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Capacitance as a thermodynamic probe 

The differential capacitance 

 

 

 

contains information about 

thermodynamic properties 
metal electrode 

insulator 

material of  

interest 

V 

Correlated and quantum behavior can have 

dramatic manifestations in the capacitance. 



Thermodynamic definition of C 

V 

-Q 

+Q 

Capacitance is determined 

by the total energy U(Q) 

electrons 

Define the òeffective capacitor thicknessó: 

d* = Ů0Ů/C = Ů0Ů (d2U/dQ2) 



Thermodynamic definition of C 
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Quantum capacitance in 2D 

Electron correlations can make Cq
-1 large and negative, 

so that  C >> Cg and   d* << d  

(Noninteracting) 2DEG with parabolic spectrum: 
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[Ponomarenko et. al., PRL 105, 136801 (2010)] 



In the remainder of this talk: 

 

1. A 2D electron gas next to 

a metal electrode 
 

 

 

 

2. Monolayer graphene in a 

strong magnetic field 

 

 

2õ.  Double-layer graphene 
 

 

 

 

 

V

d



Large capacitance in a capacitor 

with a conventional 2DEG 
1. 

V 

d 

metal gate electrode 

insulator 
2DEG 

electron density  n(V) 

A clean, gated 2DEG at zero temperature: 

What is d* = Ů0Ů/C as a function of n? 



Semiclassical scaling behavior 

d 

case 1: n-1/2 << aB  

The problem has three length scales:  d, aB << d , and n-1/2 

2DEG 

metal 

++++++++++++++++++++ 2DEG is a degenerate Fermi gas 

E 

d* = d + aB/4 



case 2: aB << n-1/2 << d 

The problem has three length scales:  d, aB << d , and n-1/2 

2DEG 

metal 

Semiclassical scaling behavior 

++++++++++++++++++++ 

E Electrons undergo crystallization: 

e2n1/2/Ů0Ů >> h2n/m 

electron repulsion >> kinetic energy 

Wigner crystal has negative density of  states: 

µ ~ -e2n1/2/Ů0Ů 

d* = d ï 0.12 n-1/2 < d 
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[Bello, Levin, Shklovskii, and Efros, Sov.  Phys.-JETP 53, 822 (1981)] [Eisenstein, Pfeiffer, and West, PRL 68, 674 (1992)] 



case 3: n-1/2 >> d  

The problem has three length scales:  d, aB << d , and n-1/2 

2DEG 

metal 

Semiclassical scaling behavior 

2d 

n-1/2 

Electrode charge is not uniform: 

capacitor consists of  electron-

image charge dipoles with repulsion 

u(r) = 2e2d2/Ů0Ůr
3 

Calculating classical energy of  a 

triangular lattice of  dipoles gives 

ddnd <<= 22/1* 7.2



case 4: n-1/2 >> d2/aB  

Screening of  the electron-electron interaction means that strong 

correlations disappear at extremely small n. 

Absence of crystallization at n Ÿ 0 

Wigner crystal melts, becomes a Fermi-liquid of  electron-image dipoles.  

dad B <<= 4/*

u(n-1/2) ~ e2d2n3/2/Ů0Ů  <<  h2n/m 

electron repulsion << kinetic energy 



Capacitance at different density regimes 
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(quantum)  
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aB << d  



Results at d/aB = 4 
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[BS and M. Fogler, 

PRB 82, 201306(R) 

(2010)] 

~4 nm 

Theory: 

Experiment: 

[Li and Ashoori, 

Science 332, 825 

(2011)] 



Can d* < d appear in graphene? 

In graphene, Wigner crystallization does not occur: 

V k 

E 

aB  Ÿ  Ð 

...except in a strong magnetic field. 

E = h v k 

kinetic energy of  localized states:   ~ hv n1/2 

Coulomb repulsion between localized states:  ~ (e2/Ů0Ů) n
1/2 

2. 



Focus: single nondegenerate Landau level 



Crystallization at small filling factor 

B 

In a strong 

magnetic field, 

KE is quenched 

eBlB />=

d* = 1.1 (d/lB) ɜ1/2 at ɜ << 1,  nd2 << 1  

d* vanishes in the limit ɜ Ÿ 0 

n-1/2 ~ lB ɜ-1/2 

 

2lB 

ɜ << 1 



Electron-hole symmetry 

The lowest Landau Level has electron-hole symmetry: 

At small ɜ  At small 1-ɜ  

d* (the electron compressibility) is symmetric about ɜ = 1/2 
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General calculation of E(ɜ) using 

interpolation 

General parameterization of  energy in the lowest Landau level: 
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The energy E(1) is known: 
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E(ɜ) at ɜ << 1 can be calculated quasiclassically. 

Full range of  E(ɜ) at 0 < ɜ < 1 can be estimated by fitting the 

coefficients Ŭk. 
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Checks of our interpolation approach 

1.  For the unscreened 2DEG, the quasiclassical calculation reproduces 

the Hartree-Fock result at small ɜ: 
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2. The Fano-Ortolani expression is reproduced everywhere to within 3.5%. 
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3. Reproduces the energy of  FQHE states 

gɜ(r) is known for FQHE states 

ɜ = 1/3 and ɜ = 1/5 

[Girvin, MacDonald, and 

Platzman, PRB 33, 2481 (1986)] 

òcohesive energyó 

(offset) 



Results 

At small d/lB, d*/d ~ d/lB  in the lowest Landau level 


