearly doubled the number of replicated associations to 24 (including 

conditional analyses) including associations on the X-chromosome for the first time, which merit 

further study. We also identified a further 35 novel smoking trait associated SNVs in the 

combined meta-analysis. The novel loci identified in this study will substantially expand our 

knowledge of the smoking addiction-related traits, facilitate understanding the genetic etiology of 

smoking behavior and may lead to the identification of drug targets of potential relevance to 

prevent individuals from initiating smoking and/or aid smokers to stop smoking. 

 

  



 

Chapter 3 

Introduction 

Endophenotypes have been highly regarded as a measurable and close proxy between genetics 

and a range of psychiatric disorders and related phenotypes. They are viewed as a manifesting 

and measurable intermediate phenotype between genetics and disorders that signal a more 

acute underlying biological process. Popularly defined, endophenotypes are traits or behaviors 

that are heritable, manifest in the individual regardless of disorder onset, reproducibly associate 

with the behavior and have a higher prevalence in cases and probands than the general 

population (Gottesman & Gould, 2003).  However, there have also been numerous other 

definitions that attempt to identify and pinpoint to a more functional and exact definition (Cannon 

& Keller, 2006; Iacono & Malone, 2011; K. S. Kendler & Neale, 2010). They can manifest in many 

forms, but commonly accepted ones include physiological measures like electroencephalogram 

(EEG) measures or other simple tasks. The antisaccade task is a classic example of an 

endophenotype associated with schizophrenia. In most antisaccade tasks, participants are shown 

a target (like a light source) either from the left or right of their vision. The participants are then 

tasked to inhibit their response to look towards the target and look in the opposite direction 

(Hutton & Ettinger, 2006). Patients and their relatives on average make more errors than the 

general population and this phenomenon has been documented and replicated in many 

independent experiments (Calkins, Curtis, Iacono, & Grove, 2004; Radant et al., 2010). 

Endophenotypes like antisaccade are viewed as a smaller and simpler component of larger 

complex traits like schizophrenia as it measures a more concise aspect, in this case, an impaired 

inhibitory function (Radant et al., 2010), which is commonly seen in schizophrenia patients. 

Moreover, these smaller measurable qualities are not only state-independent, but also thought to 

be potentially useful to identify susceptible individuals within a population without the need of a 

full diagnosis for the disorder. While there may be heterogeneity in a lot of complex trait 

disorders, endophenotypes have been consistently reproduced in association with the traits, 

similar to many biomarkers, such as cholesterol levels for cardiovascular diseases, that are used 

in the medical fields. Since these endophenotype are seen regardless of disease onset and are 

also highly heritable, they are hypothesized to be a simpler trait, wherein the effect size of each 

gene (or variant in gene) on the endophenotype is presumed to be much higher than the effect 

size for the complex trait of interest.  

If genetic influence is hypothesized to be larger on the endophenotype then the sample size 

required to detect any effect of the genes decreases, and this assumption makes 

endophenotypes a very good candidate for genetic association studies. However, to date, 

endophenotypes have yet to find convincing biological mechanisms of complex trait (Iacono, 

Malone, & Vrieze, 2017). Previous genome-wide association studies (GWAS) surveying different 



 

candidate endophenotypes in a community sample (with sample size over 4,000) (Iacono, 

Malone, Vaidyanathan, & Vrieze, 2014; Malone, Burwell, et al., 2014; Malone, McGue, & Iacono, 

2017; Malone, Vaidyanathan, et al., 2014; Vaidyanathan, Isen, et al., 2014; Vrieze, Malone, et al., 

2014) have had close to null results. Moreover, meta-analysis of different endophenotypes across 

studies have also not had any successes in variant discovery (Flint & Munafò, 2007). Contrary to 

our belief, the genetic effect sizes of loci associated with endophenotypes seem to be on the 

same scale as the effect sizes of the complex traits that they are associated with, many variants 

with small effect sizes. Endophenotypes consequently do not seem to have a simpler genetic 

architecture as previously hypothesized. 

