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Abstract 

 

Potato (Solanum tuberosum) is one of the most widely cultivated non-grain food crops in the 

world, playing a critical role in global food security. It is utilized as a vegetable, livestock feed, 

and a source of raw materials for various industrial products. However, yield improvement 

through traditional breeding approaches has stagnated. This is largely attributed to the crop’s 

genome complexity, characterized by its autotetraploid, clonal, and outcrossing nature. Despite 

recent advancements in ploidy theory and the growing availability of genomic resources, 

challenges in accurate phenotyping and the comprehensive evaluation of numerous traits persist. 

This research investigates innovative phenomic technologies to enhance genomic-assisted 

breeding in two potato market classes: chips and fresh market. The studies employ high-

throughput phenotyping approaches, integrating digital imaging, drone-derived multispectral 

data, and machine learning techniques to address key challenges. 

The first study explored the use of quantitative phenotypic scores based on digital images for 

improving genomic selection of quality related traits. Analysis revealed significant contributions 

of additive and non-additive genetic effects, offering critical insights into the genetic 

mechanisms underlying these traits and their implications for potato breeding. The second study 

explored leveraging drone derived multispectral image data for phenomic selection and its 

potential to augment genomic selection. Highlight of this work shows phenomic selection 

surpassed genomic selection for yield prediction, with a combined phenomic-genomic approach 

improving prediction accuracy by over 30%. The third study assessed drone-derived 

multispectral variables to predict total plant nitrogen (N). Machine learning models achieved 

moderate-to-high accuracy in N prediction, with varying important features selected for 

improved prediction. The findings underscore the transformative potential of integrating 

phenomics with genomics to overcome breeding barriers in potato, improving the precision and 

efficiency of genetic enhancement strategies.  
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Chapter 1 

Literature review 

1.1 Introduction 

The cultivated potato is the most popular non grain food crop contributing significantly to food 

security in the world (FAO, 2023).  It has a vast wealth of genetic resources due to ease of 

crossing ability with several of its related species (Hardigan et al., 2017; Jansky and Spooner, 

2018).  Potatoes are believed to have been domesticated thousands of years ago from wild 

relatives informally grouped as the Solanum brevicaule complex, native to the Andes in southern 

Peru (Spooner et al., 2007; Hardigan et al., 2017). Over time, potato cultivation spread to 

highland savannahs in Chile, where plants adapted to longer summer days. During this process, 

potatoes transitioned into an autotetraploid form (2n = 4x = 48) due to the frequent occurrence of 

2n gametes in early diploid landrace species, such as S. tuberosum groups Stenotomum and 

Phureja. This transition led to the emergence of Andean 4x cultivated species (Hardigan et al., 

2017).  The potato’s ancient origin and its adaptation to varying day-length requirements have 

supported its global cultivation.  Its genetic diversity enables the selection of cultivars tailored to 

local environmental conditions, making it a versatile and resilient crop (Hardigan et al., 2017; 

Slater et al., 2017).  

Despite its global importance, the potato faces significant biological and economic 

challenges that stagnates its improvement and agronomic performance. Its clonal propagation 

increases susceptibility to diseases, leading to poor tuber quality and reduced yields. The 

complexity of its autotetraploid genome, combined with high heterozygosity and outbreeding 

characteristics, further complicates efforts to improve the crop for essential quality traits. 



 
2 

Additionally, breeding efforts require the development of large populations to identify a small 

number of elite cultivars with specific traits tailored to distinct market demands and 

environmental conditions. This necessitates the evaluation of an extensive array of traits, making 

the process labor-intensive and resource-demanding (Jansky, 2009).  

Traditional potato breeding is a demanding, multigenerational process that begins with 

the crossing of parents selected for complementary traits of interest, producing F1 progeny. This 

is followed by several cycles of clonal phenotypic recurrent selection to achieve desirable trait 

combinations, a process that typically spans nearly a decade (Jansky, 2009).  The identification 

of superior cultivars requires simultaneous evaluation of multiple traits, necessitating in-depth 

genetic knowledge and understanding of environmental influences. While traits like disease 

resistance are often straightforward to select due to their qualitative nature, complex traits such 

as yield demand advanced genetic analysis and precision tools, given their quantitative 

inheritance (Slater et al., 2014; Bradshaw, 2017). 

The challenges associated with traditional potato breeding, characterized by its slow pace 

and complexity, underscore the urgent need for innovative approaches to accelerate the process 

and enhance precision in selecting both simple and complex traits. This is particularly important 

to bring potato breeding advancements in line with the progress achieved in grain crops like 

maize (Ortiz, 2020). Several ongoing strategies present opportunities to overcome these 

obstacles and improve breeding efficiency. The application of advanced genomic tools and 

resources, such as marker-assisted selection (MAS) and genomic selection (GS), allows breeders 

to more effectively target desirable traits at the molecular level (Bradshaw, 2017; Slater et al., 

2017). Additionally, high-throughput phenotyping and imaging technologies offer the capability 

to rapidly and accurately capture phenotypic data. These technologies enable the measurement of 
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critical traits such as growth rates, disease resistance, heat tolerance, and nutrient use efficiency 

(Slater et al., 2017).  

These innovations hold promise for revolutionizing potato breeding through the 

integration these modern tools enabling the development of superior cultivars tailored for diverse 

environments and end-use applications. By leveraging these tools, potato breeding can overcome 

historical constraints and meet the growing demands of a changing world.    

1.2 Development of genomic tools and resources 

The development of new tools and genomic resources not initially available for analysis of 

autopolyploid genome have now enabled the use of DNA technology for genomic assisted 

breeding of complex traits in potato. The genotyping of DNA sequence variants such as SNPs is 

challenging for autopolyploids like potato compared to diploids. This is because a gene is 

represented by up to four alleles per locus per genotype, requiring a specialized approach for 

sequencing and genotyping that can distinguish among alleles copy numbers (Uitdewilligen et 

al., 2013; Bourke et al., 2018).  

However, high throughput sequencing technologies have evolved from use of double 

monoploids for development of genome assemblies (Xu et al., 2011; Felcher et al., 2012; Freire 

et al., 2021) to use of phased genomes and pangenomes (Pham et al., 2020; Hoopes et al., 2022). 

These technologies have improved development of low density marker assays (Vos et al., 2015; 

Asano and Endelman, 2023; Endelman et al., 2024) used as high throughput markers for 

downstream analysis such as genetic diversity studies, QTL mapping, genome wide association 

studies (GWAS), genomic selection (GS). Also, specialized tools modified to handle complex 

trait analysis for autopolyploid genome have also been developed providing seamless solution to 
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ploidy complexity such as double reduction (Rosyara et al., 2016; Bourke et al., 2018; 

Endelman, 2023).  This significant stride provides breeders with tools for early generation 

selection to speed up the breeding process through the use of marker assisted selection or 

genomic selection.  

 

1.3 Marker assisted selection 

QTL discovery from association studies or QTL mapping are utilized by breeders for markers 

assisted selection (MAS) which can speed the breeding process (Slater et al., 2016; Ortiz, 2020). 

Applying genetic markers as early as the first or second field year offers significantly greater 

efficiency compared to traditional visual screening methods (Bradshaw, 2017). While marker 

assisted selection (MAS) can be highly efficient, its effectiveness is generally limited to traits 

with simple genetic architecture and few large effect genes such as self-compatibility (Clot et al., 

2020; Kaiser et al., 2021), maturity (Kloosterman et al., 2013; Gutaker et al., 2019), oblong vs. 

circular shape (Eck et al., 2017; Endelman et al., 2024), and disease resistance (Herrera et al., 

2018; Prodhomme et al., 2019; Meade et al., 2020; Asano and Endelman, 2023).  

Although many markers linked to genes for critical traits have been identified, their 

application in commercial potato breeding programs remains limited. For MAS to be viable in 

practice, its cost-effectiveness must surpass that of conventional screening methods. This is 

particularly evident in the use of disease resistance markers, where significant time savings and 

efficiency gains have been demonstrated (Slater et al., 2016; Asano and Endelman, 2023). 

Expanding the practical use of MAS for complex traits will require innovations to reduce costs 

and enhance applicability across diverse breeding objectives. 
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1.4 Genomic selection 

Genomic selection (GS) is a powerful tool in modern breeding that estimates genome-wide 

marker effects for a given trait by using a training population that has been both genotyped and 

phenotyped. This information is then used to predict the genetic values of untested selection 

candidates (Meuwissen et al., 2001). Unlike marker-assisted selection (MAS), which relies on a 

limited set of markers linked to QTLs, GS leverages data from all available markers to capture 

the full genetic variance of a trait. This comprehensive approach reduces the risk of 

overestimating marker effects, a common issue with GWAS or QTL mapping (Beavis and van 

Heerwaarden, 2017; Crossa et al., 2017). 

Genomic selection (GS) has proven to be a superior tool compared to marker-assisted 

selection (MAS), particularly for traits with complex genetic architectures. This is due to GS's 

ability to harness the cumulative effects of numerous small genetic contributions across the 

genome (Crossa et al., 2017; Ortiz, 2020). However, the effective application of GS in potato 

breeding requires addressing several critical factors, including marker density, linkage 

disequilibrium (LD), population size, and heritability (Slater et al., 2016).  

1.4.1 Marker density 

High-density genetic markers are essential for achieving a comprehensive spread across 

the potato genome, ensuring that genetic variations are captured and that at least one marker is in 

LD with every QTL. Empirical and simulation studies have validated the number of markers 

needed for potato breeding programs to achieve these objectives effectively (Slater et al., 2016). 

Advances in marker development have resulted in tools that fulfill these requirements, supported 

by diverse versions and genotyping platforms tailored to potato breeding. With the continued 
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decrease in marker costs, these tools have become increasingly accessible, enhancing the 

efficiency and precision of genomic selection (Vos et al., 2015; Endelman et al., 2024). 

1.4.2 Linkage disequilibrium (LD) 

LD refers to the non-random association of alleles at different loci and is estimated by the 

correlation between markers, with values ranging from 0 to 1. In potato, LD is a critical 

determinant for the number of markers required to capture the majority of QTLs (Vos et al., 

2017). Research has shown that in potato breeding populations, high LD exists at distances less 

than 1 cM but decays rapidly to values below 0.2 at greater distances (D’hoop et al., 2010; Slater 

et al., 2016). 

1.4.3 Population size and genetic diversity 

A large population size is essential for maintaining genetic diversity, which is crucial for 

capturing a broad range of alleles and enhancing heritability estimates. However, effective 

population size (Ne) is often more critical than the actual population size. Ne contributes to 

stable heritability estimates across generations and can inform the number of markers required 

for GS (Slater et al., 2016).  

Despite decreasing sequencing costs, genotyping the tens of thousands of unique genetic 

individuals involved in early potato breeding generations remains expensive. However, for 

complex traits, GS offers the potential to increase genetic gains and shorten breeding cycles, 

making it an invaluable tool in modern potato breeding. Studies have demonstrated its 

effectiveness in improving genetic gain for complex traits, even in the context of the challenges 

associated with marker density, LD, and population size (Habyarimana et al., 2017; Stich and 

Van Inghelandt, 2018; Endelman et al., 2018; Martins et al., 2023).  
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1.5 High throughput phenotyping 

Advances in high-throughput phenotyping (HTP) are expected to enhance the efficiency and 

accuracy of MAS and GS. HTP can enhance morphological trait scoring in plant breeding, 

accelerate the phenotyping processes, and increase precision (Shakoor et al., 2017; Hickey et al., 

2019). Image-based phenotyping of tubers has been implemented to develop quantitative 

measures for quality traits, such as shape and color, in potatoes (Caraza-Harter and Endelman, 

2020; Neilson et al., 2021; Miller et al., 2022; Feldman et al., 2024). The phenotypic data 

derived from these images allows for genomic prediction of quality traits (Yusuf et al., 2024).  

Advances in sensor technology, machine learning, and data analytics are further enhancing 

the efficiency and accuracy of HTP in plant breeding (Hickey et al., 2019). Both ground-based 

and aerial HTP platforms have been deployed for phenotyping plants, either by directly capturing 

specific traits or indirectly examining phenotypic differences among plants using spectral 

reflectance data (Song et al., 2021). Aerial phenotyping offers the significant advantage of 

covering a wider expanse of field trials within a short timeframe. One such aerial platform is the 

unmanned aerial vehicle (UAV), which is equipped with multi-sensor cameras capable of 

capturing wavelengths near and beyond the visible spectrum. These wavelengths reflect different 

physiochemical properties related to plant structure, health, and nutrient status based on canopy 

leaf absorption and reflectance (Alkhaled et al., 2023). Studies in several crops have reported 

significant improvements in prediction accuracy using HTP temporal data, both for direct 

predictions and within genomic selection models (Silva et al., 2022; Montesinos-López et al., 

2023; Xu et al., 2023; Abdelhakim et al., 2024).    
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Chapter 2 

 

Genomic prediction for potato (Solanum tuberosum) quality traits improved 

through image analysis 

 

Overview 

 

Consumers and processors evaluate potatoes based on quality traits such as shape and skin color, 

making these traits important targets for breeders. Achieving and evaluating genetic gain is 

facilitated by precise and accurate trait measures. Historically, quality traits have been measured 

using visual rating scales which are subject to human error and necessarily lump individuals with 

distinct traits into categories. Image analysis offers a method of generating quantitative measures 

of quality traits. In this study, we use TubAR, an image-analysis R package, to generate 

quantitative measures of shape and skin color traits for use in genomic prediction. We developed 

and compared different genomic models based on additive and additive plus non-additive kernels 

for two aspects of skin color, redness, and lightness, and two aspects of shape, roundness, and 

length-to-width ratio, for fresh market red and yellow potatoes grown in Minnesota between 

2020 and 2022. Similarly, we used the much larger chipping potato population grown during the 

same time to develop a multi-trait selection index including roundness, specific gravity, and 

yield. Traits ranged in heritability with shape traits falling between 0.23 and 0.85, and color traits 

falling between 0.34 and 0.91. Genetic effects were primarily additive with color traits showing 

the strongest effect (0.47), while shape traits varied based on market class. Modeling non-

additive effects did not significantly improve prediction models for quality traits. The 
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combination of image analysis and genomic prediction presents a promising avenue for 

improving potato quality traits. 
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2.1 Introduction 

 

Potato (Solanum tuberosum L.) is the most widely grown vegetable crop in the world 

(FAO, 2023). However, the adoption of new potato varieties is slow compared to many other 

staple crops (Douches et al., 1996). This can be partially attributed to grower, industry, and 

consumer expectations for specific sets of quality and processing traits that define market. A new 

potato variety needs not just high yield, processing potential, and disease resistance, but to meet 

a series of tuber appearance standards including shape and color to gain acceptance (Carputo et 

al., 2004; Bradshaw, 2017). 

Many tuber appearance traits including color (Caraza-Harter and Endelman, 2020) and 

shape (Meijer et al., 2018) are quantitative. Although major effect loci have been characterized 

for both tuber shape (Wu et al., 2018; van Ek et al., 2022; Jo et al., 2023) and skin color (Bonar 

et al., 2018; Jung et al., 2009; De Jong et al., 2003), these loci do not explain the full range of 

phenotypes. Even among round red potatoes, there is a strong genetic component for both skin 

color and shape (Jones et al., 2021; Stefaniak et al., 2021). These differences can determine 

grower and consumer preference; for example, somatic mutants of fresh market red potatoes 

resulting in darker red skin color are often marketed as new varieties e.g. Dark Red Norland or 

Dark Red Chieftain. While marker-assisted selection could be used for major effect genes 

(Endelman et al., 2024), selection for the crucial smaller effect genes will require an alternate 

approach. Genomic selection (GS) provides a more robust approach to clonal and parental 

selection (Slater et al., 2016).  

Genomic selection for yield and yield components has been successfully implemented in 

tetraploid potatoes (Endelman et al., 2018; Gemenet et al., 2020; Habyarimana et al., 2017; Selga 

et al., 2021; Sood et al., 2020; Stitch & Van Inghelandt, 2018; Martins et al, 2023). Disease 
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resistance (Gemenet et al., 2020; Selga et al., 2021; Sood et al., 2020; Stitch & Van Inghelandt, 

2018; Sverrisdottir et al., 2018; Enciso-Rodriguez et al., 2018), nutritional value (Pandey et al., 

2023) and crucial processing traits like specific gravity and chip color (Endelman et al., 2018; 

Sverrisdottir et al., 2017; Habyarimana et al., 2017; Sood et al., 2020; Stitch & Van Inghelandt, 

2018; Caruana et al., 2019; Sverrisdottir et al., 2018; Martins et al, 2023) have also been targets 

for prediction. Selection for quality traits has been more challenging. Models for tuber shape 

based on visual ratings exhibit much lower prediction accuracy than models for quantitatively 

measured traits in the same population (Sood et al., 2020).  

Heritability is a crucial determinant of prediction accuracy (Kaler et al., 2022), and 

heritability depends on the precision and accuracy of phenotyping methods (Singh et al., 2019). 

Tuber quality traits are traditionally measured on ordinal visual scales (Reeves 1988; Van ek et 

al. 1994; Prashar et al. 2014; Buhrig et al., 2015). Such measures are often subjective, imprecise, 

and prone to errors due to variations in scoring and experience levels of individual raters (Parker 

et al., 1995; Poland and Nelson, 2011). One alternative to visual scales is digital imaging, which 

can produce precise and accurate quantitative measures of tuber quality traits including skin 

color and skin retention (Miller et al., 2023; Caraza-Harter & Endelman, 2020), tuber shape (Su 

et al., 2017; Miller et al., 2023; Feldman et al., 2024), and tuber blemishes (Leiva et al., 2024). 

The use of digital imaging methods can improve heritability estimates, and thus potentially 

prediction accuracy, over visual ratings (Miller et al., 2023). Furthermore, digital imaging can 

break down phenotypes into component parts such as lightness, hue, and chroma values for skin 

color (Caraza-Harter & Endelman, 2020). Across crops, measuring components of phenotypes 

often improves prediction accuracy over assessing the phenotype as a whole (Singh et al., 2019; 

Yonis et al., 2020; Yu et al., 2020).   
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In this study, we combine genotyping data with quantitative phenotypic scores for tuber 

shape and skin color generated from the R/TubAR package (Miller et al., 2023) to develop 

genomic selection models for chips and fresh market potatoes. Fresh market potatoes are 

generally marketed by skin color (red or yellow) and expected to be round. Vivid color makes a 

variety more marketable. Perceived color is determined not only by how red a tuber is (on a scale 

of green to red) but also how light it is (on a scale of black to white) (Caraza-Harter & 

Endelman, 2020). While there is some flexibility on tuber shape for fresh market tubers, 

chipping potatoes must be round in order to be compatible with processing equipment (Kirkman, 

2007). We estimated and characterized the genetic variance components for each of these quality 

traits. Then, we evaluated our ability to predict shape and skin color using genomic prediction 

and assessed how each is affected by nonadditive genetic variation. Lastly, we developed 

selection indices for the chipping potatoes by combining our genomic estimated genotypic value 

(GEGV) for shape with estimates for yield and specific gravity and selected superior clones. 