While endophenotype may not be helpful in genetic discovery, they can still shed light on the 

underlying biology that are not yet fully understood in these complex disorders. Our previous 

paper (M. Liu et al., 2017) focused on predicting endophenotypes by using polygenic risk scores 

(PRS) based on a large schizophrenia GWAS meta-analysis by the psychiatric genomics 

consortium. We hypothesized that by aggregating genetic variants associated with the disorder 

(as opposed to looking at a single variant or gene), we can construct a genetic liability index that 

is associated with the endophenotype. We found no significant correlation after correcting for 

multiple tests but the strength of PRS is highly dependent on a strong and well-powered 

discovery GWAS to provide the weights (Dudbridge, 2013). As components and proxies for more 

highly complex trait, more well-powered summary statistics may be needed to explain and 

understand these heritable and persisting endophenotype traits. Moreover, while we have 

previously focused on schizophrenia, there are still several other disorders linked to 

endophenotypes that have been studied over the years. In our current study, we have gathered 

summary statistics from 3 major GWAS meta-analysis efforts looking at 3 different set of complex 

traits including disorder, substance use and regular cognitive function.   

Schizophrenia is most commonly associated with classic endophenotypes like antisaccade 

(patients and probands tend to have difficulty suppressing the saccade response) and P300 

ERPs (patients and probands have lower amplitude). While our previous schizophrenia PRS did 

not predict any of our endophenotypes, we aim to expand upon our earlier paper by updating our 

previous schizophrenia PRS with a recent meta-analysis done by Pardiñas et. al (Pardiñas et al., 

2018) which has a larger number of cases and improved methods that found more significant loci 

than the previous one from by the Psychiatric Genomics Consortium (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014). 

Earlier research have shown that candidate endophenotypes like P300 to be related to substance 

use disorders (Begleiter, Porjesz, Bihari, & Kissin, 1984; Iacono, 1998; Iacono & Malone, 2011; 

Malone, Iacono, & McGUE, 2001) where alcohol-dependent participants seem to have a reduced 

P300 amplitude. While there have not been large scale substance abuse GWAS, the GWAS 



 

Sequencing Consortium of Alcohol and Nicotine (GSCAN) have recently conducted a large-scale 

GWAS meta-analysis of over 1.2 million people in phenotypes of alcohol and nicotine use 

(Mengzhen Liu et al., 2019). The phenotypes include commonly asked survey questions that 

measure heaviness of use (cigarettes per day and drinks per week), initiation of use (initiation of 

regular smoking and age of initiation of regular smoking) and cessation (smoking cessation). 

While most work has looked at substance abuse and endophenotypes, we hypothesize that given 

the larger sample size of the discovery cohort, we can predict the endophenotypes based on our 

substance use PRS. 

Similarly, the Social Science Genetic Association Consortium also recently published a large 1.1 

million people GWAS meta-analysis on years of educational attainment (EA) (Lee et al., 2018), 

which has been regarded as a proxy phenotype for cognitive ability (Lynn & Vanhanen, 2012). In 

their study, they have shown that not only is EA genetically correlated with cognitive ability but EA 

PRS also significantly predicts cognitive performance. There has been a number of studies that 

show relationship between endophenotypes and cognitive ability and IQ (Dauwels, Vialatte, & 

Cichocki, 2011; Thatcher, North, & Biver, 2005); moreover, EEG measures have also been 

shown to have high discriminative ability between participants with low IQ and high IQ (Thatcher 

et al., 2005). Given these relationships, we hypothesize that PRS of EA will also be significantly 

associated with our endophenotypes.  

Given the vast amount of endophenotype and well-powered GWAS summary statistics data 

available, our main goal in this paper is to do a comprehensive analysis predicting 

endophenotypes with PRS based on schizophrenia, substance use and cognition. 