2.2 Materials and Methods 

2.2.1 Plant materials  

We evaluated advanced clones for 134 chippers and 81 fresh market red and yellow 

clones between 2020 and 2022 at the Sand Plains Research Farm (SPRF) in Becker, MN. The 77 

chipping and 38 fresh market clones were from crosses first grown in 2018 and 38 chipping and 

24 fresh market clones were from crosses first grown in 2019. Commonly grown varieties were 

used as checks, including Atlantic (Webb et al., 1978), Superior (Rieman, 1962), Lamoka (De 

Jong et al., 2017), Snowden, and Cascade for the chip processing market class, and Red Norland 

(Johansen et al., 1959), Red Pontiac, Chieftain (Weigle et al., 1968), and Yukon Gold (Johnston 
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and Rowberry, 1981) for the fresh market class. In 2022, fourteen clones from the University of 

Wisconsin (UW) Potato Breeding Program and seven clones from the North Dakota State 

University (NDSU) Potato Breeding Program were included in this study. We evaluated these 

clones in an augmented block design with row/column information and repeated checks. All 

plots contained 15 seed pieces with 30 cm in-row spacing and 91 cm between rows.  

2.2.4 Phenotyping 

We collected phenotype data for yield, specific gravity, roundness, redness, lightness, and 

length to width ratio (L/W). Yield is reported as the total plot weight for all harvested tubers in 

Mg ha-1. In 2020 and 2021 yield was measured on a tuber basis and summed over plots using a 

modified AgRay potato grader. In 2022 yield was measured on a tuber basis and summed over 

plots using an AccuVision Dual View L.E.D. Grader System from Exeter. Specific gravity was 

determined by weighing a ten-tuber sample from each plot in air and then weighing them again 

when submerged in water. The specific gravity was then calculated by dividing the weight in air 

by the difference between the weight in air and the weight in water (Kleinschmidt et al., 1984). 

All other traits were measured using an image-based analysis tool. Image samples of ten 

harvested and washed tubers from each plot were taken using an Ortery Photosimile 200 

Lightbox with a Cannon Rebel T6i camera following the methods from Caraza-Harter and 

Endelman (2020). The trait measurement was performed using the potato image analysis R 

package, TubAR (Miller et al., 2023). Length width ratio and roundness were calculated for each 

tuber, then the median tuber value for each trait in each image was used as the trait value for 

each plot. Tuber skin color was quantified in terms of redness and lightness. The median tuber 

value for each image is used for analysis.  
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To exclude outliers for each trait, we removed values that were two standard deviations 

from the mean to obtain normally distributed data for all traits (Figure S1). We excluded two to 

thirteen data points per trait for the chips, and seventeen to forty for the fresh market potatoes. 

2.2.5 Genotyping 

The clones were genotyped with different potato SNP array platforms (Table S1). A total 

of 97 University of Minnesota (UMN) clones were genotyped using the Gene-seek genomic 

profiler (GGP) 31 k V4 Potato Array based on the Illumina Infinium array technology and 

GeneSeek custom content (Felcher et al., 2012; Vos et al., 2015). The clones from UW and 

NDSU were genotyped using the 12k array V2 and the remaining 89 UMN clones were 

genotyped using a 2K targeted GBS platform, DArTag (Endelman et al. 2024; Table S1). The 

fitPoly R package (Voorrips et al., 2011; Zych et al., 2019) was used to call genotypes. The F1 

genotypes from the Premier Russet × Rio Grande mapping population (Douches et al., 2014; 

Schmitz Carley et al., 2017) were used to check for shifted markers using the checkF1 and 

correctDosages function in fitPolyTools. Marker genotypic classes were described using dosage 

(0-4). The genotypic datasets were merged and imputed using the merge_impute function of the 

R package polyBreedR (Endelman, 2023b)(https://github.com/jendelman/polyBreedR). The 

merging and imputation of all the dataset retained a total of 21,531 markers which we used to 

carry out further analysis. The data were thereafter separated into different market classes and 

two covariance relationship matrices for additive (G) and dominance (D) genetic effects were 

constructed from the markers in the StageWise package (Endelman, 2023a).  

https://github.com/jendelman/polyBreedR
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2.2.6 Variance partitioning and genomic prediction  

A two-stage analysis (Damesa et al., 2017) with the StageWise (Endelman, 2023a) R package 

was used to partition variance and develop a genomic selection model for all the studied traits. 

The analysis in stage one computes best linear unbiased estimates (BLUE) for each genotype in 

each year as well as heritability on a plot basis. We fit a spatial model using a 2D spline, 

implemented with SpATS (Rodríguez-Álvarez et al., 2018), within the StageWise package in R 

(R Core Team, 2022) based on field position information. In stage two, we used the BLUEs from 

stage one as response variable to develop the linear mixed model: 

 BLUE[gij] = yij = Ej + gi + gEij  + sij     (1) 

Where gij is the genotypic value for individual i in year j, Ej is the fixed effect for year j, gi is the 

random effect for genotype i and the GxE effect, gEij, is the model residual. The sij random effect 

accounts for the error in Stage 1 and follows a multivariate normal distribution based on the 

variance-covariance matrix of the Stage 1 BLUEs.  

After modeling gi effects as independent, marker information was incorporated. This 

enabled the partitioning of genetic variance into additive effect and nonadditive effect. The 

additive effect is a ~ N (0, G𝜎𝐴
2), where G is the genomic additive relationship matrix and 𝜎𝐴

2 is 

the genomic additive variance. Nonadditive effects were modeled in two ways, first as the 

genetic residual (R) and then as directional dominance (D). The genetic residual (R) is 

independently identically distributed (i.i.d), and the dominance effect is d ~ N (-bF, D𝜎𝐷
2), where 

D is the dominance relationship matrix, 𝜎𝐷
2 is the dominance variance, and F are genomic 

inbreeding coefficients (Endelman, 2023a).  We thereafter tested the different genetic models 

based on additive covariance structure (G), additive plus dominance covariance structure (G+D) 

or additive plus genetic residual (G+R).  StageWise (Endelman, 2023a) estimates the proportion 
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of variance explained (PVE) by each effect without the main effect Ej, which is the variance of 

each effect divided by the sum of all variance effects. 

Empirical BLUPs for total genotypic value were computed as implemented in the 

StageWise package (Endelman, 2023a) for each of the three genetic models. The marker based 

and non-marker-based estimates for total genetic values were compared based on their reliability 

scores (r2), estimated from prediction error variance (PEV) in StageWise. For each trait in both 

market classes, we determined the best fit model based on the Akaike Information Criterion 

(AIC). 

Thereafter, we implemented a ten-fold cross-validation scheme replicated five times to 

estimate prediction ability for each genetic model. In this scheme, and for each replication, we 

used each fold as validation data by masking phenotypes from the training set and then 

predicting phenotypes for the masked individuals. The prediction for each trait was then 

estimated as the correlation between the genomic predictions and the validation data, calculated 

by BLUP assuming independent clone effects. 

2.2.7 Multi program model 

To investigate the role of population size in prediction ability, we combined yield and 

genotype data from 984 chipping clones from the UW breeding program and the National Chip 

Processing Trial evaluated in Wisconsin between 2015 and 2020 (Endelman, 2023a), with the 

UMN chipping data described above. We hypothesized that these populations were sufficiently 

related to be informative, because there is minimal population structure in US chipping potatoes 

 (Love et al., 1999; Agha et al., in review) and many of the UW and UMN clones share 

parents and grandparents. The variance partitioning and genomic prediction steps from section 

2.4 were repeated on the combined data set.  
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2.2.8 Selection index 

We created a selection index to summarize the genetic merits of each clone across traits. 

Due to population size, we were only able to create a selection index for chipping potatoes. We 

identified top performing clones based on roundness, yield, and specific gravity. We used 

weighted multi-trait index selection within StageWise to identify top performing clones. The 

merit for each clone was determined based on the following expression: 

SI = w1 x GEGVyield + w2 x GEGVsg + w3 x GEGVroundness 

Where SI is the selection index, w1, w2 and w3 were the assigned weights for each trait, and 

GEGV is the standardized total genotypic value for the trait indicated in the subscript. We 

considered two scenarios for calculating the selection index for each clone. For scenario one, we 

assigned equal weights (+3) across the three traits, and for scenario two, we assigned equal 

weight for yield and specific gravity and a lesser weight (+2) for roundness.   

2.3 RESULTS  

2.3.1 Phenotypic and genotypic analysis 

For each trait, in each year, we calculated BLUEs for individuals and broad sense 

heritabilities for breeding populations in each market class.  The broad sense heritability within 

the fresh market clones for redness was between 76% and 91%, lightness ranged between 34% 

and 86%, roundness ranged between 45% and 85%, and length-width ratio (LW) was between 

50% and 67% (Figure 1A). In general, heritabilities were highest in 2021, although for color 

traits they were equally high in 2020. Within the chips, broad sense heritability for roundness, 

ranged between 23% and 29%, specific gravity was between 59% and 83%, and yield between 
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23% and 87% (Figure 1B). The BLUEs and the corresponding covariance obtained were utilized 

for further analysis.  

We removed SNPs with minor allele frequencies lower than 5% which resulted in 21,471 

markers for the chipping clones and 20,753 makers for fresh market clones. These were used to 

calculate covariance matrices for additive (G) and dominance (D) relationships. 

 

2.3.2 Variance components and genomic prediction 

The genotype effects were first modeled without markers to estimate total genetic 

variance (Vg) and variance of genotype by year (Vgy). As shown in (Table 1), the relationship 

between estimates for Vg and Vgy depends on the trait in question. 

We considered three models for incorporating genetic data: one using just the additive 

covariance matrix (G), one using the additive and dominance covariance matrices (G+D), and 

one using the additive covariance matrix and the genetic residual (G+R). For each model, we 

performed variance component decomposition to portion the genetic variance for each trait into 

additive and non-additive (dominance or genetic residual) components.  The results are reported 

here as the proportion of variance explained for each effect (Figure 2). For fresh market clones, 

all traits except length to width ratio exhibited large genetic components. While, for chipping  

clones, GxE was the primary contributor to variance for most traits. For quality traits 

measured through image analysis, G and G+R produced very similar results. However, for yield 

and specific gravity in chipping clones G+R introduced a genetic residual component larger than 

the additive component. The use of G+R lowered AIC for all traits in both market classes except 

lightness where G+D produced a better fit (Table 2).  Using the G+D model increased the 

additive genetic variance for lightness from 46% to 47.2% (Figure 2).  



 
24 

We estimated a total genetic value and a breeding value for each clone-trait combination. 

Genetic values were calculated first based on phenotypic data alone without markers and then 

with marker assisted estimation. We compared reliability scores for each method (r2). Estimates 

of total genetic value made using marker data (Table S2) were more reliable than those made 

without marker data for all quality traits (Figure 3). Notably, the reliability for phenotype-only 

predictions for roundness in chipping clones was 0 for all individuals. Reliability for marker 

assisted predictions for the same trait was as high as 0.5, suggesting that marker data is required 

to make shape predictions for chipping potatoes. However, the total genetic value calculated with 

and without marker data showed similar reliability scores for yield and specific gravity for the 

chipping potatoes (Figure 3B).  

We used cross-validation to determine our ability to predict total genetic value for each 

trait-market class combination. G and G+R were equally effective at predicting quality traits in 

both market classes (Figure 4). For yield and specific gravity in the chips, G+R reduced our 

prediction ability. Including dominance in the G+D model improved our ability to predict 

roundness in the chip processing clones, had no effect on predictions of lightness, and reduced 

our ability to predict other quality traits. In chipping potatoes, G and G+D were equally effective 

predictors of yield and G+D and G+R were equally ineffective predictors of specific gravity.  

2.3.3 Multi program model 

 In order to investigate the effect of population size, we combined our chipping potato 

data with a published dataset from the UW potato breeding program (Endelman, 2023a). The 

combined data set included 1051 individuals with phenotypic and genotypic information. 

Including this data more than doubled our estimates for the additive variance component for all 

three models (figure 5A) and enhanced our ability to predict yield (figure 5B).  
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2.3.4 Selection index 

A successful potato cultivar must combine a series of yield and quality traits, and 

selecting for some traits can inadvertently select against others. Therefore, we created a selection 

index with yield, specific gravity, and roundness for chipping potatoes. We considered two 

indices, one with equal weights for all traits along with one that emphasized yield and specific 

gravity over roundness.  The top performing clones for both indices overlapped (Table S3 and 

Table S4). Of the ten top performing clones, eight were either clones from the UW or were the 

result of crosses originally done at the UW selected in Minnesota.  

 

2.4 Discussion 

2.4.1 Image based phenotyping allows us to build genomic selection models for potato 

quality traits 

High throughput phenotypic data and genomic assisted selection can improve selection accuracy 

and accelerate genetic gain in a breeding program (Slater et al., 2016; Bradshaw, 2017; Bykova 

et al., 2017). Although genomic selection has been successfully implemented in potato for yield 

and yield components (Endelman et al., 2018; Gemenet et al., 2020; Habyarimana et al., 2017; 

Selga et al., 2021; Sood et al., 2020; Stich & Van Inghelandt, 2018; Martins et al, 2023), disease 

resistance (Gemenet et al., 2020; Selga et al., 2021; Sood et al., 2020; Stich & Van Inghelandt, 

2018; Sverrisdottir et al., 2018; Enciso-Rodriguez et al., 2018), nutritional value (Pandey et al., 

2023), and processing traits (Endelman et al., 2018; Sverrisdottir et al., 2017; Habyarimana et al., 

2017; Sood et al., 2020; Stich & Van Inghelandt, 2018; Caruana et al., 2019; Sverrisdottir et al., 

2018; Martins et al, 2023), prediction of tuber appearance has been less successful (Sood et al., 
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2020). However, tuber appearance is crucial for marketability, especially for fresh market 

potatoes. In this study we combined quantitative phenotypes generated from image analysis and 

genomic data to characterize variance components and develop genomic selection models for 

tuber shape and skin color.  

Measurement of quality traits in potatoes has historically relied on visual scores which are 

subjective and prone to errors. The image-based tool known as TubAR, was developed as an R 

package (Miller et al., 2023) to improve the precision and accuracy of these phenotypes. 

Between 2020 and 2022 we photographed subsamples of fresh market and chipping clones from 

our breeding program yield trials and measured tuber color and shape using TubAR. These 

phenotypes exhibited a moderately normal distribution across all years evaluated (Figure S1).  

The heritability values for traits differ widely across years except for redness which ranged 

between 76% and 91% (Figure 1). This is consistent with previous studies in similar populations 

which show high GxE for roundness (Stefaniak et al., 2021; Jones et al., 2021), lightness 

(Stefaniak et al., 2021; Jones et al., 2021), and yield (Agha et al., In review; Schmitz Carley et 

al., 2019). The stability of redness across years contributes to higher prediction ability (Figure 4). 

Similarly, the narrow sense heritability was highest for redness within the fresh market class, 

followed by roundness and lightness, which suggests potential for the improvement of these 

traits (Figure 2).  

We considered models with additive only and both additive and non-additive covariance 

structures. For yield and specific gravity, allowing for only additive covariance increased the 

additive component over models where non-additive covariance was included.  The additive 

values increased from 9% to 16.7% and 15.9% to 22.1% respectively. This suggests that the 

additive effect from additive only covariance models actually captures some of the non-additive 
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genetic variance for most traits considered. This effect has been observed in other highly 

heterozygous clonal crops (Wolfe et al., 2016; de Andrade et al., 2022).  

2.4.2 Color 

 We were most accurate in our predictions for color (Figure 4), which exhibited high 

broad (Figure 1) and narrow sense (Figure 2) heritability.  Heritability estimates were lowest in 

2022, most likely due to incomplete drying of tubers before photography, which affects color in 

general and lightness in particular.  

 We separated color into two component traits, redness and lightness. These traits were 

highly correlated (R2=-0.8, Figure 6), with darker tubers also generally being redder. This is 

consistent across other attempts to implement multi-dimensional analysis of color (Caraza-Harter 

& Endelman, 2020). However, the correlation is not perfect, and in particular we observe 

extensive variation in lightness among the reddest tubers. It is also worth noting that heritability 

for lightness varied more than heritability for redness, possibly because lightness is more 

influenced by environmental traits like low nitrogen than redness (Stefaniak et al., 2021). As a 

result, the clones identified as the best parents (highest GEBV) for redness were not the same as 

the clones identified as the best parents for lightness, suggesting the possibility of improving 

appearance by crossing strong parents for each of the two components of color. Using image 

analysis allows us to break down appearance, a crucial trait for consumers, into component parts 

with different genetic basis, thus improving our ability to choose crosses most likely to produce 

attractive offspring. 

 Potatoes from both the red-skin and yellow-skin germplasm groups were included in our 

fresh market trials, leading to a bimodal distribution for redness (Figure S1 A), but nonetheless a 

unimodal distribution for lightness (Figure S1 B). Some of the variation in redness is most likely 
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accounted for by known large effect color genes, StAN2 (Jung et al., 2009) and StDFR (De Jong 

et al., 2003), and this accounts for some of the high heritability, but we observe continuous 

variation in GEBVs consistent with a multigenic genetic architecture.  

2.4.3 Shape 

 Roundness was the only trait for which we built a model in each market class. The 

additive genetic variance for roundness was much higher in the fresh market clones (41.9%) than 

in the chips (10.3%) (Figure 2). This is most likely due to higher total variation for tuber shape in 

fresh market potatoes (0.93-0.99) as compared to chipping potatoes (0.98-0.99). While there is a 

consumer preference for round fresh market red and yellow potatoes, the shape requirements in 

chipping potatoes are determined by processing equipment and therefore must be more strictly 

adhered to. 

 Despite this difference in additive variance, our prediction ability was similar for both 

market classes. The exception being that including dominance covariance in the model decreased 

our prediction ability for chips but improved it for fresh market clones (Figure 4). We also found 

evidence for dominance variation and heterosis for roundness in fresh market potatoes that we 

did not see in chipping potatoes (Figure 2). This could be explained by OFP20, a known large 

effect shape gene (Wu et al., 2018; Van Ek et al., 2022) that exhibits partial dominance 

(Endelman & Jansky, 2016). Variation at OFP20 could explain the positive effect of including 

dominance covariance on prediction accuracy for fresh market potatoes.  