Method 

Sample and Endophenotypes 

Participants were assessed as part of the Minnesota Center for Twin and Family Research 

(MCTFR), a community-based study of twins and their parents. Participants came in for in-person 

assessments, questionnaires and laboratory-based tests and then they were followed up in 

waves (Iacono et al., 2017, 2014; Iacono & McGue, 2002; Wilson et al., n.d.). Participants were 

genotyped on the Illumina 660W-Quad as described previously (Miller et al., 2012; Vrieze, Feng, 

et al., 2014, p. 20) and then imputed to the Haplotype Reference Consortium (McCarthy et al., 

2016) panel using the Michigan imputation server (Das et al., 2016). We used a subset of the 

data that was primarily of European descent. We calculated four principal components (PC) on 

the European population in the 1000G (The 1000 Genomes Project Consortium, 2015) using 

PLINK (Chang et al., 2015) and projected the MCTFR genotypes based on the PC weights. We 

then selected only for participants that fall within each of the four 1000G European PCs for 

analysis.   



 

The endophenotypes have been described previously (Iacono et al., 2014; Vrieze, Malone, et al., 

2014). Out of the previously reported 17 endophenotypes, we chose not to include electro-dermal 

activity and acoustic startle and affect startle modulation to focus on the brain-based measures as 

brain-related genes and pathways have been implicated in enrichment analysis from the seven 

GWAS meta-analyses. All the endophenotypes were corrected for sex, age, age cohort and 10 

principal components (PCs) and task-specific factors as described in previous papers. Here is a 

brief overview of the endophenotypes presented in this paper: 

Antisaccade response. Participants are asked to fixate on a point in the center of their field of 

view. A light is flashed to either side, and participants are instructed to look away from the light. 

The antisaccade endophenotype is a proportion of trials in which they fail to inhibit their prepotent 

response to saccade toward the light. As mentioned earlier, there has been a number of studies 

that have linked antisaccade response to schizophrenia (Calkins et al., 2004; Levy, Mendell, & 

Holzman, 2004; McDowell et al., 2002; Radant et al., 2010) where patients and relatives have a 

higher proportion of errors as compared to controls.  

Resting EEG. Participants are asked to relax with eyes closed for 5 minutes while listening to soft 

white noise. We obtained power in the alpha, beta, theta and delta frequency bands from a fast 

Fourier transformation of EEG at the Cz electrode. Schizophrenia has been associated with low-

frequency power (Narayanan et al., 2014) and while not used directly as separate resting EEG 

powers, resting EEG have shown associations IQ (Langer et al., 2012; Thatcher et al., 2005). 

P300 event-related potential (ERP). Participants are asked to complete a rotated heads visual 

oddball task (Begleiter et al., 1984). The P300 ERP is derived from the average ERP waveform of 

midline parietal electrode across all target trials. P300 has been associated with both 

schizophrenia and alcohol-dependency where in both, patients had reduced amplitude in the 

decision making process as compared to controls. (Bramon, Rabe-Hesketh, Sham, Murray, & 

Frangou, 2004; Malone et al., 2001).  

Total energy and inter-trial phase coherence of Theta and Delta within the P3 window We derived 

inter-trial phase coherence (ITPC) and average time-frequency energy using a reduced 

interference distribution (RID) applied to the Rihaczek distribution (Aviyente, Bernat, Evans, & 

Sponheim, 2011) from the rotated heads visual oddball task. The P300 may be too downstream 

as an endophenotype, as it is not a unitary phenomenon and can be composed of many brain 

regions during recording (Malone et al., 2017). We chose to include these endophenotypes as 

components of P3 as there have been studies linking these endophenotype to alcohol 

dependence(Chen et al., 2009; Jones et al., 2004; Zlojutro et al., 2011).  

 

SNP- and family-based heritability of endophenotypes 



 

Heritability for each endophenotype was calculated using a method by Zaitlen et al. (Zaitlen et al., 

2013), implemented in GCTA (Yang et al., 2010, 2011), where both SNP-based (phenotypic 

variance explained due to genotyped SNPs) heritability and narrow-sense (phenotypic variance 

explained due to additive genetics) heritability can be estimated from the same sample using both 

related and unrelated individuals. In their method, two matrices are constructed, an identity by 

state (IBS) matrix with a certain relatedness threshold, which is used as an approximation of 

identity by descent (IBD) matrix, and a full genetic relatedness matrix. Using these two 

covariance matrices, we can jointly estimate additive genetic heritability and SNP-based 

heritability. We used the genotyped data filtered by basic quality control metrics (removing 

variants that have a minor allele count less than 10, have a Hardy-Weinberg equilibrium less than 

1e-6 and a call rate less than 0.9) to build the genetic relationship matrix (GRM) used by GCTA. 

As suggested in Zaitlen et al.’s paper, we used a relatedness threshold of 0.05 as a cutoff for 

unrelated individuals and set the GRM off-diagonal elements that are below the threshold to 0 to 

create the IBS matrix. We can also get, what is commonly referred to as, missing (or 

unexplained) heritability by subtracting the SNP-based heritability from the narrow-sense 

heritability.  

Creation of polygenic risk scores 

Summary statistics for the educational attainment GWAS was from the largest to date GWAS 

meta-analysis done on educational attainment (Lee et al., 2018). The present participants were 

included in this GWAS meta-analysis and, as such, we used a version of the publicly available 

summary statistics that had excluded MCTFR. Association summary statistics for schizophrenia 

Center for Neuropsychiatric Genetics and Genomics (https://walters.psycm.cf.ac.uk/) (Pardiñas et 

al., 2018). Polygenic scores for substance use were generated from summary statistics reported 

in (Liu et al., 2019). Once again, MCTFR was one of the discovery cohorts in this GWAS meta-

analysis and, as such, was not included in the set of summary statistics used to create polygenic 

scores in the present sample Substance use phenotypes included age of initiation of regular 

smoking, cigarettes per day among smokers, smoking cessation (a binary phenotype of former v. 

current smoker) and smoking initiation (a binary phenotype of ever versus never regular smoker). 

There was also a measure of alcohol use, scaled as drinks per week.  

We calculated the polygenic risk scores (PRS) using the software LDPred (Vilhjálmsson et al., 

2015), a Bayesian method of PRS calculation that estimates posterior mean causal effect sizes 

from GWAS summary statistics conditioning on a point-normal mixture distribution for the genetic 

architecture of effects and a reference sample for LD patterns. We first pruned the MCTFR 

genotypes to only those with imputation quality score RSQ greater than 0.7. We then further 

limited the variants to those with a MAF > 0.01 and are present in HapMap3 since these tend to 

be variants that have stable and well-known properties. We assumed proportion of causal 

https://walters.psycm.cf.ac.uk/


 

variants to be 1 and the final PRS for Smoking Initiation (N = 1,225,910) contains 1,093,640 

variants, Age of Smoking Initiation (N = 341,427) contains 1,093,797 variants, Cigarettes per Day 

(N = 337,334) contains 1,093,797 variants, Smoking Cessation (N = 547,219) contains 1,097,755 

variants, Drinks per Week (N = 937,381) and 1,093636 variants, Educational Attainment (N = 

762,526) contains 1,093,298 variants and Schizophrenia (N = 105,318) contains 1,073,315 

variants. 

We calculated correlations among PRSs and between the endophenotypes and the PRS using 

Rapid Feasible Generalized Least Squares, a R package running generalized least-squares 

regression method in families accounting for parents, monozygotic (MZ) twins and dizygotic (DZ) 

twins (Li, Basu, Miller, Iacono, & McGue, 2011). The endophenotypes and the PRSs were scaled 

to be have mean zero and variance of 1 prior to the regression analysis, such that the resulting 

slope is interpretable as a correlation coefficient with appropriate standard errors.  

Results  

Endophenotype descriptions 

Table 2 shows a summary of the endophenotypes including their sample size, mean age, gender 

distribution and within family correlation. The parents are roughly uncorrelated, except for Delta at 

Cz Power. The MZ correlation is roughly twice the DZ correlation showing that the 

endophenotypes presented here are heritable, which agrees with the results from the heritability 

analysis in Table 3.  

Heritability 

Heritability results are shown in Table 3. Our narrow-sense heritability is very similar to the 

biometric twin-based heritabilities calculated in the previous papers (Malone, Burwell, et al., 2014; 

Malone et al., 2017; Malone, Vaidyanathan, et al., 2014; Vaidyanathan, Isen, et al., 2014; 

Vaidyanathan, Malone, et al., 2014). The heritability due to additive genetic variance is different 

since previous estimates all had relatively large standard errors (around 0.2 for most estimates). 