 Although the shape of chipping potatoes exhibits little variation, and a small proportion 

of that variance is additive, there is still some variation to be selected upon and chipping potato 

shape could be improved. This fine tuning of shape is impossible with phenotypic selection 

(Figure 3) and would be even more so were we relying on visual ratings. The combination of 
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high throughput phenotyping and genomic selection allows us to make progress on otherwise 

hard to tackle quality traits. 

2.4.4 Yield and specific gravity 

Compared to the quality traits, we found low prediction ability for yield and specific gravity 

(Figure 4). Our prediction abilities for specific gravity were slightly lower than those reported by 

Endelman et al. (2018) and much lower than those reported by Sood et al. (2020). Similarly, our 

prediction accuracies for yield, were lower than those of previous studies, which ranged from 

0.2-0.6 (Endelman et al., 2018; Gemenet et al., 2020; Habyarimana et al., 2017; Selga et al., 

2021; Sood et al., 2020; Stich & Van Inghelandt, 2018). Combining data from our 134 chipping 

clones with data from the 984 from Endelman (2023a) substantially improved our ability to 

predict yield (Figure 5), consistent with the general observation that increased sample size 

increases prediction ability (Heffner et al., 2009). This suggests our prediction models will 

improve as we add more years of data, and this pattern is likely to hold for traits beyond yield. 

We developed models for yield and specific gravity to facilitate index selection, which allows 

breeders to balance the required combination of traits for a successful potato variety. The top 

chipping potatoes we identified, which combine yield, specific gravity, and roundness, and were 

all developed in the UW program where genomic selection for yield and specific gravity in 

chipping potatoes has been in practice for several years (Endelman et al., 2018; Endelman  

2023a). This result demonstrates the success of multiple rounds of genomic selection. 

Additionally, the fact that clones developed at UW using genomic selection also perform well at 

UMN, suggests the potential for joint multi-environment models across the two states, increasing 

the population size. The efficacy of combining published data from UW with UMN breeding 

program data (Figure 5), further supports this possibility. Models which incorporate multiple 
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state breeding programs present a promising path to improving selection and identifying broadly 

adapted varieties.  

 

Figure 1. Broad sense heritability for each trait in each year measured in A) fresh market clones 

and B) chipping clones. 

 

 

Table 1. Variance parameter estimates from baseline independent genotype effects.    

 

Fresh market Chips 

Variance 

components 

Redness Lightness Roundness Length/width  Yield 

(Mg2ha-2) 

Specific 

gravity 

roundness 

Vg 6.3 14.7 6.4 x 10-5 3.3 x 10-3 80 3.2 x 10-

5 

0 

Vgy 17.3 31.5 1.63 x 10-4 4.9 x 10-3 77 4.75 x 

10-5 

4.1 x 10-5 

Stage1.error 4.3 28.9 1.46 x 10-4 1.23 x10-2 111 1.78 x 

10-5 

2.98 x 10-

5 
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Table 2. Comparison of AIC for nonadditive models 

 
Fresh market Chips 

 
Redness  Lightness  Roundness  Length/width  Yield  Specific 

gravity  

Roundness  

G  428.94 581.76 -809.31 -391.17 1271.68 -1673.72 -1583.75 

G+D 430.94 578.12 -806.67 -386.36 1268.18 -1663.71 -1575.53 

G+R 425.89 583.76 -807.30 -389.17 1265.72 -1673.71 -1581.75 

 

 

 

 

Figure 2. Proportion of variance explained for each trait based on different genetic models (G, 

G+D and G+R) for each market class. 
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Figure 3. Correlation between reliability (r2) of predictions using all data and of predictions 

made using only phenotypic data for each trait in A) fresh market clones and B) chips clones. 

  

 

 

Figure 4. Comparison of each model’s ability to predict total genetic value for each trait in chips 

(A) and fresh market clones (B) as determined by 10-fold cross validation. 
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Figure 5. Increasing population size improved A) genetic variance components estimation as 

compared to Figure 2 and B) prediction ability for yield in chipping potatoes as compared to 

Figure 4B. 
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Figure 6. The correlation between GEBVs for redness and lightness. The dotted line indicates 

the linear regression line and shaded area indicates the 95% confidence interval. 
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Chapter 3 

Leveraging unmanned aerial vehicle derived multispectral data for improved 

genomic prediction in potato (Solanum tuberosum) 

 

Overview 

 

Multispectral leaf canopy reflectance as measured by unmanned aerial vehicles (UAV) is the 

result of genetic and environmental interactions driving plant physio-chemical processes. These 

measures can then be used to construct relationship matrices for modelling genetic main effects. 

This type of phenotypic prediction is particularly relevant for trials with many entries, such as 

those used in early generation potato (Solanum tuberosum) breeding. We compared three 

methods for making predictions in our potato breeding program: first, using multispectral 

derived relationship matrices; second, using the traditional approach based on genomic derived 

relationships; and third using a combination of both. Multispectral bands were collected at five 

different time points for two market classes of potato, chipping and fresh market. We modeled 

genetic main effects for yield and quality traits at each time point and all stages combined. 

Models with multispectral relationship matrices exhibited better prediction accuracy for yield 

and roundness than genomic only models and models featuring spectra plus genomic kernels 

outperformed both single kernel predictions in terms of accuracy for most traits. Time points 

were variably informative depending on the trait measured, however for all traits combining 

across time points performed as well or better than single time point models. Similarly, using 
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feature selection to limit our models to important variables did not improve prediction accuracy 

significantly. This work highlights two potential uses for spectral data in genomic prediction, 

first, as an alternative to genetic data and second in combination with genetic data to increase 

precision of selection.     
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3.1 Introduction 

Cultivated potato (Solanum tuberosum L.) is the most consumed non grain crop in the world 

(FAO, 2024). However, breeding progress, particularly for yield has been slow in comparison to 

other staple crops (Douches et al., 1996; Jansky, 2009). This is in part due to US cultivated 

potato’s clonal nature and its highly heterozygous (Hardigan et al., 2017; Hoopes et al., 2022; 

Tuttle et al., 2024) autotetraploid genome. Historically potatoes have been bred using F1 crosses 

followed by approximately a decade of winnowing through selection to identify potential 

varieties (Jansky, 2009; Bradshaw, 2017). In many programs F1 seed is generated in green 

houses and then ramped up in small seed increase trials for two years before there is sufficient 

seed for a preliminary yield trial. When breeders rely on traditional phenotypic selection this 

results in five-to-seven-year breeding cycles.  

Marker assisted selection can speed the breeding process (Slater et al., 2016; Ortiz, 

2020). Genetic markers applied within the first or second field year offer greater efficiency over 

traditional visual screening methods (Bradshaw, 2017). While marker assisted selection (MAS) 

can be highly efficient, its effectiveness is generally limited to traits with simple genetic 

architecture and few large effect genes such as self-compatibility (Clot et al., 2020; Kaiser et al., 

2021), maturity (Kloosterman et al., 2013; Gutaker et al., 2019), oblong vs. circular shape (Eck 

et al., 2022; Endelman et al., 2024), and disease resistance (Nie et al., 2016; Herrera et al., 2018; 

Prodhomme et al., 2019; Meade et al., 2020; Asano and Endelman, 2023).  

For complex traits, genomic selection (GS) can be effective at increasing genetic gain and 

shortening breeding cycles (Slater et al., 2016; Habyarimana et al., 2017; Stich and Van 

Inghelandt, 2018; Endelman et al., 2018; Gemenet et al., 2020; Sood et al., 2020; Martins et al., 

2023; Yusuf et al., 2024). GS estimates genome-wide marker effects for any given trait using 
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individuals that have been both genotyped and phenotyped within a training population 

(Meuwissen et al., 2001). However, even with decreasing sequencing costs, genotyping the tens 

of thousands of unique genetic individuals in early generations of potato breeding programs is 

expensive. Moreover, the successful implementation of GS depends on precise and accurate 

quantitative phenotypes (Yusuf et al., 2024), which remains a bottleneck, especially at the early 

testing stages of the breeding pipeline.  

Advances in high-throughput phenotyping (HTP) are expected to alleviate some of these 

challenges, enhancing the efficiency and accuracy of GS (Slater et al., 2016; Hickey et al., 2019). 

HTP can enhance morphological trait scoring in plant breeding, accelerate the phenotyping 

processes, and increase precision (Shakoor et al., 2017; Hickey et al., 2019). Image-based 

phenotyping of tubers has been implemented to develop quantitative measures for quality traits, 

such as shape and color, in potatoes (Caraza-Harter and Endelman, 2020; Neilson et al., 2021; 

Miller et al., 2022; Feldman et al., 2024). The phenotypic data derived from these images allows 

for genomic prediction of quality traits (Yusuf et al., 2024).  

Advances in sensor technology, machine learning, and data analytics are further 

enhancing the efficiency and accuracy of HTP in plant breeding (Hickey et al., 2019). Both 

ground-based and aerial HTP platforms have been deployed for phenotyping plants, either by 

directly capturing specific traits or indirectly examining phenotypic differences among plants 

using spectral reflectance data (Song et al., 2021). Aerial phenotyping offers the significant 

advantage of covering a wider expanse of field trials within a short timeframe. One such aerial 

platform is the unmanned aerial vehicle (UAV), which is equipped with multi-sensor cameras 

capable of capturing wavelengths near and beyond the visible spectrum. These wavelengths 

reflect different physiochemical properties related to plant structure, health, and nutrient status 
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based on canopy leaf absorption and reflectance (Alkhaled et al., 2023). Studies in several crops 

have reported significant improvements in prediction accuracy using HTP temporal data, both 

for direct predictions and within genomic selection models (Silva et al., 2022; Montesinos-López 

et al., 2023; Xu et al., 2023; Abdelhakim et al., 2024).    

Despite its benefits, the use of temporal HTP data presents challenges due to its large 

volume and high dimensionality, which can complicate interpretation and increase computational 

demands when used directly for prediction. An efficient method for genomic selection involves 

using the genomic best linear unbiased prediction (GBLUP) model, where relationship matrices 

constructed from marker data among individuals are used as covariance in a GS model to 

estimate genomic estimated breeding values (GEBV) (VanRaden, 2008). This approach can be 

extended to incorporate multispectral data in a similar manner. Implementing a phenomic 

relationship matrix either as a predictor or in combination with genomic selection, improves 

predictions in multiple crops (Krause et al., 2019; Mróz et al., 2024; Maggiorelli et al., 2024). 

We aimed to apply this combined phenomic and genomic selection method to our 

breeding program and extend it to predict quality traits as well as yield. Specifically, we address 

the following questions: (1) Can UAV-derived multispectral data predict yield, specific gravity 

and shape in chipping potatoes and yield, shape, and skin color in fresh market potatoes? (2) 

How do those predictions compare with genomic based predictions? (3) Can multispectral and 

genomic data be used in combination for prediction? (4) What time point is most appropriate for 

collecting multispectral data for phenomic prediction? (4) Which combination of spectral 

variables are most predictive?  
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3.2 Materials and Methods 

3.2.1 Plant materials  

We evaluated two sets of advanced potato breeding clones between 2022 and 2023 at the 

Sand Plains Research Farm in Becker, MN. The first set included 226 unique chipping clones 

while the second contained 87 unique fresh market yellow and red skinned clones. In addition to 

clones from the University of Minnesota (UMN) breeding program, the chips set included ten 

breeding clones from the University of Wisconsin Potato Breeding Program and five commonly 

grown varieties, namely Atlantic (Webb et al., 1978) Superior (Rieman, 1962), Lamoka (De Jong 

et al., 2017), Snowden, and Cascade. The fresh market clones included University of Minnesota 

(UMN) breeding program material and four commonly grown varieties, namely Red Norland 

(Johansen et al., 1959) Modoc, Chieftain (Weigle et al., 1968), Yukon Gold (Johnston and 

Rowberry, 1981). We evaluated these clones in an augmented block design with row/column 

information and repeated checks. All plots contained 15 seed pieces with 30 cm in row spacing 

and 91 cm between rows. 

3.2.2 Phenotyping 

We collected two years of phenotype data (Table 1). Yield, specific gravity, and 

roundness, were collected for the chips while yield, redness, lightness, and length to width ratio 

(L/W) were collected for the fresh market clones. Yield is reported as the total plot weight for all 

harvested tubers in Mg ha-1. Yield was measured on a tuber basis and summed over plots using 

an AccuVision Dual View L.E.D. Grader System from Exeter. Specific gravity was determined 

by weighing a ten-tuber sample from each plot in air and then weighing it again when submerged 

in water. The specific gravity was then calculated by dividing the weight in air by the difference 

between the weight in air and the weight in water. 
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All other traits were measured using image analysis. Images of samples of ten harvested 

and washed tubers from each plot were taken using an Ortery Photosimilie 200 Lightbox with a 

Cannon Rebel T6i camera following the methods from Caraza-Harter and Endelman (2020). 

Trait measurement was performed using the potato image analysis R package, TubAR (Miller et 

al., 2022). Length to width ratio and roundness were calculated for each tuber and the median 

value was reported. Tuber skin color was quantified in terms of redness and lightness. The 

median tuber value for each image is used for analysis.  

3.2.3 Multispectral data 

Multispectral reflectance data were captured in the summers of 2022 and 2023 for five 

different time points using an unmanned aerial vehicle (UAV) with a Sentera 6x multispectral 

camera and 6x thermal sensors (Sentera, St Paul, MN). The camera is equipped with high 

radiometric calibration tools for correction of lighting variation and to provide a consistent 

reflectance surface spanning both visible and near-infrared spectral bands. Raw multispectral 

reflectance mean value was obtained for five separate color bands (red = 650 nm, green = 545 

nm, blue = 445nm, NIR = 840 nm and RedEdge = 720 nm) per plot after image preprocessing 

and radiometric calibration from Sentera. Using the raw bands, eight different vegetation indices 

commonly used in potatoes (Alkhaled et al., 2023) were estimated. They include the Normalized 

Difference Vegetation Index (NDVI)(Rouse et al., 1974), Normalized Difference Red Edge 

(NDRE:)(Gitelson and Merzlyak, 1994a), Green Leaf Index (GLI), Chlorophyll Index Green 

(CIG), Green Normalized Difference Vegetation Index (GNDVI)(Gitelson and Merzlyak, 

1994b), Normalized Difference Water Index (NDWI)(McFeeters, 1994), Chlorophyll Index Red 

Edge (CIRE)(Gitelson et al., 2012), and Transformed Chlorophyll Absorption in Reflectance 

Index/ Optimized Soil-Adjusted Vegetation Index (TCARI/OSAVI)(Haboudane et al., 2010). 
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Five flight dates were used each summer based on estimated average phenological growth stages 

translating to Canopy cover at 50%, Canopy cover closure, Peak Flowering, Peak flowering/ 

Biomass, Senescence (Table 1).  The timing of phenological stage varies by genotype and market 

class, so an estimate was made for the whole field.    

3.2.4 Genotyping data 

Clones were genotyped with a combination of platforms as described in Yusuf et al. 

(2024). Specifically, both the SolCAP potato SNP array (Felcher et al., 2012; Vos et al., 2015) 

and flexseq gbs genotyping were used.  A total of 181 chipping clones and 57 fresh market 

clones were genotyped using flexseq while 45 chippers and 30 fresh market clones were 

genotyped with the SNP array. The SNP array includes 21K markers while the less expensive 

flexseq platform includes a subset of 8k of those markers. The two genotypic datasets were 

merged, and imputation was used to fill in the gaps in the lower density array using the L2H 

function of the R package polyBreedR (Endelman et al., 2024). The merging and imputation of 

all the datasets resulted in a total of 21,531 markers which we used to carry out further analysis.  

3.2.5 Statistical analysis and prediction models 

3.2.5.1 Phenotypic data analysis 

 Within each year and market class, we accounted for spatial variation and computed best 

linear unbiased estimates (BLUEs) for all traits and for all multispectral data using a spatial 2D 

spline model, implemented with SpATS (Rodríguez-Álvarez et al., 2018), within the StageWise 

package (Endelman, 2023) in R (“R Core Team,” 2023) based on row-column information 

computed as : 

   yijk = u + gi + rj + ck + eijk      (1) 

https://www.zotero.org/googl(Rodr%C3%ADguez-%C3%81lvarez%20et%20al.,%202018)e-docs/?WRPgJi
https://www.zotero.org/google-docs/?2u1aB1
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Where yijk is the response variable for the ith genotype in jth row and kth column, μ is the overall 

mean, gi is the fixed effect for the genotypic response, rj is the random row effect where rj  ~ N 

(0, 𝜎𝑟
2), ck is the random column effect where cj  ~ N (0, 𝜎𝑐

2), and eijk is the residual effect where 

eijk  ~ N (0, 𝜎𝑒
2). 

Broad sense heritability (H2) was computed for on a plot basis within each year and market class 

for all traits and for all multispectral data at each time point with genotype as random from 

equation (1) above. This was computed based on genetic 𝜎𝑔
2 and residual 𝜎𝑒

2 variance component 

as: 

   𝐻𝑔
2 =  

𝜎𝑔
2

𝜎𝑔
2+𝜎𝑒

2       (2)    

 

3.2.5.2 Relationship matrices 

 To explore the effect of different data types and data collection dates we generated a 

series of relationship matrices. Genomic relationship matrices (G) were first constructed as 

implemented in the Stagewise package (Endelman, 2023). A separate matrix was generated for 

each market class. Multispectral derived relationship matrices (W) were also computed across 

clone-year using the BLUEs for each spectra band and a combination of both spectra bands and 

indices for each of the time point individually and all time points combined. Once again, each 

market class was treated separately. The matrices were computed as: 

   W =  
𝒁𝒁𝑇

𝑛
       (3) 

where 𝑛 is the number of bands or bands plus indices included in the model Z is the scaled 

matrix that corresponds to the BLUEs of the multispectral band or indices and 𝒁𝑇is the transpose 

of 𝒁. 
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3.2.5.3 Prediction models 

The estimated BLUEs for each trait, within each market class, were used as the response 

to fit both a genomic linear unbiased predictor model and multispectral linear unbiased predictor 

model using the BGLR (Pérez and de los Campos, 2014) package in R (“R Core Team,” 2023). 

The genomic prediction model was used as a base model for comparison with the multispectral 

prediction models.  