Almost all of the SNP-based heritability overlaps with previous estimates. The only exception is 

our P300 phenotype where while the narrow-sense heritability is very close to the previously 

reported twin-based heritability but the variance explained by genotyped SNPs increased 

drastically.  

Polygenic risk scores 

Figure 7 show the correlation matrix of the seven PRS with each other. The results are all in the 

same direction as the genetic correlation previously reported in the Liu et, al. 2019 paper for the 

significant correlations but with a lower magnitude. This is to be expected as this is a correlation 

of PRSs but it is supportive that the PRSs are constructed as expected. We see strong negative 



 

correlations between educational attainment and our smoking behavior PRSs where the less one 

smokes (either starting later, smoking less cigarettes per day, quitting or just never initiating), the 

higher their predicted level of educational attainment, a common pattern seen in many studies 

(Wedow et al., 2018). Figure 8 shows the correlation between the endophenotypes on the Y-axis 

and the PRS on the X-axis. We do see some expected trends such as the negative correlation 

between the P300 endophenotypes and both, the drinks per week PRS and the schizophrenia 

PRS. None of the correlations are significant after correcting for multiple testing. 

 

Fig. 7. Correlation between the PRSs. Each PRS was scaled with mean 0 and analysis was done 

using the RFGLS R package accounting for family structure. * denotes significance at p < 0.05 

and ** denotes significance after Bonferoni correction p  < 0.003.  

 

Discussion 

The predictive power of PRS is highly dependent on the size of the discovery sample. Previous 

attempt at predicting 8 of these 12 endophenotypes with PRS constructed using weights from a 

large schizophrenia GWAS meta-analysis was unsuccessful (M. Liu et al., 2017). In this paper, 

we have used more well-powered GWAS meta-analysis such as the GWAS meta-analysis of 

smoking initiation where the discovery sample size has exceeded 1 million participants. However, 



 

despite the increase in discovery sample size, none of our PRS significantly predicts any of the 

endophenotypes post p-value correction. While the previous schizophrenia GWAS result did not 

predict any of the endophenotypes (M. Liu et al., 2017), the updated Schizophrenia GWAS 

results is negatively correlated with P300, which is consistent with previous literature (Ford, 1999; 

Jeon & Polich, 2003), and trending towards significance. This is encouraging news for continued 

studying of endophenotypes as by increasing the power of the discovery sample, we may be 

getting closer to understanding how endophenotypes and these complex traits are related.  

Another aim of this paper is to potentially understand the genetics and biology underlying these 

endophenotypes through correlation with PRSs constructed from a related complex trait. In the 

case for P300, the underlying biology is not fully understood, but there has been data suggesting 

that it is caused by the effect of glutamatergic neurotransmission (Chen et al., 2009; Frodl-Bauch, 

Bottlender, & Hegerl, 1999; Zlojutro et al., 2011) and specific study have shown association 

between hippocampal glutamate and frontal theta activity in participants while doing simple tasks 

(Gallinat et al., 2006). Smoking initiation, the PRS with the largest sample size, show a negative 

correlation approaching significance with ITPC Theta at FZ and the discovery GWAS meta-

analysis results for show an enrichment for glutamate-related pathways. These pathways have 

been implicated and studied extensively in substance abuse (Kalivas, 2009; Koob & Volkow, 

2016) and here we present converging evidences from genes implicated in substance use to 

endophenotypes that have been implicated in substance use. Together, these converging 

evidences point towards an imbalance in glutamate that may be affecting the reduced amplitude 

of the P300. 

In this paper we have also included total energy and inter-trial phase coherence of Theta and 

Delta within the P3 window since multiple brain regions are active during the visual oddball task 

and contribute to the P3 amplitude. These endophenotype measures are not only associated with 

the P3 amplitude but have also been previously studied to be associated with alcohol-

dependence (Chen et al., 2009; Jones et al., 2004; Kang et al., 2010; Zlojutro et al., 2011). In our 

analysis, while drinks per week is not significantly associated with this endophenotype, it is still in 

the expected negative direction. Drinks per week in the Liu et al (2019) paper does not correlate 

with any psychiatric disorder which implies that it more generally captures regular alcohol use and 

not dependent or problematic use. This could indicate a difference in the underlying biology 

between becoming alcohol dependent and regular alcohol use. Another assumption of our study 

assumes that the same variants that significantly affect the complex trait directly influences the 

endophenotypes. There could have been an environmental effect wherein the environment 

actually mediates heaviness of drinking and our endophenotypes (K. S. Kendler & Neale, 2010). 