The genomic prediction model was fit with G as covariance: 

 BLUE[gij] = yij = Ej + gi  + sij       (4) 

Where gij is the genotypic value for individual i in year j, Ej is the fixed effect for year j, gi is the 

random effect for genotype i and sij is the residual effect with normal distribution with mean 0 

and variance 𝜎2. The genetic effect 𝒈 = (𝑔1, … , 𝑔𝐼)𝑇 follows a normal distribution with g ~ N (0, 

G𝜎𝑔
2), where G is the genomic relationship matrix and 𝜎𝑔

2 is the genomic variance.  This model 

trained with equation (4) was called model G. The base model was further modified by 

incorporating the effect of genotype by environment (G×E) and model (4) was modified as: 

  BLUE[gij] = yij = Ej + gi + gEij  + sij      (5) 

 Where Ej, gi and sij are defined in model (4). gEij, denotes the G×E interaction term with a  

multivariate normal distribution gE=(𝑔𝐸11, … , 𝑔𝐸1𝐼, … , 𝑔𝐸𝐼𝐽)
𝑇
 ~ N (0, (𝒁𝑔G𝒁𝑔

𝑇)°(ZEZE
T) 𝜎𝑔𝐸

2 ), 

where G is the genomic relationship matrix, Zg and ZE are the incidence matrix for genomic and 

year effects, ° denotes the Hadamard product and 𝜎𝑔𝐸
2  is the variance component of the genotype 

by environment interaction.  The model trained with equation 5, was denoted as model G+GE. 

 The model incorporating multispectral data was fit with W as covariance in a similar 

approach with genomic prediction:   

  BLUE[gij] = yij = Ej + wEij + sij      (6) 
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Where Ej and sij are defined in model (4). wEij is the random effect of the multispectral band and 

or indices of genotype i in unique year j, which follows a joint normal distribution with wE ~ N 

(0, 𝑾𝜎𝐸𝑤
2 ), where W is the multispectral relationship matrix for clone-year combination and  

𝜎𝐸𝑤
2  is the multispectral variance component for the clone-year combination. Model in equation 

(6) was denoted as model W. 

 Model given in equation (6) was further improved taking into account the effect of 

genotypes (gi ) as proposed by Lopez-Cruz et al. ( 2015) and Krause et al. (2019): 

  BLUE[gij] = yij = Ej + gi + wEij + sij      (7) 

Where all the components of model (7) were described in the previous models and this model 

was denoted as model G+WE. 

3.2.6 Assessment of prediction models 

 We evaluated the prediction performance under two types of cross validation of interest 

to potato breeding programs. First, we evaluated the prediction accuracy of tested lines in tested 

environments. Second, we evaluated the prediction performance of tested lines in untested 

environments (Alemu et al., 2024). For the first evaluation, we assessed model performance 

using prediction ability across years randomly based on a 10 folds-cross validation scheme 

repeated 10 times by splitting data into random train-test partitions. Each fold was partitioned 

with 20% of data for testing while the remaining 80% was for training. The prediction ability 

was evaluated as the Pearson´s correlation between the predicted value and the true value for 

each phenotypic trait. For the second type of cross validation, we partitioned clones into years 

and used the year 2023 as training set and year 2022 as testing set. Once again, the prediction 
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ability was measured as the Pearson´s correlation between the predicted values and the true 

values for each phenotypic trait. 

3.2.7 Timepoint significance for prediction 

 To identify the time point most significant for prediction and to recommend specific time 

points for prediction we compared the prediction models based on multispectral matrices (W or 

G +WE) developed from the different time points and identified significant time points for 

prediction using the analysis of variance (ANOVA). Mean separation was carried out using least 

significant difference (LSD). The model was fitted as: 

Yijk=μ+αi+ βj+αβij+ϵijk     (8) 

Where Yijk is the response variable corresponding to the k-th mean prediction ability of the i-th 

multispectral model and j-th time point.  μ is the overall mean, αi is the effect for the 

multispectral model, βj is the effect for the time point, αβij is the interaction effect between the 

models and the time points and ϵijk is the residual, that is assumed normally distributed with 

mean zero and variance 𝜎2. 

3.2.8 Features selection and significance for prediction 

       Intercorrelated variables can lead to multicollinearity in regression equations resulting in 

underperformance of prediction models (Yu et al., 2015). Such scenarios are common for 

multispectral data especially when multiple bands and indices are combined across timepoints 

(Galán et al., 2020). We therefore carried out supervised feature selection with the combined 

stage multispectral data for yield of chipping potatoes using the Lasso and Elastic-Net 

Regularized Generalized Linear Models (GLMNET) machine learning algorithm, to identify the 

most important variables contributing to prediction (Friedman et al., 2010).  
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In addition to the internal feature selection in the GLMNET algorithm, we used two other 

known feature selection wrappers within the caret R package, selection by filtering (SBF) and 

simulation annealing (SA).  Each of the features selected by the algorithm and wrappers were 

used to fit a new model. The set of selected features which produced the best prediction 

accuracies were used to fit a genomic selection model. These new models were compared to 

models created based on the complete set of variables without feature selection in terms of 

prediction ability. 

3.3 Results 

3.3.1 Phenotypic data analysis 

            The BLUEs for each trait in both market classes from q-q plots assessment were 

approximately normally distributed (Figure 1). We observed similar distributions for the 

multispectral data. The BLUEs for the traits and the multispectral data were utilized for further 

analysis, with the trait BLUEs assigned as response variables. For the chips, broad sense 

heritability for yield was between 51% and 53%, specific gravity ranged between 64% and 66%, 

and roundness ranged between 27% and 77% (Figure 2). Within the fresh market class clones, 

broad sense heritability for yield, ranged from 49% to 80%, redness ranged between 58% and 

78%, lightness was between 79% and 84%, roundness was between 69% and 81%, and length-

width ratio was between 48% and 65%.  

Multispectral data showed low to moderate heritability across market clones and years. 

Heritability for bands and indices across time points within the chips clones ranged from 8% to 

72% while the fresh market clones ranged between 0% to 84% (Figure S2). Heritabilities were 

generally lower for bands and indices from the fresh market clones in 2022 (Figure S1), with 
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blue and red bands in the earlier time points (stage 1 and stage 2) exhibiting the lowest (<1%) 

heritability.  Blue and red bands also exhibited low heritability in later time points (stage 4 and 

stage 5) in 2023.  

3.3.2 Multi-year genomic and multispectral prediction model 

We compared all the models described above for the chips. Models featuring only 

multispectral bands (Figure 3) performed indistinguishably from those based on both bands and 

indices (Figure S3). The model combining genomic and multispectral data, G+WE, consistently 

outperformed the other models except for yield at stage 3 and stage 5. Both the models 

containing multispectral data, W and G+WE, outperformed the genomic only models, G and 

G+GE, for yield prediction at all time points and was highest at the combined stages.  The mean 

prediction abilities at the combined stages for G and G+GE were both 0.43 while W and G+WE 

model were 0.72 and 0.74 respectively. In early time points, the models with genetic 

components, G, G+GE, and G+WE, performed better than the W only model for specific 

gravity. However, at stage 5 (senescence) and for the combined stage, model G, W, and G+GE 

performed similarly, although all were inferior to G+WE with a mean prediction ability of 0.36 

at stage 5 and 0.39 for the combined stages. Prediction ability was generally lower for roundness. 

Similar to specific gravity, genetic models for roundness prediction performed better earlier in 

the growing season while multispectral prediction improved as the season went on, but the 

combination of the two was the most successful with a mean prediction ability of 0.22 at stage 5 

and 0.21 for the combined stages.  

prediction ability in terms of Pearson´s correlation of model predicted values to phenotypic 

observations. 
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  We repeated the above analysis for the fresh market clones, to investigate the efficacy of 

models featuring multispectral data for prediction of quality traits. As with the chips, we found 

that including only bands (Figure 4) as opposed to combining bands and indices (Figure S4) did 

not significantly affect prediction accuracy. For yield and color traits, the G+WE model 

performed the best.  As in the chips, yield was best predicted by the two models including 

multispectral data. For the combined stages the G+WE model had a prediction ability of 0.63 

while that of the W model was 0.61. For both, redness and lightness models including the 

genomic relationship matrix performed best, although the difference was more pronounced for 

lightness across all stages. For both traits, the combined model (G+WE) with combined stages 

performed best, with a prediction ability of 0.43 for redness and 0.32 for lightness.  For 

roundness, W was the strongest model with other models performing similarly, while for length 

to width ratio all models including the genomic relationship matrix performed similarly, while W 

was the worst. Overall, prediction abilities were lowest for length to width ratio.  

3.3.3 Year specific genomic and multispectral prediction model 

In order to evaluate our ability to predict phenotypes in untested environments, we used 

years as a proxy for environment.  We divided our data based on the year in which the data was 

gathered and assigned our largest data set (2023) as the training set and our smallest (2022) as 

the test set. This analysis was only carried out in the chipping potatoes due to population size. 

Prediction ability was significant (p<0.05) for yield and specific gravity but not roundness 

(Figure 5; Figure S5). These results were consistent across time points and for all time points 

combined. For all traits and models, prediction ability was lower in untested environments than 

tested ones.  
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3.3.4 Significance of time points for prediction  

We compared the prediction models based on multispectral matrices (W or G +WE) 

from the different stages and identified significant time points for prediction of yield and quality 

traits at harvest using analysis of variance (ANOVA) and mean separation using LSD. Time 

point was significant for all traits in both market classes. The time points which produced the 

best predictions varied by trait, however the combined stage model was among the best 

performers for all traits in all both market classes (Figure 6). Within the chips, combined analysis 

of all time points was the best predictor of yield. However, the earliest stage predicted yield 

equally well for the fresh market clones. Combined analysis was equivalent to analysis using 

either of the last two time points for specific gravity. Time points 4 and 5 were equally effective 

to combined analysis for predicting roundness in chipping clones, while stage 3 (peak flowering) 

was the best for roundness in fresh market clones. The last time point was similarly effective to 

combined analysis for lightness, and both the first and last time points were equivalent to 

combined analysis for predicting redness.  

3.3.5 Variable importance and significance for prediction 

            The models using combined multispectral data across time points showed improved 

performance for most traits evaluated. Considering the risk of multicollinearity in multistage 

models (Yu et al., 2015), we evaluated the importance and contribution of each variable to our 

yield prediction models for the chipping germplasm using a machine learning variable 

importance selection algorithm and wrappers. Specifically, we used the GLMNET algorithm 

which provides a robust approach to coefficient shrinkage and regularization of important 

variables (Friedman et al., 2010).  
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The GLMNET internal features selection algorithm and wrappers (Table 2) selected 

different numbers of important multispectral variables contributing to prediction models. 

Performance for prediction based on the selected variables shows the wrappers performed better 

than the internal GLMNET features selection (Table 2). The variables selected from the 66 total 

variables were 47 for GLMNET, 26 for simulation annealing (SA), and 46 with selection by 

filtering (SF). Most of the selected multispectral variables overlapped across the two wrappers 

(Table S1). 

Selected variables included multiple bands and indices from different time points.  We compared 

a model including only the selected multispectral variables (W) and one combining genomic and 

selected multispectral variables (G+WE) to the genomic models (G and G+GE). The mean 

prediction ability from selected variables with SA wrapper was 0.73 and 0.75 with SF wrapper 

(Figure 6). These results showed no significant improvement compared with the use of the total 

unselected variables with 0.74 (Figure 6).  

3.4 Discussion  

3.4.1 Heritability of traits and spectra data 

 Yield and quality traits exhibited moderate heritabilities consistent with previous 

estimates (Yusuf et al., 2024; Miller et al., 2022), indicating a strong genetic basis for 

improvement.  We observed variability between years for roundness in chips and yield, length to 

width ratio, and redness in fresh market clones. Shape is known to have a strong environmental 

component (Jones et al., 2021; Stefaniak et al., 2021; Yusuf et al., 2024) as does yield (Schmitz 

Carley et al., 2019; Agha et al., 2024; Yusuf et al., 2024) which could explain the year-to-year 

variation. Heritability of the multispectral bands and indices was more variable, ranging from 
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low to moderate across different market classes and years. One reason for this may be that 

cultivated potato exhibits variation for flowering time and maturity and so single flight time 

points did not catch all individuals at the same growth stage. Low heritability of multispectral 

variables has also been observed in wheat (Krause et al., 2019; Mróz et al., 2024).  

3.4.2 How does phenomic prediction compare to genomic prediction?  

 The most dramatic benefit of implementing phenomic prediction to our prediction 

abilities was for yield in both market classes. This is consistent across time points and with 

previous studies in potato (Maggiorelli et al., 2024), wheat (Montesinos-López et al., 2017; 

Krause et al., 2019; Mróz et al., 2024), rye (Galán et al., 2020), corn (DeSalvio et al.,2024), and 

soybean (Zhu et al., 2021).  

We further assessed the predictive ability of the multispectral model on traits other than 

yield. Phenomic models also outperformed genomic models for predicting roundness in later 

time points but were less successful in predicting skin color, length to width ratio, or specific 

gravity. It is possible that better targeting of relevant spectral bands and indices would improve 

our ability to use phenomic prediction for quality traits. Physiochemical traits of canopy leaves, 

such as starch content are known to be associated with specific wavelengths of leaf absorption 

(Zhou et al., 2018; Yang et al., 2022; Alkhaled et al., 2023). If leaf and tuber starch content are 

correlated this suggests a potential strategy for the prediction of specific gravity. In a variety of 

crops imaging spectroscopy during the growing season, particularly from the NIR spectrum, 

accurately predicts harvest traits (Su and Xue, 2021; Dallinger et al., 2023). 

Trait prediction from spectral imagery could be a particularly powerful tool in potato 

breeding. In general, potato breeding starts with a set of F1 crosses which are evaluated visually 

in the first field year from single plants. Breeding programs plant tens of thousands of 
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individuals and select approximately 1%. Genotyping at this time point is prohibitively 

expensive, but phenotyping with drones would not be. For most programs sufficient seed for 

yield trials is not generated until field year 3. If yield could be predicted from drone imagery in 

year 1 it could dramatically improve early generation selection accuracy and shorten breeding 

cycles. However, this depends on the accuracy of year-to-year predictions from single plants in 

new year-environments, and phenomic prediction across environments is generally less 

successful than it is within environment (Montesinos-López et al., 2017).  

3.4.3 Is combining genomic and phenomic prediction effective? 

Genomic prediction often relies on incorporating more explanatory inputs to optimize 

and enhance prediction accuracy. Several studies have explored the integration of additional 

inputs into genomic selection (GS), such as environmental covariates (Lopez-Cruz et al., 2015; 

Jarquín et al., 2017), omics data (Ye et al., 2020; Perez et al., 2022) and phenomics (Montesinos-

López et al., 2017; Krause et al., 2019; Mróz et al., 2024; Galán et al., 2020; Zhu et al., 2021), 

including spectral information, to achieve better optimization and prediction accuracy.  

In this study, the integration of multispectral information through additional modeling of 

genotype-by-environment interactions (G×E) using spectral reflectance significantly improved 

genomic prediction for most of the traits considered, except for the length-to-width ratio, which 

experienced a reduction of 7%. The inclusion of spectral data enhanced prediction accuracy for 

yield by over 30%, while improvements for other traits ranged from 3% to 11% across different 

market classes and time points. These findings suggest that multispectral information can capture 

additional effects not accounted for by marker effects alone, which is particularly important in 

clonal crops like potatoes.  



 
61 

Our findings are in strong agreement with previous studies that have utilized spectral 

information to improve prediction accuracy in GS, particularly for yield, using relationship 

matrices (Krause et al., 2019; Galán et al., 2020; Mróz et al., 2024).  These results also align with 

studies employing other linear and nonlinear modeling approaches, such as partial least squares, 

ordinary least squares, and functional regression, to predict yield using spectral information 

(Montesinos-López et al., 2017, 2023). 

3.4.4 What drone flight time points are most informative? 

In order to test if fewer drone flights would be sufficient, we evaluated the performance of 

phenomic prediction models at each growth stage. The results from the analysis of variance 

highlighted the significance and effectiveness of certain time points for prediction. However, for 

all traits the combined stage performed as well or better than individual time point analysis. The 

time points that were most predictive varied by trait and market class. This suggests that 

continuing to measure at all five time points is important to trait prediction, and it’s possible 

adding additional time points would improve our models.  

It is important to note that maturity is both highly variable and highly heritable in 

cultivated potato (Kloosterman et al, 2013; Guraker et al., 2019). At any particular flight time 

different genotypes were likely at slightly different growth stages. Therefore, even if above 

ground reflectance at a particular growth stage was the strongest predictor for a harvest 

phenotype it might not be captured in this analysis, further supporting the need to measure 

multiple time points for accurate prediction. 
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3.4.5 Can we improve prediction accuracy by selecting key variables? 

 Including too many non-predictive variables in a prediction model can reduce power and 

result in multicollinearity leading to underperformance of the model (Yu et al., 2015). This is a 

known problem in multispectral data especially data combined across time points (Galán et al., 

2020), as well as in genomic selection where including only trait associated markers can 

quadruple prediction ability (Singh et al., 2023). Combining genomic and phenomic data across 

all time points exhibited the best predictive performance for yield; we tested if that performance 

could be improved by identifying the most crucial spectral variables and including only those 

variables in the model. Although we used multiple machine learning algorithms to define sets of 

predictive spectra, all subsets performed equally well to the total set. We have yet to reach the 

point of saturating the model and could potentially improve it with more spectral data.  

3.5 Conclusion 

 In this study, we have established the value of using multispectral data for both phenomic 

and genomic selection in potatoes. By utilizing a multispectral relationship matrix, we can 

achieve prediction accuracy for agronomic and quality traits comparable to genomic prediction, 

offering a viable alternative when genetic markers are unavailable. Additionally, we have shown 

that integrating multispectral data into genomic selection can further enhance prediction 

accuracy. We found no evidence that we were overfitting the model with too many non-

predictive variables, as our most accurate predictions resulted from combining data across time 

points and feature selection made no difference.  

It's important to note that this work serves as a proof of concept for using multispectral 

data derived from unmanned aerial vehicles. This approach was implemented with advanced 
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breeding clones, where full-sib families are limited, and there is minimal Mendelian sampling 

within the population. Moving forward, further research will focus on applying this concept to 

the screening of early-generation clonal selections, where large number of entries require 

evaluation. 