 

 



 

 

 

Fig. 8 Correlation between each PRS on the horizontal axis and endophenotype on the vertical 

axis. Both endophenotype and PRS was scaled with a mean 0 and analysis was done using the 

RFGLS R package accounting for family structure. * denotes significance at p < 0.05 and ** 

denotes significance at p < 0.01. No correlations remain significant after Bonferoni correction.  

 

Limitations 

One major limitation of our current study is that it is based on a community sample and many 

previous studies of endophenotypes are done on clinical probands and their relatives. Our study 

may have been limited in the power to detect any PRS-endophenotype correlation due to the 

healthy population, and these endophenotypes may manifest exclusively in populations with a 

heavier genetic burden for diseases. Since we assume that endophenotypes are supposedly 

more genetically simple, it could be argued that a PRS, which aggregates many variants across 

the genome, may not be a good fit to predict these simpler measures. By aggregating many other 



 

variants that are not associated with the endophenotype but rather only with the phenotype, it 

may be adding noise and reducing the correlation. Another issue that deals more with the current 

state of GWAS is the lack of large non-European GWAS meta-analysis that exists. The GWAS 

meta-analysis we used here are all based on individuals with European descent thus limiting the 

target population to only Europeans as well. More research needs to be done in non-European 

populations in order to generalize the effectiveness of both the PRS and endophenotype to 

understanding the biological underpinnings of these complex traits. 

Conclusion and Future Directions 

While we did not find a significant prediction of endophenotypes by any of the PRS, the well-

powered smoking initiation PRS and ITPC Theta Fz endophenotype supports existing theory of 

glutamate-related pathways influencing both P300 and substance abuse. As endophenotypes are 

measured and studied right now, it may not be feasible to use them to understand the biological 

processes of the complex traits that they are associated with. However, these measures could be 

used as another line of evidence for underlying cognitive processes in a similar method to how 

GWAS has helped understand how certain tissues or genes may be associated with the trait. 

Future studies may need to include a large set of endophenotypes to understand one complex 

trait. The UK Biobank, for example, has over 3,000 functional and structural brain imaging 

phenotypes (Elliott et al., 2018) that could be used to more finely pin down the cognitive 

processes of these complex traits



 

 
 

N Mean 

Age 

% 

Female 

Mother-

Father 

Corr. 

Offspring-

Mother 

Corr. 

Offspring-

Father 

Corr. 

MZ 

Corr. 

DZ 

Corr. 

Antisaccade 4457 28.98 44 0.04 0.24 0.17 0.53 0.18 

P300 4155 29.01 44 0.00 0.26 0.19 0.64 0.39 

Total Power Theta Fz 3420 29.27 50 -0.03 0.17 0.20 0.64 0.17 

Total Power Delta Pz 4138 29.02 43 -0.03 0.18 0.16 0.61 0.34 

ITPC Theta Fz 3427 29.28 50 -0.05 0.08 0.06 0.41 0.15 

ITPC Delta Pz 4153 29.01 43 -0.04 0.11 0.04 0.46 0.20 

Total at Cz Power 3938 28.75 44 -0.04 0.28 0.20 0.78 0.37 

Alpha at Cz Power 3938 28.75 44 0.07 0.27 0.30 0.85 0.45 

Alpha at O1O2 Power 3956 28.77 44 0.05 0.30 0.28 0.80 0.41 

Beta at Cz Power 3938 28.75 44 0.00 0.36 0.23 0.85 0.38 

Delta at Cz Power 3938 28.75 44 -0.12 0.21 0.08 0.56 0.24 

Theta at Cz Power 3938 28.75 44 -0.07 0.22 0.15 0.73 0.36 

Table 5. Summary of the endophenotypes included in the analysis. These are from the European subset of the MCTFR sample and we obtained 

the within family correlation from RFGLS output. 