 

 

 

 

 

 

Table 1. Timing of drone flights and number of clones evaluated each year 

Class 

 

Evaluation 

Year 

Total unique 

entries 

Common 

clones 

Estimated average 

growth stages/ 

Drone flight Dates 

Days after 

planting 

Chips market 2022 42 31 Canopy cover 50%: June 28 

Canopy cover flower: July 05 

Peak flowering: July 12 

Vine biomass: July 19 

Senescence: August 05 

36 

45 

52 

59 

76 

 2023 215 Canopy cover 50%: June 20 

Canopy cover flower: July 05 

Peak flowering: July 13 

Vine biomass: July 18 

Senescence: August 08 

30 

45 

53 

58 

79 

Fresh market 2022 25 18 Canopy cover 50%: June 28 

Canopy cover flower: July 05 

Peak flowering: July 12 

Vine biomass: July 19 

Senescence: August 05 

36 

45 

52 

59 

76 

 2023 77  Canopy cover 50%: June 20 

Canopy cover flower: July 05 

Peak flowering: July 13 

Vine biomass: July 18 

Senescence: August 08 

30 

45 

53 

58 

79 
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Figure 1. Trait BLUEs distribution for A. Chipping clones and B. Fresh market clones. 

 

 

 

 

Figure 2. Broad-sense heritability for both chipping clones and fresh market clones 
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Figure 3. Comparison of models including genomic (G), genome by environment (GE), and/or 

multispectral (W) relationship matrices for chip traits across time points. Comparison is based on 

prediction ability in terms of Pearson´s correlation of model predicted values to phenotypic 

observations. 
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Figure 4. Comparison of models including genomic (G), genome by environment (GE), and/or 

multispectral (W) relationship matrices for traits measured in fresh market clones across time 

points. Comparison is based on prediction ability in terms of Pearson´s correlation of model 

predicted values to phenotypic observations. 

 

 

 
Figure 5. Comparison of year specific prediction ability for models including genome (G), 

genome by environment (GE), and/or multispectral (W) data combined across time points for 

chipping clones. Prediction ability is the Pearson’s correlation of the model prediction to the 

observed phenotypic value. 
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Figure 7. The influence of time points of spectral data collection on prediction ability for various traits in 

(A) chipping potatoes and (B) fresh market clones.  
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Table 2. GLMNET Prediction accuracy in terms of Pearsons correlation using selected 

multispectral variables 

Population set GLMNET (R) GLMNET_SA (R) GLMNET_SF (R) 

Training 0.70 0.75 0.76 

Testing 0.71 0.72 0.74 

 

 

 

 

 
 

Figure 7. Prediction ability for chipping clone traits across time points using subsets of the 

multispectral variables. 
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Chapter 4 

 

Prediction of total plant nitrogen based on multispectral reflectance for 

evaluation of nitrogen use efficiency in advance potato (Solanum tuberosum) 

breeding clones 

 

Overview 

Potato production in the United States predominantly occurs on sandy soils, where up to 60% of 

applied nitrogen (N) is lost to the environment, contributing to pollution and resource 

inefficiency. Accurately assessing and predicting total plant nitrogen (TPN), critical for the 

growth and development of different potato varieties, is essential for optimizing N management. 

This study utilized drone-derived multispectral reflectance data and vegetation indices (VIs) 

collected at five growth stages (from emergence to senescence) to predict TPN using four 

machine learning regression models: Ridge Regression (RR), Random Forest Regression (RFR), 

Elastic Network Regression (ENR), and Regression Cubist Learner (RCL). 

We evaluated 24 and 20 clones each, representing chips and fresh market varieties, in replicated 

15-hill plots over two growing seasons (2022 and 2023) under four N rates (recommended, 66% 

of recommended, 33% of recommended, and no added N). Biomass accumulation and N 

concentration were assessed from vine and tuber samples collected before senescence. TPN was 

derived from N related traits, including dry matter (DM), and total tuber yield (TTY). The 

findings revealed moderate to high correlation between TPN and multispectral variables (ranging 

from -1 to 0.9). While ENR achieved the highest prediction accuracy at individual time points, 

RFR and RCL outperformed when data across all time points were combined. This research 
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serves as the foundation for optimizing nitrogen inputs and advancing to the development of 

potato clones with enhanced nitrogen use efficiency, thereby supporting sustainable agricultural 

practices. 
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4.1 Introduction 

Potato (Solanum tuberosum L.) ranks among the most significant non-grain food crops globally, 

playing a crucial role in global food security. Its productivity and tuber quality are strongly 

influenced by soil moisture and nutrient availability, particularly nitrogen (N). Nitrogen is a vital 

macronutrient for potato development, supporting processes of vegetative growth, and tuber 

formation (Haverkort and Verhagen, 2008). However, the excessive application of N, often 

driven by the goal of maximizing yield, poses environmental risks, including nitrate leaching, 

greenhouse gas emissions, and reduced soil health (Kraft and Stites, 2003). Growing N efficient 

potato varieties helps minimize added N and it’s lost to the environment. Breeders therefore need 

to develop N efficient varieties to ensure precise nutrient management. Varieties that perform 

well under high N conditions don’t necessarily replicate same under low added N which 

therefore necessitate the early screening for nitrogen use efficiency (Jones et al., 2021). 

However, to measure N use efficiency and other component parts requires the assessment and 

prediction of total plant N content.  The assessment through conventional methods have mostly 

relied on direct sampling of potato vines and tubers, but these approaches are time consuming, 

labor intensive that involves lots of resources for sampling and prone to inconsistencies 

particularly for large-scale fields. 

Remote sensing (RS) technologies, combined with advancements in machine learning 

(ML) algorithms, present an alternative for assessment and prediction of total N in most plants. 

Images captured by unmanned aerial vehicles (UAVs) equipped with sensors across various 

bandwidths provide reflectance data from sunlight reflected off plant canopies. This reflectance, 

influenced by absorption processes within the leaf, reveals key physicochemical characteristics 

of plants. The visible spectrum (RGB) ranges from 400-680 nm, while beyond-visible 
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wavelengths exceed 680 nm, these include near-infrared and red edge for assessing plant health 

and nutrient uptake (Zhao et al., 2020; Peng et al., 2021b).  

Key insights into plant properties are derived from vegetation indices (VIs), which are 

formulated as mathematical relationships between spectral reflectance values. VIs, such as the 

widely used Normalized Difference Vegetation Index (NDVI), highlight contrasts between red 

light absorption (by leaf pigments) and NIR scattering, offering indirect yet reliable indications 

of plant health and nitrogen status Rouse et al. (1974). Additional indices, such as those 

developed by McFeeters (1994), Haboudane et al. (2010), and Gitelson et al. (2012), have further 

enhanced in-season monitoring of nitrogen dynamics in vegetation.  

The use of simple regression models have been employed to predict plant nitrogen 

content, they often fall short due to multicollinearity in spectral data. The high correlation among 

spectral bands creates redundancies that basic models cannot resolve effectively (Liu & Li, 

2017). Advanced ML algorithms, capable of managing non-linear and complex relationships, 

provide a more accurate and reliable solution for nitrogen prediction.  

Numerous studies have applied ML models in conjunction with multispectral or 

hyperspectral data to predict N content in potato crops (Morier et al., 2015; Zheng et al., 2018; 

Peng et al., 2021a; Liu et al., 2022; Ye et al., 2024). Despite their promising results, these studies 

often face limitations due to small sample sizes and a narrow focus on widely cultivated 

commercial varieties. Broadening these models to include larger, more diverse potato 

populations would significantly enhance their generalizability and application.  This in turn will 

provide accurate measures of nitrogen use efficiency which usually requires larger population as 

opposed to few varieties that have been used previously for building this prediction models. Such 
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advancements could mirror successes seen in other crops, facilitating the development of new 

nitrogen-efficient potato clones (Yamashita et al., 2020; Li et al., 2023).  

Therefore, this study aims to explore the potential of multispectral data, collected at 

different growth stages using UAVs, to predict total plant N in a breeding program through the 

application of diverse machine learning (ML) models. The study is focused on diverse set of 

clones within the University of Minnesota (UMN) potato breeding program based on two 

primary market classes: chipping potatoes and fresh market potatoes  

4.2. Materials and Methods 

4.2.1 Plant materials and management 

In order to evaluate plant’s response to nitrogen, we trialed 45 clones at 4 different N levels in 

2022 and 2023 at the Sand Plains Research Farm in Becker, MN. A total of twenty-four and 

twenty-one advanced potato breeding clones of chippers and fresh market class respectively were 

trialed. The clones were evaluated in a row/column design with two replications. All plots 

contained 15 seed pieces with 30 cm in row spacing and 91 cm between rows.  

Most commonly grown varieties were also included as part of trialed clones, these includes 

Atlantic (Webb et al., 1978), Superior (Rieman, 1962), Lamoka (De Jong et al., 2017), Snowden, 

and Cascade for chips market. The fresh market clones include Red Pontiac, Red Lasoda, Red 

Norland (Johansen et al., 1959), Modoc, Chieftain (Weigle et al., 1968), Yukon Gold (Johnston 

and Rowberry, 1981).  

Four levels of nitrogen were applied at 0%, 33%, 66% and 100% of the total added at 252.17 

kg/ha for chips market and 0%, 33%, 66% and 100% of the total added at 218.54 kg/ha for fresh 

market with an initial 28 kg/ha preplant application.  The field management for irrigation, 
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pesticides and herbicides application followed routine practices across all treatments at the trial 

site (Jones et al., 2021; Stefaniak et al., 2021). The trials were established in May and harvested 

two weeks after vine kill in September of each year 

 

4.2.2 Sample data collection and phenotyping  

Excavation of single randomly sampled plant per plot excluding row-end plants was dug out 

before vine kill for vines (i.e., tissue attached to a whole plan above ground) and tuber collection. 

The vines from the whole plant were cut separate from tubers and collected into bags weighed as 

fresh vine weight (FVW) for determination of biomass and N concentration. Similarly, tubers 

were harvested from each plant and stored in meshed bags after cleaning off soil for biomass and 

N concentration. The tubers were then subsampled diced and weighed as fresh tuber weight 

(FTW) as part of the process for determination of dry matter and N concentration. 

We weighed vine and tubers samples after drying at 70 degrees Celsius for at least 72 hours as 

dry vine weight (DVW) and dry tuber weight (DTW) respectively. The dried samples were 

ground through a 1-mm sieve screen and were sent to the University of Minnesota Research 

Analytical Lab for determination of N concentration via combustion (Jones et al., 2021; “Total 

Nitrogen (Plant) | Research Analytical Laboratory,”) as NVINE and NTUBER.  

4.2.3 Estimation total plant N (TPN)  

The TPN trait is derived as a function of N concentration and dry matter which was calculated 

after harvest. First, we estimated dry matter percentage (DM) for both vine and tubers as dry 

weight divided by fresh weight (Table 1). The DM for vine was multiplied by wet weights and 

plant number per plot denoted as VINEDM and DM for tuber was multiplied by fresh total tuber 
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yield per plot (TTY) as TUBERDM. Nitrogen content of vine and tuber were obtained by 

multiplying the DM for each with N concentration as NCONVINE and NCONTUBER. The total 

plant N (TPN) is then the sum of both vine and tuber nitrogen content (Table 1). Total tuber 

yield (TTY) was measured on a tuber basis and summed over plots using an AccuVision Dual 

View L.E.D. Grader System from Exeter. All units of measurements were converted to metric 

systems accordingly for ease of estimation of TPN as presented in Table. 1.  

4.2.4 Multispectral data 

Multispectral reflectance data were captured in the summers of 2022 and 2023 for five 

different growth stages using an unmanned aerial vehicle (UAV) with a Sentera 6x multispectral 

and 6x thermal sensors (Sentera, St Paul, MN). The camera is equipped with high radiometric 

calibration tools for correction of lightening variation and to provide a consistent reflectance 

surface spanning both visible and near-infrared spectral bands. Raw multispectral reflectance 

mean value was obtained for five separate color bands (red = 650 nm, green = 545 nm, blue = 

445nm, NIR = 840 nm and RedEdge = 720 nm) per plot after image preprocessing and 

radiometric calibration from Sentera. Using the raw bands, eight different vegetation indices 

commonly used in potatoes (Alkhaled et al., 2023) were estimated, they include the Normalized 

Difference Vegetation Index (NDVI)(Rouse et al., 1974), Normalized Difference Red Edge 

(NDRE:)(Gitelson and Merzlyak, 1994a), Green Leaf Index (GLI), Chlorophyll Index Green 

(CIG), Green Normalized Difference Vegetation Index (GNDVI)(Gitelson and Merzlyak, 

1994b), Normalized Difference Water Index (NDWI)(McFeeters, 1994), Chlorophyll Index Red 

Edge (CIRE)(Gitelson et al., 2012), and Transformed Chlorophyll Absorption in Reflectance 

Index/ Optimized Soil-Adjusted Vegetation Index (TCARI/OSAVI)(Haboudane et al., 2010).  
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Five flight dates were used each summer based on estimated phenological growth stages 

including Canopy cover at 50%, Canopy cover closure, Peak Flowering, Peak flowering/ 

Biomass, Senescence (Table 2).  Obviously, the timing of phenological stage varies by genotype, 

N rate and market class, so an estimate was made for the whole field.    

4.2.5 Statistical analysis 

4.2.5.1 Trait distribution and BLUEs estimation   

The best linear unbiased estimates (BLUEs) for TPN and for all multispectral bands and 

indices with different N levels were computed using a spatial 2D spline model, implemented 

with SpATS (Rodríguez-Álvarez et al., 2018), within the StageWise package (Endelman, 2023) 

in R (“R Core Team,” 2022) based on two-stage approach as : 

   yijk = u + gi + rj + ck + eijk      (1) 

Where yijk is the response variable for the ith genotype in jth row and kth column, μ is the overall 

mean, gi is the fixed effect for the genotypic response, rj is the random row effect where rj  ~ N 

(0, 𝜎𝑟
2), ck is the random column effect where cj  ~ N (0, 𝜎𝑐

2), and eijk is the residual effect where 

eijk  ~ N (0, 𝜎𝑒
2). 

Using Pearson correlation coefficients, we looked at pairwise relationships between BLUEs for 

TPN and BLUEs for multispectral bands and indices across N rates and years. This was to 

identify spectral bands or indices most correlated with the TPN traits. 

4.2.5.2 Prediction of TPN with Machine learning models 

  To predict total plant nitrogen (TPN) based on multispectral bands and indices collected 

at various growth stages and their combinations across market classes, we implemented four 

machine learning (ML) models using the CARET R package (Kuhn, 2008): Ridge Regression 
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(RR) (Hoerl and Kennard, 1970), Random Forest Regression (RFR)(Breiman, 2001), Elastic 

Network Regression (ENR)(Zou and Hastie, 2005), and Regression Cubist Learner (RCL) 

(Birnbaum, 2014). These models were compared, and the best-performing model was selected 

for hyperparameter tuning and evaluation on the test set.  

The dataset was divided into 75% for training and 25% for testing. The training set was 

resampled using 10-fold cross-validation with 10 repetitions to optimize model performance. 

Once the best-performing model was identified, it was used to select significant predictor 

variables (bands and indices) based on feature importance scores intrinsic to the model. 

Predictors contributing at least 20% to the overall prediction were considered significant. 

For feature selection, the training data was further partitioned into an 80%-20% split. The larger 

subset was used to identify significant features, while the smaller subset was used to train a new 

model using only the selected predictors. This refined model was then evaluated on the initial 

test set.  

Prediction accuracy was measured using coefficient of determination (R2) as Pearson´s 

correlation between the predicted and observed values. 

4.3 Results 

4.3.1 Distribution and correlations of traits and multispectral variables 

The BLUEs for total plant nitrogen content (TPN) varied across N rates and years within 

the fresh market class and but were less variable within the chipping clones (Figure 1.). The 

same distribution was observed for all spectra bands and vegetation indices (Figure S1.) across 

the different growth stages, years and market class. Correlation of TPN with multispectral 

variables was low to moderate across different growth stages and market class. The correlation 
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of multispectral variables across growth stages and N rates ranged from -0.58 to 0.58 within the 

fresh market. Among the bands and indices, NIR and NDRE consistently exhibited the highest 

correlation values, as shown in Figures 2a and 2b. For chips, the correlation ranged from -0.66 to 

0.70 across different N rate levels. The red band and NDWI consistently demonstrated the 

highest correlation across growth stages, except for stage 5, within the bands and indices 

(Figures 3a and 3b). 

4.3.2 Evaluating prediction ability  

To predict total nitrogen at harvest from multispectral images taken at a series of growth 

stages using machine learning models, we separated our population into training and testing set 

for each growth stage and all combined stages. We evaluated prediction ability for each training 

set with four different regression model (Figure 4a and 4b). The distribution of prediction ability 

within the fresh market clones was 0.003 to 0.93 across all growth stages while combined stages 

performed better than each of the individual growth stages. The regression models performed 

similarly within each growth stage. In the combined stages ENR, RFR, and RCL outperformed 

RR, with RFR exhibiting the highest mean prediction ability of 0.56. The prediction abilities for 

the chipping clones were also highly variable but much lower (Figure 3b).  We did not observe 

the same positive effect of combining stages for the chips.  

4.3.3 Variable feature selection and prediction accuracy assessment 

To improve the prediction of total plant nitrogen (TPN), the best-performing regression model, 

after hyperparameter tuning, was used for feature selection within the training set. The feature 

variable retained were used to fit a new regression model, which was then applied to predict the 

test set (Table 3).  Prediction accuracy across individual growth stages within the fresh market 
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was relatively consistent but showed a notable improvement at the combined stage, achieving R2 

values of 0.53 for both the training and test sets. Features selected at each growth stage and the 

combined stage were used for final predictions respectively. The ENR model was primarily 

utilized for feature selection and final prediction in both the training and test sets, except for 

stage 5 and the combined stage, where Random Forest Regression (RFR) was used. 

For chipping clones, prediction accuracy remained consistently low across growth stages, even 

after feature selection. While the ENR model was used for both feature selection and final model 

fitting, it was outperformed by the Regression Cubist Learner (RCL) at the combined stage 

(Table 3). Notably, most of the selected multispectral features overlapped across growth stages 

and between market classes (Table S1a and S1b).   

4.4 Discussion 

Total plant nitrogen (TPN) in potato is a critical quantitative trait that directly influences the 

efficiency of nitrogen use in biomass accumulation. A more economical and timely 

quantification of TPN is essential for optimizing agronomic practices and supporting the 

breeding of cultivars with improved nitrogen use efficiency. 

In this study, we utilized high-throughput remote sensing data derived from UAV-based 

multispectral reflectance and vegetation indices as predictors for TPN. Using various machine 

learning models, we analyzed TPN prediction at individual phenological growth stages and 

combined stages. This approach allowed us to identify the reflectance bands and vegetation 

indices that contribute most significantly to TPN prediction, providing valuable insights for 

agronomic and breeding decision-making. 
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4.4.1 Using multispectral data for prediction of total plant N  

To model TPN prediction, we first examined its correlation with multispectral bands and 

vegetation indices across N rate treatments for both market classes. Our results revealed a 

moderate correlation between TPN and spectral bands, particularly for NIR within the fresh 

market class. Notably, the correlation values exhibited an upward trend as growth progressed, 

suggesting that spectral band values change with phenological changes. 