  



 

 
SNP h^2 SE unexplained h^2 SE total h^2 SE 

Antisaccade 0.22 0.10 0.29 0.10 0.51 0.02 

P300 0.55 0.11 0.02 0.11 0.57 0.02 

Total Power Theta 

Fz 

0.23 0.13 0.38 0.13 0.62 0.02 

Total Power Delta 

Pz 

0.38 0.11 0.20 0.11 0.58 0.02 

ITPC Theta Fz 0.11 0.12 0.24 0.12 0.35 0.03 

ITPC Delta Pz 0.16 0.10 0.22 0.10 0.38 0.03 

Total at Cz Power 0.26 0.11 0.54 0.11 0.80 0.01 

Alpha at Cz Power 0.39 0.11 0.46 0.11 0.85 0.01 

Alpha at O1O2 

Power 

0.39 0.11 0.39 0.11 0.78 0.01 

Beta at Cz Power 0.39 0.11 0.48 0.11 0.87 0.01 

Delta at Cz Power 0.22 0.11 0.33 0.11 0.55 0.03 

Theta at Cz Power 0.23 0.11 0.50 0.11 0.73 0.02 

Table 6. Heritability calculated using GCTA based on the whole sample.  



 

Discussion 

In this thesis, we examined the genetic architecture of alcohol and nicotine use by simultaneously 

doing an extensive meta-analysis to look for both common (GWAS meta-analysis) and rare 

(exome meta-analysis) variants that contribute to phenotypic variance. Based on the results from 

the two meta-analyses, the underlying genetic architecture of nicotine and alcohol is influenced 

by many common variants but no individual rare variants with large effect. The results from the 

GWAS meta-analysis were then used to construct a polygenic risk score (PRS) in a community 

sample to test for associations with substance use related endophenotypes.  

We completed a GWAS meta-analysis at the same time as the exome meta-analysis on four 

nicotine use related phenotypes - age of regular smoking initiation (AgeSmk), smoking initiation 

(SmkInit), cigarettes smoked per day (CigDay) and smoking cessation (SmkCes) and one alcohol 

related phenotype, drinks per week (DrnkWk).  

SmkInit is our most well-powered substance use meta-analysis. It is a common medical intake 

question and is comorbid with a wide number of psychiatric and medical diseases (Rojewski et 

al., 2016). Smoking initiation presents itself as a highly polygenic trait with many variants of small 

effects in contrast to CigDay or DrnkWk where we have a few loci with very large effects. In our 

first chapter, gene-based pathway analysis has shown us a complicated and intricate set of 

genes and systems implicated in smoking initiation. For instance, the dopamine reward system, 

which has been studied extensively in substance use as a key system that regulates addiction, is 

enriched in our smoking initiation results (Koob & Volkow, 2010). Another widely studied system 

is the glutamatergic system, which has also been implicated in not only human addiction research 

but also mice models as well (Kalivas, 2009). These results serve as an important bridge in 

translating how genotypes may affect these systems and thus affect behavior. 

CigDay is an indication of heaviness of use of nicotine. We have replicated many well-studied 

genes such as the CHRNA5-CHRNA3-CHRNB4 region and the CYP2A6 region in both GWAS 

and exome meta-analysis. In the exome meta-analysis, we have also included pack-years as an 

indication of heaviness of use as it is commonly used in epidemiological and clinical studies. 

However, it does not perform as well as CigDay in variant discovery. In the GWAS meta-analysis, 

we have also found that all central nervous system nicotinic receptor genes (except CHRNA7) 

were significantly associated with CigDay.  