Vegetation indices showed stronger and more consistent correlations with TPN compared 

to individual spectral bands, indicating that certain indices are more closely related to TPN 

regardless of growth stage. These findings align with previous research that identified indices 

such as NDVI, GNDVI, and CIRE as significantly correlated with plant health, above-ground 

biomass, and total yield (Morier et al., 2015; Liu et al., 2022; Alkhaled et al., 2023; Kumar et al., 

2023).    

In predicting TPN using multispectral reflectance bands and vegetation indices, we 

observed comparable accuracy across individual growth stages with the different machine 

learning models employed. This suggests that the choice of model may not significantly 

influence prediction accuracy at individual stages. However, combining data from all growth 

stages resulted in notably improved TPN prediction within the fresh market class. This 

improvement highlights the value of leveraging a combined dataset that captures variability 

across growth stages, providing a more comprehensive representation of spectral features.  

Our findings are consistent with prior studies that employed a combination of spectral 

variables and diverse models to predict plant nitrogen content. For instance, Peng et al. (2021a), 

Li et al. (2023) and Ye et al. (2024) demonstrated improved prediction accuracy when using 
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combined datasets and models, including ensemble methods such as model stacking, for 

predicting plant nitrogen using multispectral reflectance and vegetation indices. 

Prediction of TPN within the chips market class remained consistently low across all 

individual growth stages and the combined stages. As in the fresh market class, the best-

performing models were utilized for feature variable selection and final model fitting on both 

training and testing datasets. Among these models, ENR demonstrated superior performance 

across individual growth stages, while RCL outperformed others for the combined stages. This 

result is not unexpected, given the limited variation observed in TPN and TDM within the chips 

market class, which likely constrained the models' predictive capabilities. Furthermore, the low 

prediction accuracy may also stem from reduced nitrogen uptake and inefficient nitrogen 

utilization, both of which are characteristic of this market class (Zvomuya et al., 2002; Ye et al., 

2024). 

 

4.4.2 Implications of selected multispectral features for predicting total plant N (TPN)  

Evaluating prediction models across growth stages highlighted the value of using the best-

performing models for feature selection, leading to potential improvements in prediction 

accuracy. The selected multispectral reflectance and vegetation indices varied across growth 

stages for both market classes, although there was significant overlap in key indices at specific 

stages. Notably, CIRE, NDRE, and NDVI consistently emerged as the most significant 

predictors across all growth stages and market classes, substantially enhancing prediction 

accuracy. These indices have been extensively validated in previous studies for their ability to 

estimate nutrient status in cereal crops, particularly wheat (Bai et al., 2019; Li et al., 2023).  
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The improved model accuracy observed in our results after feature selection aligns with 

findings from (Lebourgeois et al., 2012; Morier et al., 2015; Yamashita et al., 2020; Ye et al., 

2024) all of whom demonstrated the effectiveness of multispectral or hyperspectral indices in 

monitoring and predicting nitrogen status. This reinforces the importance of selecting optimal 

spectral features for precise TPN prediction. 

4.5 Conclusion 

This study demonstrated the potential of using remote sensing data for predicting and 

quantifying total plant nitrogen in potato across different growth stages with various machine 

learning models. It provided critical insights into the interaction between nitrogen dynamics and 

multispectral data, the significance of aggregated data across growth stages for improving 

prediction accuracy. The findings underscore the potential of integrating remote sensing data and 

machine learning models to optimize nitrogen inputs for agronomic decision-making and 

facilitate the breeding of nitrogen-efficient cultivars. While further validations are necessary to 

enable widespread adoption of these high-throughput procedures, this approach offers a 

promising alternative to the traditional, labor-intensive process of field sampling for TPN 

quantification. 
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Table 1: Total Plant Nitrogen and related traits measured 

Parameter Abbreviation formula 

Applied N (kg/ha) NLEVEL Weighing scale 

Fresh vine weight(g) FVW Weighing scale 

Dry vine weight(g) DVW Weighing scale 

Fresh tuber weight(g) FTW Weighing scale 

Dry tuber weight(g) DTW Weighing scale 

Total tuber fresh weight(mg/ha) TTY Grader  

Nitrogen concentration (%) 

NVINE lab analytical estimate 

NTUBER lab analytical estimate 

Dry matter  

VINEDM DVW/FVW 

TUBERDM (DTW/FTW) X TTY 

Nitrogen content (kg/ha) 

NCONVINE NVINE X VINEDM 

NCONTUBER NTUBER X TUBERDM 

Total Plant N (kg/ha) TPN NCONVINE + NCONTUBER 

Total dry matter (kg/ha) TDM VINEDM + TUBERDM 
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      Table 2: Timing of drone flights and number of clones evaluated for different N levels 

Class  

  

Evaluation Year  Total unique entries N rates (kg/ha) Growth stages/ 

Drone flight Dates 

Days after  

planting 

Chips market 2022 20 28 

96.37 

170.35 

252.17 

Canopy cover 50%: June 28 

Canopy cover flower: July 05 

Peak flowering: July 12 

Vine biomass: July 19 

Senescence: August 05 

36 

45 

52 

59 

76 

 2023 20 Canopy cover 50%: June 20 

Canopy cover flower: July 05 

Peak flowering: July 13 

Vine biomass: July 18 

Senescence: August 08 

30 

45 

53 

58 

79 

Fresh market 2022 20 28 

85.28 

128.16 

218.54 

Canopy cover 50%: June 28 

Canopy cover flower: July 05 

Peak flowering: July 12 

Vine biomass: July 19 

Senescence: August 05 

36 

45 

52 

59 

76 

 2023 20 Canopy cover 50%: June 20 

Canopy cover flower: July 05 

Peak flowering: July 13 

Vine biomass: July 18 

Senescence: August 08 

30 

45 

53 

58 

79 

 

 

Figure 1. Distribution of total plant N across years and different N application levels as a 

percentage of 197 kg/ha for fresh market and 230kg/ha for chips market 
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Figure 2a. Correlation of TPN with all multispectral bands across growth stages and N rates 

within the fresh market. 
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Figure 2b. Correlation of TPN with all indices across growth stages and N rates within the fresh 

market. 
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Figure 3a. Correlation of TPN with all multispectral bands across growth stages and N rates 

within chipping potatoes 
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Figure 3b. Correlation of TPN with all indices across growth stages and N rates within chipping 

potatoes 
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Figure 4a. Distribution of prediction ability for at different growth stages with multispectral 

bands and indices using different machine learning regression models within the fresh market 

class.  

RR Ridge Regression, ENR Elastic Network Regression, RFR Random Forest Regression and 

RCL Regression Cubist Learner.  
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Figure 4b. Distribution of prediction ability of TPN at different growth stages with multispectral 

bands and indices using different machine learning regression models within the chips market 

class.  

 

RR Ridge Regression, ENR Elastic Network Regression, RFR Random Forest Regression and 

RCL Regression Cubist Learner. 
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Table 3. Prediction accuracy in terms of coefficient of determination across growth stages with 

best performing models 

 Stage 1 

(R2) 

Stage 2 

(R2) 

Stage 3 

(R2) 

Stage 4 

(R2) 

Stage 5 

(R2) 

Combined 

(R2) 

Fresh market 

Training 0.26 0.45 0.22 0.44 0.33 0.53 

Testing 0.39 0.47 0.42 0.47 0.38 0.53 

model ENR ENR ENR ENR RFR RFR 

Chips market 

Training 0.10 0.17 0.20 0.18 0.13 0.15 

Testing 0.22 0.11 0.12 0.12 0.04 0.13 

model ENR ENR ENR ENR ENR RCL 

ENR Elastic Network Regression, RCL Regression Cubist Learner 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
99 

References 

Abdelhakim, L.O.A., B. Pleskačová, N.Y. Rodriguez-Granados, R. Sasidharan, L.S. Perez-

Borroto, et al. 2024. High Throughput Image-Based Phenotyping for Determining 

Morphological and Physiological Responses to Single and Combined Stresses in Potato. 

J Vis Exp (208). doi: 10.3791/66255. 

Agha, H.I., J.B. Endelman, J. Chitwood-Brown, M. Clough, J. Coombs, et al. 2024. Genotype-

by-environment interactions and local adaptation shape selection in the US National 

Chip Processing Trial. Theor Appl Genet 137(5): 99. doi: 10.1007/s00122-024-04610-3. 

Alkhaled, A., P.A. Townsend, and Y. Wang. 2023. Remote Sensing for Monitoring Potato 

Nitrogen Status. Am. J. Potato Res. 100(1): 1–14. doi: 10.1007/s12230-022-09898-9. 

Asano, K., and J.B. Endelman. 2023. Development of KASP markers for the potato virus Y 

resistance gene Rychc using whole-genome resequencing data. : 2023.12.20.572658. 

doi: 10.1101/2023.12.20.572658. 

Bai, Y., Y. Zhang, Y. Wang, Y. Liu, X. Zhang, et al. 2019. Using remote sensing to assess 

nitrogen status in wheat. Field Crops Research 240: 1–10. 

Beavis, W.D., and J.P.M. van Heerwaarden. 2017. Mapping QTLs: A comparison of methods. 

Molecular Genetics of Extracellular Plant Pathogens. Springer. p. xx–xx 

Birnbaum, L.A. 2014. Machine Learning Proceedings 1993: Proceedings of the Tenth 

International Conference on Machine Learning, University of Massachusetts, Amherst, 

June 27-29, 1993. Morgan Kaufmann. 

Bourke, P.M., R.E. Voorrips, R.G.F. Visser, and C. Maliepaard. 2018. Tools for Genetic Studies 

in Experimental Populations of Polyploids. Front Plant Sci 9. doi: 

10.3389/fpls.2018.00513. 

Bradshaw, J.E. 2017. Review and Analysis of Limitations in Ways to Improve Conventional 

Potato Breeding. Potato Res. 60(2): 171–193. doi: 10.1007/s11540-017-9346-z. 

Breiman, L. 2001. Random Forests. Machine Learning 45(1): 5–32. doi: 

10.1023/A:1010933404324. 

Caraza-Harter, M.V., and J.B. Endelman. 2020. Image-based phenotyping and genetic analysis 

of potato skin set and color. Crop Science 60(1): 202–210. doi: 10.1002/csc2.20093. 

Clot, C.R., C. Polzer, C. Prodhomme, C. Schuit, C.J.M. Engelen, et al. 2020. The origin and 

widespread occurrence of Sli-based self-compatibility in potato. Theor Appl Genet. doi: 

10.1007/s00122-020-03627-8. 



 
100 

Crossa, J., P. Pérez-Rodríguez, J. Cuevas, O. Montesinos-López, D. Jarquín, et al. 2017. 

Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in 

Plant Science 22(11): 961–975. doi: 10.1016/j.tplants.2017.08.011. 

De Jong, W.S., D.E. Halseth, R.L. Plaisted, X. Wang, K.L. Perry, et al. 2017. Lamoka, a Variety 

with Excellent Chip Color Out of Cold Storage and Resistance to the Golden Cyst 

Nematode. Am. J. Potato Res. 94(2): 148–152. doi: 10.1007/s12230-016-9557-x. 

D’hoop, B.B., M.J. Paulo, K. Kowitwanich, M. Sengers, R.G.F. Visser, et al. 2010. Population 

structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and 

Applied Genetics 121: 1151–1170. doi: 10.1007/s00122-010-1379-5. 

Eck, H.J. van, P.G. Vos, J.P.T. Valkonen, J.G.A.M.L. Uitdewilligen, H. Lensing, et al. 2017. 

Graphical genotyping as a method to map Ny (o,n)sto and Gpa5 using a reference panel 

of tetraploid potato cultivars. Theor Appl Genet 130(3): 515–528. doi: 10.1007/s00122-

016-2831-y. 

Endelman, J.B. 2023. Fully efficient, two-stage analysis of multi-environment trials with 

directional dominance and multi-trait genomic selection. Theor Appl Genet 136(4): 65. 

doi: 10.1007/s00122-023-04298-x. 

Endelman, J.B., C.A.S. Carley, P.C. Bethke, J.J. Coombs, M.E. Clough, et al. 2018. Genetic 

Variance Partitioning and Genome-Wide Prediction with Allele Dosage Information in 

Autotetraploid Potato. Genetics 209(1): 77–87. doi: 10.1534/genetics.118.300685. 

Endelman, J.B., M. Kante, H. Lindqvist-Kreuze, A. Kilian, L.M. Shannon, et al. 2024. Targeted 

genotyping-by-sequencing of potato and software for imputation. : 2024.02.12.579978. 

doi: 10.1101/2024.02.12.579978. 

Felcher, K.J., J.J. Coombs, A.N. Massa, C.N. Hansey, J.P. Hamilton, et al. 2012. Integration of 

Two Diploid Potato Linkage Maps with the Potato Genome Sequence. PLOS ONE 7(4): 

e36347. doi: 10.1371/journal.pone.0036347. 

Feldman, M.J., J. Park, N. Miller, C. Wakholi, K. Greene, et al. 2024. A scalable, low-cost 

phenotyping strategy to assess tuber size, shape, and the colorimetric features of tuber 

skin and flesh in potato breeding populations. The Plant Phenome Journal 7(1): e20099. 

doi: 10.1002/ppj2.20099. 

Freire, R., M. Weisweiler, R. Guerreiro, N. Baig, B. Hüttel, et al. 2021. Chromosome-scale 

reference genome assembly of a diploid potato clone derived from an elite variety. G3 

(Bethesda): jkab330. doi: 10.1093/g3journal/jkab330. 

Gitelson, A.A., S. Gritz, and M.N. Merzlyak. 2012. Chlorophyll content estimation in plant 

leaves using reflectance spectroscopy. Agronomy Journal 104(3): 721–727. doi: 

10.2134/agronj2011.0370. 



 
101 

Gitelson, A.A., and M.N. Merzlyak. 1994a. In vivo optical properties of higher plant leaves. 

Plant Physiology 104(3): 1019–1028. doi: 10.1104/pp.104.3.1019. 

Gitelson, A.A., and M.N. Merzlyak. 1994b. Remote sensing of chlorophyll a in higher plant 

leaves. Remote Sensing of Environment 50(3): 246–252. doi: 10.1016/0034-

4257(94)90026-9. 

Gutaker, R.M., C.L. Weiß, D. Ellis, N.L. Anglin, S. Knapp, et al. 2019. The origins and 

adaptation of European potatoes reconstructed from historical genomes. Nat Ecol Evol 

3(7): 1093–1101. doi: 10.1038/s41559-019-0921-3. 

Haboudane, D., C.A. Silva, D. Street, and P.J. Zarco-Tejada. 2010. Integrating remote sensing 

and crop growth models for irrigation management and yield forecasting. Field Crops 

Research 118: 150–162. doi: 10.1016/j.fcr.2010.06.007. 

Habyarimana, E., B. Parisi, and G. Mandolino. 2017. Genomic prediction for yields, processing 

and nutritional quality traits in cultivated potato (Solanum tuberosum L.). Plant 

Breeding 136(2): 245–252. doi: 10.1111/pbr.12461. 

Hardigan, M.A., F.P.E. Laimbeer, L. Newton, E. Crisovan, J.P. Hamilton, et al. 2017. Genome 

diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of 

domestication in the cultivated potato. Proc Natl Acad Sci U S A 114(46): E9999–

E10008. doi: 10.1073/pnas.1714380114. 

Haverkort, A.J., and A. Verhagen. 2008. Potato production in the world: A global perspective. 

In: Haverkort, A.J. and Verhagen, A., editors, Potato Biology and Biotechnology: 

Advances and Perspectives. Elsevier. p. 1–20 

Herrera, M. del R., L.J. Vidalon, J.D. Montenegro, C. Riccio, F. Guzman, et al. 2018. Molecular 

and genetic characterization of the Ryadg locus on chromosome XI from Andigena 

potatoes conferring extreme resistance to potato virus Y. Theor Appl Genet 131(9): 

1925–1938. doi: 10.1007/s00122-018-3123-5. 

Hoerl, A.E., and R.W. Kennard. 1970. Ridge Regression: Applications to Nonorthogonal 

Problems. Technometrics 12(1): 69–82. doi: 10.1080/00401706.1970.10488635. 

Hoopes, G., X. Meng, J.P. Hamilton, S.R. Achakkagari, F. de Alves Freitas Guesdes, et al. 2022. 

Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex 

genome, transcriptome, and predicted proteome landscape underpinning genetic 

diversity. Molecular Plant 15(3): 520–536. doi: 10.1016/j.molp.2022.01.003. 

Jansky, S. 2009. Chapter 2 - Breeding, Genetics, and Cultivar Development. In: Singh, J. and 

Kaur, L., editors, Advances in Potato Chemistry and Technology. Academic Press, San 

Diego. p. 27–62 

Jansky, S.H., and D.M. Spooner. 2018. The Evolution of Potato Breeding. Plant Breeding 

Reviews. John Wiley & Sons, Ltd. p. 169–214 



 
102 

Johansen, R.H., N. Sandar, W.G. Hoyman, and E.P. Lana. 1959. Norland a new red-skinned 

potato variety with early maturity and moderate resistance to common scab. American 

Potato Journal 36(1): 12–15. doi: 10.1007/BF02877209. 

Johnston, G.R., and R.G. Rowberry. 1981. Yukon Gold: A new yellow-fleshed, medium-early, 

high quality table and French-fry cultivar. American Potato Journal 58(5): 241–244. doi: 

10.1007/BF02853905. 

Jones, C.R., T.E. Michaels, C. Schmitz Carley, C.J. Rosen, and L.M. Shannon. 2021. Nitrogen 

uptake and utilization in advanced fresh-market red potato breeding lines. Crop Science 

61(2): 878–895. doi: 10.1002/csc2.20297. 

Kaiser, N.R., S. Jansky, J.J. Coombs, P. Collins, M. Alsahlany, et al. 2021. Assessing the 

Contribution of Sli to Self-Compatibility in North American Diploid Potato Germplasm 

Using KASPTM Markers. Am. J. Potato Res. doi: 10.1007/s12230-021-09821-8. 

Kloosterman, B., J.A. Abelenda, M. del M.C. Gomez, M. Oortwijn, J.M. de Boer, et al. 2013. 

Naturally occurring allele diversity allows potato cultivation in northern latitudes. 