The discovered loci in SmkCes is very similar to the results from CigDay. In this aspect, it is 

interesting to note that quitting smoking may have some underlying biology that is associated with 

the metabolism of nicotine. We have replicated previously reported loci for DrnkWk like ADH1B, 

GCKR, and KLB. An estimated 30% of alcohol users would show symptoms of alcohol use 



 

disorder in their lifetime (Grant et al., 2015) and previous research has shown that alcohol 

dependence and consumption have a very high genetic correlation estimated at 0.97 (Grant et 

al., 2009).  In the GWAS meta-analysis, DrnkWk measures alcohol consumption across the 

population and is not limited to those with problematic use. Despite consumption being correlated 

with dependence, we do not see genetic correlation with any of the medical diseases or any 

behavioral traits (except risk tolerance and lifetime cannabis use). Moreover, DrnkWk PRS does 

not predict any of the endophenotypes associated with alcohol dependence. There may be a 

more nuanced relationship between alcohol consumption and dependence that needs to be 

studied more in depth. 

We also performed an exome meta-analysis on four nicotine related phenotypes – smoking 

initiation (SmkInit), cigarettes per day (CigDay), pack-years (PY) and smoking cessation 

(SmkCes) in 622,409 individuals and found 40 novel loci but no rare variants that replicated. The 

replicated results are all common variants which have also been implicated in the common 

variant GWAS meta-analysis. The one rare novel variant that was found in CigDay discovery is 

not significant when replicated in another replication sample, but we did discover a conditionally 

independent rare variant near a known gene, CYP2A6. The lack of rare variant discovery could 

be due to our sample size (which is half the sample size of the common variant GWAS meta-

analysis) or that rare functional variants may not actually be in the exome but acts on a gene 

some distance away from the gene. In order to find these non-exomic rare variants, a next step 

could be to inspect GWAS with whole-genome sequences. The Trans-Omics for Precision 

Medicine (TOPMed) has whole-genome sequenced 53,581 participants and found that 97% of 

its >400 million variants have frequencies < 1% (Taliun et al., 2019) indicating just how many 

more rare and undiscovered variations are in the genome beyond the exome. 

As the size of the discovery sample increases, the results become more robust and thus the use 

of these results in subsequent analysis becomes feasible. Cell and tissue enrichment analysis 

results showed a significant enrichment in the central nervous system across all five phenotypes, 

particularly in tissues from the cortical and sub-cortical regions. One way to understand these 

underlying biological mechanisms is to look at endophenotypes that act as a simpler measurable 

trait that is hypothesized to be affected by the same biology as the complex trait it is associated 

with. Endophenotypes associated with substance use, such as the P300, are assumed to be less 

complex thus more directly influenced by genes than the complex trait that they tag. In Chapter 3, 

we tested if the GWAS meta-analysis would predict any of these endophenotypes in a 

community-representative sample. None of the associations were significant after correcting for 

multiple testing, but there was converging evidence between one endophenotype, P300, and 

SmkInit that implicate glutamatergic neurotransmission system as significant in substance use. 



 

Future Directions and Conclusion 

The meta-analyses presented here have primarily been conducted on samples of individuals 

restricted to European ancestry. However, there are many more variants that are private to other 

populations and continents which are missed by excluding them from major studies (The 1000 

Genomes Project Consortium, 2015). For example, variations in ALDH2, a well-studied gene 

involved in alcohol metabolism, is almost entirely private to East Asian populations and thus 

missing from our DrnkWk meta-analysis despite the sample size being close to a million 

individuals. Similarly, PRSs do not work well when the discovery population and the target 

population are different (Duncan et al., 2019). More diverse populations are needed in order to 

fully understand the individual differences between individuals. 

Overall, the nicotine use phenotypes are significantly correlated with each other and a lot of 

nicotinic receptors are pleiotropic across the four smoking traits and particularly between CigDay, 

SmkCes and SmkInit. DrnkWk is most significantly genetically correlated with SmkInit but not so 

much with the other smoking phenotypes. This is consistent with current research where alcohol 

consumption is comorbid with smoking initiation (Meyerhoff et al., 2006) however, the biology 

underlying the two traits are dissimilar (Dani & Harris, 2005). In conclusion, based on the 

distribution of effect sizes, the genetic underpinning of substance use is split where heaviness of 

use phenotypes seems to be influenced by a few loci of large genetic effects (eg. CHRNA3 for 

CigDay and ADH1B for DrnkWk) and initiation and cessation of use are more polygenic traits 

influenced by many variants with small effects. 
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