Nature 495(7440): 246–250. doi: 10.1038/nature11912. 

Kraft, G.J., and W. Stites. 2003. Nitrate impacts on groundwater from irrigated-vegetable 

systems in a humid north-central US sand plain. Agriculture, Ecosystems & 

Environment 100(1): 63–74. doi: 10.1016/S0167-8809(03)00112-5. 

Kuhn, M. 2008. Building Predictive Models in R Using the caret Package. Journal of Statistical 

Software 28: 1–26. doi: 10.18637/jss.v028.i05. 

Kumar, C., P. Mubvumba, Y. Huang, J. Dhillon, and K. Reddy. 2023. Multi-Stage Corn Yield 

Prediction Using High-Resolution UAV Multispectral Data and Machine Learning 

Models. Agronomy 13(5): 1277. doi: 10.3390/agronomy13051277. 

Lebourgeois, V., A. Bégué, S. Labbé, M. Houlès, and J.F. Martiné. 2012. A light-weight multi-

spectral aerial imaging system for nitrogen crop monitoring. Precision Agric 13(5): 525–

541. doi: 10.1007/s11119-012-9262-9. 

Li, Z., X. Zhou, Q. Cheng, S. Fei, and Z. Chen. 2023. A Machine-Learning Model Based on the 

Fusion of Spectral and Textural Features from UAV Multi-Sensors to Analyse the Total 

Nitrogen Content in Winter Wheat. Remote Sensing 15(8): 2152. doi: 

10.3390/rs15082152. 

Liu, Y., H. Feng, J. Yue, X. Jin, Z. Li, et al. 2022. Estimation of potato above-ground biomass 

based on unmanned aerial vehicle red-green-blue images with different texture features 

and crop height. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.938216. 

Martins, V.S., M.H.M.L. Andrade, L.N. Padua, L.A. Miguel, C.C. Fernandes Filho, et al. 2023. 

Evaluating the impact of modeling the family effect for clonal selection in potato-

breeding programs. Front Plant Sci 14: 1253706. doi: 10.3389/fpls.2023.1253706. 



 
103 

McFeeters, S.K. 1994. Estimation of wetlands and open water using Landsat Thematic Mapper 

data. Photogrammetric Engineering and Remote Sensing 60(3): 281–289. doi: 

10.14358/PERS.60.3.281. 

Meade, F., S. Byrne, D. Griffin, C. Kennedy, F. Mesiti, et al. 2020. Rapid Development of 

KASP Markers for Disease Resistance Genes Using Pooled Whole-Genome 

Resequencing. Potato Res. 63(1): 57–73. doi: 10.1007/s11540-019-09428-x. 

Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction of Total Genetic Value 

Using Genome-Wide Dense Marker Maps. Genetics 157(4): 1819–1829. doi: 

10.1093/genetics/157.4.1819. 

Miller, M.D., C.A. Schmitz Carley, R.A. Figueroa, M.J. Feldman, D. Haagenson, et al. 2022. 

TubAR: an R Package for Quantifying Tuber Shape and Skin Traits from Images. Am. 

J. Potato Res. doi: 10.1007/s12230-022-09894-z. 

Montesinos-López, O.A., S. Ramos-Pulido, C.M. Hernández-Suárez, B.A. Mosqueda González, 

F.A. Valladares-Anguiano, et al. 2023. A novel method for genomic-enabled prediction 

of cultivars in new environments. Frontiers in Plant Science 14. 

https://www.frontiersin.org/articles/10.3389/fpls.2023.1218151 (accessed 25 July 2023). 

Morier, T., A.N. Cambouris, and K. Chokmani. 2015. In-Season Nitrogen Status Assessment and 

Yield Estimation Using Hyperspectral Vegetation Indices in a Potato Crop. Agronomy 

Journal 107(4): 1295–1309. doi: 10.2134/agronj14.0402. 

Neilson, J.A.D., A.M. Smith, L. Mesina, R. Vivian, S. Smienk, et al. 2021. Potato Tuber Shape 

Phenotyping Using RGB Imaging. Agronomy 11(9): 1781. doi: 

10.3390/agronomy11091781. 

Ortiz, R. 2020. Genomic-Led Potato Breeding for Increasing Genetic Gains: Achievements and 

Outlook. Crop Breeding, Genetics and Genomics 2(2). doi: 

https://doi.org/10.20900/cbgg20200010. 

Peng, J., K. Manevski, K. Kørup, R. Larsen, and M.N. Andersen. 2021a. Random forest 

regression results in accurate assessment of potato nitrogen status based on multispectral 

data from different platforms and the critical concentration approach. Field Crops 

Research 268: 108158. doi: 10.1016/j.fcr.2021.108158. 

Peng, J., H. Yu, X. Wu, Y. Chen, Y. Huang, et al. 2021b. Review of unmanned aerial vehicle 

(UAV) applications in agriculture: A geospatial perspective. Frontiers in Plant Science 

12: 674347. doi: 10.3389/fpls.2021.674347. 

Pham, G.M., J.P. Hamilton, J.C. Wood, J.T. Burke, H. Zhao, et al. 2020. Construction of a 

chromosome-scale long-read reference genome assembly for potato. GigaScience 9(9): 

giaa100. doi: 10.1093/gigascience/giaa100. 



 
104 

Prodhomme, C., D. Esselink, T. Borm, R.G.F. Visser, H.J. van Eck, et al. 2019. Comparative 

Subsequence Sets Analysis (CoSSA) is a robust approach to identify haplotype specific 

SNPs; mapping and pedigree analysis of a potato wart disease resistance gene Sen3. 

Plant Methods 15(1): 60. doi: 10.1186/s13007-019-0445-5. 

R Core Team. 2022. https://cran.r-project.org/mirrors.html (accessed 25 May 2023). 

Rieman, G.H. 1962. Superior: A new white, medium-maturing, scabresistant potato variety with 

high chipping quality. American Potato Journal 39(1): 19–28. doi: 

10.1007/BF02912628. 

Rodríguez-Álvarez, M.X., M.P. Boer, F.A. van Eeuwijk, and P.H.C. Eilers. 2018. Correcting for 

spatial heterogeneity in plant breeding experiments with P-splines. Spatial Statistics 23: 

52–71. doi: 10.1016/j.spasta.2017.10.003. 

Rosyara, U.R., W.S.D. Jong, D.S. Douches, and J.B. Endelman. 2016. Software for Genome-

Wide Association Studies in Autopolyploids and Its Application to Potato. The Plant 

Genome 9(2): plantgenome2015.08.0073. doi: 10.3835/plantgenome2015.08.0073. 

Rouse, J.W., R.H. Haas, D.W. Deering, J.A. Schell, and J.C. Harlan. 1974. Monitoring the 

Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. 

Silva, M.F. e, G.M. Maciel, R.B. Gallis, R.L. Barbosa, V.Q. Carneiro, et al. 2022. High-

throughput phenotyping by RGB and multispectral imaging analysis of genotypes in 

sweet corn. Hortic. Bras. 40: 92–98. doi: 10.1590/s0102-0536-2022012. 

Slater, A.T., N.O.I. Cogan, J.W. Forster, B.J. Hayes, and H.D. Daetwyler. 2016. Improving 

Genetic Gain with Genomic Selection in Autotetraploid Potato. The Plant Genome 9(3): 

plantgenome2016.02.0021. doi: https://doi.org/10.3835/plantgenome2016.02.0021. 

Slater, A.T., N.O.I. Cogan, B.C. Rodoni, H.D. Daetwyler, B.J. Hayes, et al. 2017. Breeding 

Differently—the Digital Revolution: High-Throughput Phenotyping and Genotyping. 

Potato Res. 60(3): 337–352. doi: 10.1007/s11540-018-9388-x. 

Slater, A.T., G.M. Wilson, N.O.I. Cogan, J.W. Forster, and B.J. Hayes. 2014. Improving the 

analysis of low heritability complex traits for enhanced genetic gain in potato. Theor 

Appl Genet 127(4): 809–820. doi: 10.1007/s00122-013-2258-7. 

Song, P., J. Wang, X. Guo, W. Yang, and C. Zhao. 2021. High-throughput phenotyping: 

Breaking through the bottleneck in future crop breeding. The Crop Journal 9(3): 633–

645. doi: 10.1016/j.cj.2021.03.015. 

Spooner, D.M., J. Núñez, G. Trujillo, M. del R. Herrera, F. Guzmán, et al. 2007. Extensive 

simple sequence repeat genotyping of potato landraces supports a major reevaluation of 

their gene pool structure and classification. PNAS 104(49): 19398–19403. doi: 

10.1073/pnas.0709796104. 



 
105 

Stefaniak, T.R., S. Fitzcollins, R. Figueroa, A.L. Thompson, C. Schmitz Carley, et al. 2021. 

Genotype and Variable Nitrogen Effects on Tuber Yield and Quality for Red Fresh 

Market Potatoes in Minnesota. Agronomy 11(2): 255. doi: 10.3390/agronomy11020255. 

Stich, B., and D. Van Inghelandt. 2018. Prospects and Potential Uses of Genomic Prediction of 

Key Performance Traits in Tetraploid Potato. Front. Plant Sci. 9. doi: 

10.3389/fpls.2018.00159. 

Total Nitrogen (Plant) | Research Analytical Laboratory. https://ral.cfans.umn.edu/total-nitrogen-

plant (accessed 24 December 2024). 

Uitdewilligen, J.G.A.M.L., A.-M.A. Wolters, B.B. D’hoop, T.J.A. Borm, R.G.F. Visser, et al. 

2013. A Next-Generation Sequencing Method for Genotyping-by-Sequencing of Highly 

Heterozygous Autotetraploid Potato. PLOS ONE 8(5): e62355. doi: 

10.1371/journal.pone.0062355. 

Vos, P.G., M.J. Paulo, R.E. Voorrips, R.G.F. Visser, and H.J. van Eck. 2017. Evaluation of LD 

decay and various LD-decay estimators in simulated and SNP-array data of tetraploid 

potato. Theoretical and Applied Genetics 130: 123–135. doi: 10.1007/s00122-016-2798-

8. 

Vos, P.G., J.G.A.M.L. Uitdewilligen, R.E. Voorrips, R.G.F. Visser, and H.J. van Eck. 2015. 

Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an 

insight into the breeding history. Theor Appl Genet 128(12): 2387–2401. doi: ros. 

Webb, R.E., D.R. Wilson, J.R. Shumaker, B. Graves, M.R. Henninger, et al. 1978. Atlantic: A 

new potato variety with high solids, good processing quality, and resistance to pests. 

American Potato Journal 55(3): 141–145. doi: 10.1007/BF02852087. 

Weigle, J.L., A.E. Kehr, R.V. Akeley, and J.C. Horton. 1968. Chieftain: A red-skinned potato 

with attractive appearance and broad adaptability. American Potato Journal 45(8): 293–

296. doi: 10.1007/BF02850285. 

Xu, X., S. Pan, S. Cheng, B. Zhang, D. Mu, et al. 2011. Genome sequence and analysis of the 

tuber crop potato. Nature 475(7355): 189–195. doi: 10.1038/nature10158. 

Xu, S., X. Xu, Q. Zhu, Y. Meng, G. Yang, et al. 2023. Monitoring leaf nitrogen content in rice 

based on information fusion of multi-sensor imagery from UAV. Precision Agric. doi: 

10.1007/s11119-023-10042-8. 

Yamashita, H., R. Sonobe, Y. Hirono, A. Morita, and T. Ikka. 2020. Dissection of hyperspectral 

reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine 

learning algorithms. Sci Rep 10(1): 17360. doi: 10.1038/s41598-020-73745-2. 

Ye, Y., L. Jin, C. Bian, J. Liu, and H. Guo. 2024. Monitoring and Optimization of Potato Growth 

Dynamics under Different Nitrogen Forms and Rates Using UAV RGB Imagery. 

Agronomy 14(10): 2257. doi: 10.3390/agronomy14102257. 



 
106 

Yusuf, M., M.D. Miller, T.R. Stefaniak, D. Haagenson, J.B. Endelman, et al. 2024. Genomic 

prediction for potato (Solanum tuberosum) quality traits improved through image 

analysis. The Plant Genome n/a(n/a): e20507. doi: 10.1002/tpg2.20507. 

Zhao, H., X. Liu, Y. Li, H. Zhang, and J. Yang. 2020. A review of optical sensors for the 

measurement of soil and plant nitrogen. Sensors 20(6): 1591. doi: 10.3390/s20061591. 

Zheng, H., T. Cheng, D. Li, X. Zhou, X. Yao, et al. 2018. Evaluation of RGB, Color-Infrared 

and Multispectral Images Acquired from Unmanned Aerial Systems for the Estimation 

of Nitrogen Accumulation in Rice. Remote Sensing 10(6): 824. doi: 

10.3390/rs10060824. 

Zou, H., and T. Hastie. 2005. Regularization and Variable Selection Via the Elastic Net. Journal 

of the Royal Statistical Society Series B: Statistical Methodology 67(2): 301–320. doi: 

10.1111/j.1467-9868.2005.00503.x. 

Zvomuya, F., C.J. Rosen, and J.C. Miller. 2002. Response of russet norkotah clonal selections to 

nitrogen fertilization. Amer J of Potato Res 79(4): 231–239. doi: 10.1007/BF02986355. 

 

  



 
107 

Appendix 

Chapter 2 Supplementary Material 

 

Table S1. Genotyping platforms with number clones 

 
Genotyping 

platform 

Source Number of clones Chips  Fresh 

market 

comments 
 

GeneSeek 31k array MN 
 

69 28 MN18 &MN19 
 

WI 
     

 
ND 

     

 
Checks 

     

sub total 
 

97 
    

DarTag  MN 
 

46 40 MN18 &MN19 
 

WI 
 

2 
 

WI17 
 

 
ND 

     

 
Checks 

 
1 

 
Atlantic 

 

sub total 
 

89 
    

Potato 8k array MN 
 

1 
 

MN 
 

 
WI 

 
11 

 
WI17 

 

 
ND 

  
7 

  

 
Checks 

 
4 6 

  

sub total 
 

29 
    

Total 
 

215 134 81 
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Table S2. Genomic estimated total genotypic values for all traits 

 

Clone id yield r2_yield sg r2_sg roundness r2_round 

Atlantic 352.6027 0.3077 1.0651 0.4638 0.9799 0.4605 

Cascade 299.7370 0.4577 1.0599 0.4772 0.9808 0.3255 

Lamoka 352.5297 0.4064 1.0645 0.3494 0.9793 0.3467 

MN04844 290.0172 0.4288 1.0616 0.4624 0.9807 0.3908 

MN18AF6643-

10 
330.4759 0.2915 1.0636 0.4492 0.9802 0.4275 

MN18AF6643-

12 
347.6976 0.3059 1.0639 0.4717 0.9800 0.4443 

MN18AF6643-

13 
341.1736 0.3338 1.0653 0.4772 0.9791 0.4718 

MN18AF6643-7 339.7308 0.2846 1.0650 0.4409 0.9790 0.4152 

MN18AF6643-9 343.9868 0.2797 1.0649 0.4465 0.9796 0.4246 

MN18AF6648-

10 
303.2741 0.3398 1.0638 0.4951 0.9787 0.4824 

MN18AF6648-

14 
322.4780 0.2926 1.0643 0.4296 0.9786 0.4080 

MN18AF6648-8 328.3541 0.3005 1.0638 0.4409 0.9789 0.4206 

MN18AF6648-9 322.0362 0.3084 1.0638 0.4522 0.9785 0.4367 

MN18AF6658-5 335.4880 0.3488 1.0639 0.4791 0.9799 0.4781 

MN18AF6661-2 329.5614 0.2616 1.0638 0.3923 0.9787 0.3727 

MN18AF6661-9 339.7131 0.3044 1.0640 0.4492 0.9805 0.4322 

MN18AF6675-2 345.7433 0.3133 1.0642 0.4664 0.9802 0.4447 

MN18AF6680-

12 
338.7286 0.2983 1.0650 0.4383 0.9795 0.4104 

MN18AF6680-8 334.2132 0.2769 1.0634 0.4315 0.9790 0.4071 

MN18AF6716-2 317.4708 0.3124 1.0635 0.4418 0.9790 0.4249 

MN18AF6717-

10 
340.6236 0.3338 1.0631 0.4664 0.9787 0.4442 

MN18AF6717-2 346.8972 0.3558 1.0638 0.4931 0.9789 0.4691 

MN18AF6717-3 333.6639 0.3408 1.0631 0.4815 0.9793 0.4532 

MN18AF6717-6 336.5675 0.3577 1.0629 0.4916 0.9793 0.4769 

MN18AF6717-7 319.4766 0.3209 1.0636 0.4309 0.9782 0.4047 

MN18AF6717-9 339.4855 0.3275 1.0636 0.4664 0.9786 0.4420 

MN18AF6718-1 328.5124 0.3292 1.0638 0.4596 0.9796 0.4194 

MN18AF6720-2 308.4202 0.3160 1.0639 0.4764 0.9796 0.4534 

MN18AF6722-2 326.4288 0.3060 1.0646 0.4625 0.9786 0.4488 

MN18AF6724-5 324.4300 0.3084 1.0642 0.4283 0.9784 0.4002 

MN18AF6724-8 318.2678 0.3072 1.0642 0.4243 0.9790 0.3931 

MN18AF6724-9 314.3965 0.2919 1.0643 0.4177 0.9790 0.3865 

MN18AF6725-1 329.0308 0.3178 1.0645 0.4215 0.9791 0.3945 
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MN18AF6725-2 326.9438 0.3008 1.0634 0.4409 0.9802 0.4156 

MN18AF6726-2 318.6541 0.3027 1.0634 0.4495 0.9802 0.4306 

MN18AF6726-4 335.8022 0.2902 1.0633 0.4400 0.9802 0.4240 

MN18AF6728-7 340.3972 0.3041 1.0639 0.4358 0.9800 0.4394 

MN18AF6729-1 310.7886 0.2733 1.0627 0.4044 0.9804 0.3876 

MN18AF6730-3 325.8182 0.3141 1.0626 0.4526 0.9808 0.4357 

MN18AF6730-5 336.4202 0.3123 1.0636 0.4541 0.9808 0.4488 

MN18AF6730-6 322.1080 0.3792 1.0635 0.6347 0.9792 0.6165 

MN18AF6734-1 315.5821 0.2966 1.0627 0.4452 0.9805 0.4232 

MN18AF6745-4 326.5467 0.2613 1.0641 0.4060 0.9797 0.3609 

MN18SR00045-

1 
379.5941 0.0961 1.0658 0.1048 0.9845 0.2471 

MN18SR00045-

3 
390.9099 0.0873 1.0663 0.0931 0.9822 0.2506 

MN18TX17730-

8 
376.4728 0.2259 1.0663 0.2261 0.9834 0.2152 

MN18TX17748-

1 
378.6157 0.3557 1.0637 0.3390 0.9818 0.3106 

MN18W17037-

19 
375.4862 0.3825 1.0654 0.3548 0.9860 0.3277 

MN18W17037-

2 
375.5263 0.3610 1.0657 0.3315 0.9851 0.3029 

MN18W17037-

21 
342.9566 0.4772 1.0669 0.4247 0.9840 0.4046 

MN18W17037-

24 
374.0852 0.4088 1.0685 0.3831 0.9834 0.3348 

MN18W17037-

26 
329.5604 0.5017 1.0673 0.4436 0.9841 0.4323 

MN18W17037-

27 
357.6144 0.4639 1.0672 0.3828 0.9834 0.3900 

MN18W17037-

32 
433.4639 0.3402 1.0634 0.3260 0.9823 0.2813 

MN18W17037-

34 
375.1383 0.5179 1.0678 0.4271 0.9830 0.4524 

MN18W17037-

36 
368.6880 0.3774 1.0668 0.3533 0.9859 0.3366 

MN18W17037-

9 
334.0638 0.2941 1.0635 0.4474 0.9798 0.4339 

MN18W17039-

1 
374.4905 0.4036 1.0686 0.3766 0.9829 0.3587 

MN18W17039-

12 
338.8337 0.2860 1.0641 0.4211 0.9802 0.4033 

MN18W17039-

13 
326.3960 0.2795 1.0638 0.4296 0.9797 0.4156 

MN18W17039-

27 
378.3293 0.3961 1.0704 0.3772 0.9852 0.3507 

MN18W17039-

5 
401.3807 0.5431 1.0713 0.4637 0.9847 0.4660 

MN18W17043-

11 
406.6943 0.3362 1.0674 0.3046 0.9839 0.2694 
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MN18W17043-

12 
467.8000 0.4826 1.0703 0.4043 0.9830 0.4280 

MN18W17043-

14 
349.8619 0.2756 1.0640 0.4165 0.9797 0.3760 

MN18W17043-

17 
333.1699 0.3478 1.0640 0.4670 0.9805 0.4618 

MN18W17043-

2 
384.6600 0.4871 1.0709 0.4187 0.9842 0.4561 

MN18W17043-

3 
372.0544 0.4630 1.0691 0.4282 0.9856 0.4209 

MN18W17043-

6 
409.3341 0.4921 1.0686 0.4172 0.9836 0.4499 

MN18W17043-

7 
435.0984 0.3683 1.0684 0.3414 0.9827 0.3180 

MN18W17043-

8 
442.1413 0.3187 1.0647 0.2955 0.9830 0.0951 

MN18W17052-

15 
315.8313 0.4238 1.0686 0.4047 0.9874 0.3217 

MN18W17052-

4 
378.5668 0.5256 1.0729 0.4580 0.9861 0.4905 

MN18W17052-

6 
369.7262 0.5169 1.0708 0.4328 0.9850 0.4562 

MN18W17055-

4 
325.1040 0.4507 1.0668 0.4220 0.9873 0.3866 

MN18W17057-

1 
315.0761 0.4200 1.0686 0.3949 0.9860 0.3838 

MN18W17057-

3 
327.7788 0.4537 1.0670 0.4226 0.9873 0.3865 

MN18W17057-

5 
342.2037 0.4655 1.0670 0.3392 0.9841 0.3873 

MN18W17065-

5 
370.1792 0.3058 1.0650 0.2806 0.9822 0.2119 

MN18W17065-

7 
325.2802 0.2920 1.0633 0.4471 0.9793 0.4282 

MN18W17092-

7 
331.5089 0.2918 1.0641 0.4465 0.9803 0.4042 

MN19AF6866-1 330.8516 0.4141 1.0656 0.3757 0.9821 0.3768 

MN19AF6866-

10 
331.9578 0.3763 1.0659 0.4175 0.9828 0.3875 

MN19AF6866-

11 
335.0376 0.4333 1.0658 0.4353 0.9832 0.4059 

MN19AF6866-

13 
332.6610 0.3734 1.0658 0.4222 0.9827 0.3952 

MN19AF6866-

14 
337.6635 0.4400 1.0658 0.4406 0.9831 0.4134 

MN19AF6866-4 316.7852 0.3054 1.0670 0.3603 0.9834 0.3445 

MN19AF6867-3 350.7831 0.3724 1.0669 0.3318 0.9797 0.2576 

MN19AF6869-

12 
335.5019 0.3228 1.0658 0.3423 0.9854 0.2963 

MN19AF6869-

19 
307.4652 0.3168 1.0668 0.3382 0.9839 0.2848 

MN19AF6869-

20 
336.1118 0.2333 1.0656 0.2499 0.9844 0.2110 
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MN19AF6869-

21 
321.9578 0.3329 1.0655 0.3457 0.9847 0.3003 

MN19AF6869-5 324.8727 0.3120 1.0657 0.3353 0.9846 0.2862 

MN19AF6869-6 304.2740 0.3473 1.0663 0.3644 0.9843 0.2414 

MN19AF6869-7 324.9331 0.4364 1.0673 0.4020 0.9852 0.3922 

MN19AF6892-

10 
383.4704 0.3051 1.0691 0.3165 0.9831 0.2712 

MN19AF6892-2 365.7489 0.3076 1.0693 0.3259 0.9843 0.2804 

MN19AF6892-9 392.1779 0.4010 1.0706 0.3768 0.9829 0.3601 

MN19TX18010-

1 
380.6668 0.2659 1.0643 0.2921 0.9822 0.2428 

MN19TX18014-

1 
321.7702 0.2534 1.0650 0.2604 0.9832 0.2150 

MN19TX18014-

4 
345.8491 0.2321 1.0655 0.2421 0.9835 0.0922 

MN19TX18031-

1 
390.7593 0.2494 1.0649 0.2805 0.9826 0.2337 

MN19TX18032-

1 
360.9490 0.4203 1.0632 0.3887 0.9833 0.3933 

MN19TX18032-

10 
328.1835 0.4138 1.0615 0.3869 0.9832 0.3935 

MN19TX18032-

5 
378.6297 0.4040 1.0630 0.3771 0.9832 0.3779 

MN19TX18032-

6 
363.2698 0.2862 1.0622 0.3065 0.9828 0.2730 

MN19TX18032-

9 
376.0473 0.3176 1.0630 0.3344 0.9830 0.2965 

MN19TX18054-

2 
369.5377 0.3291 1.0647 0.3112 0.9824 0.2943 

MN19TX18093-

1 
499.7458 0.3897 1.0662 0.3590 0.9810 0.3493 

MN19TX18120-

1 
377.6338 0.3216 1.0661 0.3008 0.9827 0.3096 

MN19TX18171-

1 
366.8509 0.2075 1.0653 0.2170 0.9820 0.1825 

MN19TX18171-

6 
369.2321 0.2156 1.0653 0.2378 0.9814 0.1940 

MN19TX18188-

1 
341.0656 0.3916 1.0607 0.3706 0.9833 0.3614 

MN19TX18211-

1 
414.5654 0.3414 1.0648 0.3354 0.9814 0.3227 

MN19TX18212-

7 
375.1944 0.3729 1.0628 0.3429 0.9826 0.3299 

MN19TX18212-

8 
403.6396 0.2748 1.0639 0.2940 0.9829 0.2433 

MN19TX18260-

1 
371.8141 0.3529 1.0674 0.3075 0.9829 0.3168 

MN19TX18280-

2 
396.7872 0.4044 1.0638 0.3849 0.9815 0.3168 

MN19TX18304-

1 
447.0289 0.3769 1.0659 0.3319 0.9799 0.3358 

Snowden 364.7682 0.3260 1.0661 0.2927 0.9819 0.2844 
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Superior 296.4383 0.4617 1.0609 0.4765 0.9808 0.3917 

W17037-3 368.7165 0.2935 1.0671 0.2793 0.9834 0.2427 

W17039-31 342.5609 0.2857 1.0642 0.4385 0.9800 0.4084 

W17039-7 416.4603 0.3379 1.0687 0.3167 0.9832 0.2873 

W17043-37 346.0288 0.3145 1.0642 0.4922 0.9801 0.4654 

W17049-10 399.1712 0.2211 1.0666 0.2171 0.9814 0.1777 

W17060-22 406.9902 0.3418 1.0690 0.3197 0.9835 0.2867 

W17065-21 367.2267 0.2238 1.0663 0.2171 0.9824 0.1720 

W17066-11 375.0221 0.2817 1.0657 0.2672 0.9820 0.1596 

W17066-34 379.9569 0.2943 1.0665 0.2834 0.9825 0.2169 

W17067-1 413.3053 0.2465 1.0685 0.2378 0.9824 0.1983 

W17067-13 395.6945 0.2041 1.0672 0.1986 0.9825 0.1613 

W17AF6670-1 399.6870 0.2413 1.0682 0.2339 0.9812 0.1970 

W17AF6685-2 386.1900 0.2119 1.0656 0.2047 0.9813 0.1682 

 

 

Table S3. List of clones based on selection index with equal weights 
Clone ID value rank 

MN18W17052-4 1.46465093 1 

MN18W17043-12 1.46383934 2 

MN18W17039-5 1.46330839 3 

MN18W17039-27 1.46228449 4 

MN18W17043-2 1.46209292 5 

MN18W17052-6 1.46206908 6 

MN18W17043-3 1.46146164 7 

W17060-22 1.46116807 8 

MN18W17043-7 1.46116406 9 

MN19AF6892-9 1.46116139 10 

W17039-7 1.46105178 11 

MN18W17043-6 1.46103515 12 

MN19TX18093-1 1.46079365 13 

MN19AF6892-2 1.46039004 14 

MN18W17043-11 1.46036571 15 

MN18W17052-15 1.46033421 16 

W17067-1 1.46019074 17 

MN19AF6892-10 1.46006016 18 

MN18W17037-36 1.46002237 19 

MN18W17057-3 1.45963456 20 

MN18W17037-24 1.45948549 21 

MN18W17055-4 1.45943931 22 
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MN18W17037-19 1.45937294 23 

MN18W17057-1 1.45927897 24 

MN18W17039-1 1.45920063 25 

MN18W17043-8 1.45919614 26 

MN18W17037-2 1.45897367 27 

W17067-13 1.45875334 28 

MN18W17037-34 1.45874611 29 

MN18SR00045-1 1.45871364 30 

W17AF6670-1 1.45862252 31 

W17037-3 1.45834039 32 

MN19TX18260-1 1.45831525 33 

MN19AF6869-7 1.4581878 34 

MN18TX17730-8 1.45808172 35 

MN18W17037-27 1.45799793 36 

MN19TX18304-1 1.45786875 37 

MN18W17057-5 1.45784468 38 

MN19AF6869-12 1.45779939 39 

MN18SR00045-3 1.45775986 40 

W17049-10 1.4576769 41 

MN18W17037-21 1.45765687 42 

W17066-34 1.45765584 43 

MN18W17037-26 1.45754367 44 

MN19TX18120-1 1.45749881 45 

MN18W17037-32 1.45749654 46 

MN19TX18212-8 1.45714931 47 

MN19TX18031-1 1.45708822 48 

W17065-21 1.4570383 49 

MN19TX18211-1 1.45702741 50 

MN19AF6869-20 1.45689739 51 

MN19AF6869-5 1.45665616 52 

W17066-11 1.45664068 53 

MN19TX18014-4 1.45653408 54 

MN19AF6869-21 1.45646722 55 

Snowden 1.45645185 56 

W17AF6685-2 1.45644648 57 

MN19AF6866-4 1.45638101 58 

MN19AF6869-19 1.45623858 59 

MN18W17065-5 1.45615892 60 

MN19AF6866-14 1.45612599 61 
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MN19AF6869-6 1.45608182 62 

MN19TX18010-1 1.45606777 63 

MN19TX18054-2 1.45606754 64 

MN19AF6866-11 1.45606577 65 

MN19TX18171-1 1.45605526 66 

MN19TX18032-5 1.45580681 67 

MN19AF6866-10 1.45576816 68 

MN19TX18280-2 1.45576289 69 

MN19TX18171-6 1.45567924 70 

MN19AF6866-13 1.45565102 71 

MN19TX18032-9 1.45562024 72 

MN19TX18032-1 1.45539668 73 

MN18TX17748-1 1.45525805 74 

MN19TX18212-7 1.45514785 75 

MN19TX18014-1 1.4550591 76 

MN19AF6866-1 1.45501732 77 

MN19AF6867-3 1.45481967 78 

MN19TX18032-6 1.45450426 79 

Atlantic 1.45376317 80 

MN18AF6675-2 1.45319575 81 

MN18AF6643-9 1.45316861 82 

W17043-37 1.45313059 83 

MN18AF6661-9 1.45307414 84 

MN19TX18188-1 1.45298512 85 

Lamoka 1.45298415 86 

MN19TX18032-

10 

1.45297089 87 

MN18AF6680-12 1.45295537 88 

MN18AF6643-13 1.45293267 89 

W17039-31 1.45292032 90 

MN18AF6730-5 1.45290005 91 

MN18AF6643-12 1.45287289 92 

MN18W17039-12 1.45286812 93 

MN18W17043-14 1.45285264 94 

MN18W17043-17 1.45279104 95 

MN18AF6728-7 1.45268925 96 

MN18W17092-7 1.4526169 97 

MN18AF6643-7 1.45255801 98 

MN18AF6658-5 1.45239354 99 

MN18AF6726-4 1.452228 100 



 
115 

MN18AF6643-10 1.4521977 101 

MN18AF6745-4 1.45203519 102 

MN18W17037-9 1.45201537 103 

MN18AF6717-2 1.45199933 104 

MN18AF6725-1 1.45195791 105 

MN18AF6725-2 1.45190636 106 

MN18AF6730-3 1.45186544 107 

MN18AF6718-1 1.45185286 108 

MN18W17039-13 1.45184796 109 

MN18AF6726-2 1.45166095 110 

MN18AF6722-2 1.45149341 111 

MN18AF6717-9 1.45139763 112 

MN18AF6648-8 1.45137337 113 

MN18AF6717-3 1.4513675 114 

MN18AF6717-6 1.45132372 115 

MN18AF6680-8 1.45130905 116 

MN18AF6734-1 1.45130114 117 

MN18AF6724-8 1.45127745 118 

MN18AF6661-2 1.45122129 119 

MN18AF6648-14 1.45121612 120 

MN18AF6724-9 1.45120903 121 

MN18AF6720-2 1.45117485 122 

MN18AF6717-10 1.45116404 123 

MN18W17065-7 1.45113779 124 

MN18AF6730-6 1.45110267 125 

MN18AF6724-5 1.45107714 126 

MN18AF6729-1 1.45107264 127 

MN18AF6716-2 1.45080297 128 

MN18AF6648-9 1.45077689 129 

MN18AF6717-7 1.45033426 130 

MN18AF6648-10 1.45024051 131 

MN04844 1.44979686 132 

Superior 1.44963539 133 

Cascade 1.44906224 134 
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Table S4. List of clones based on selection index with different weights  
Clone ID value rank 

MN18W17052-4 1.466167 1 

MN18W17043-12 1.46613043 2 

MN18W17039-5 1.4649907 3 

MN18W17043-2 1.46367224 4 

MN18W17039-27 1.46358748 5 

MN18W17052-6 1.46340682 6 

MN19TX18093-1 1.4630715 7 

MN18W17043-7 1.46300534 8 

MN19AF6892-9 1.4629385 9 

W17060-22 1.46275515 10 

W17039-7 1.46270609 11 

MN18W17043-6 1.4625804 12 

MN18W17043-3 1.46248257 13 

W17067-1 1.46192465 14 

MN18W17043-11 1.46168284 15 

MN19AF6892-2 1.46157987 16 

MN19AF6892-10 1.46154204 17 

MN18W17037-24 1.46077769 18 

MN18W17037-36 1.46065964 19 

MN18W17052-15 1.46060754 20 

MN18W17039-1 1.46056995 21 

MN18W17043-8 1.46054641 22 

W17AF6670-1 1.46038327 23 

W17067-13 1.4601644 24 

MN18W17037-34 1.46001077 25 

MN18W17037-19 1.45986831 26 

MN19TX18304-1 1.45986794 27 

MN18W17057-3 1.4597972 28 

MN18W17057-1 1.45976095 29 

MN18W17037-2 1.45965237 30 

MN18W17055-4 1.45956181 31 

MN19TX18260-1 1.45951924 32 

MN18SR00045-1 1.45950768 33 

W17037-3 1.45940278 34 

W17049-10 1.45918614 35 

MN18TX17730-8 1.45908694 36 

MN18SR00045-3 1.45906941 37 
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MN18W17037-27 1.45898312 38 

W17066-34 1.45885529 39 

MN18W17037-32 1.458708 40 

MN19AF6869-7 1.45867947 41 

MN19TX18120-1 1.4585871 42 

MN18W17057-5 1.4585843 43 

MN19TX18211-1 1.45842533 44 

MN18W17037-21 1.4584087 45 

MN18W17037-26 1.458232 46 

MN19AF6869-12 1.45814273 47 

MN19TX18031-1 1.45813951 48 

W17065-21 1.45812558 49 

MN19TX18212-8 1.45812024 50 

W17066-11 1.4577625 51 

W17AF6685-2 1.45773618 52 

Snowden 1.45757386 53 

MN19AF6869-20 1.45737117 54 

MN19TX18014-4 1.4571809 55 

MN18W17065-5 1.45712474 56 

MN19TX18171-1 1.45707247 57 

MN19AF6866-4 1.45704687 58 

MN19AF6869-5 1.45702449 59 

MN19TX18010-1 1.45701805 60 

MN19TX18054-2 1.45696033 61 

MN19TX18280-2 1.45687033 62 

MN19AF6866-14 1.45683113 63 

MN19TX18171-6 1.45680719 64 

MN19AF6869-21 1.45676976 65 

MN19AF6866-11 1.45673272 66 

MN19AF6869-19 1.45673091 67 

MN19AF6866-10 1.45648468 68 

MN19TX18032-5 1.45642469 69 

MN19AF6869-6 1.45641318 70 

MN19AF6866-13 1.45637639 71 

MN19AF6867-3 1.45625763 72 

MN19TX18032-9 1.45623565 73 

MN18TX17748-1 1.45616005 74 

MN19TX18032-1 1.45590003 75 

MN19TX18212-7 1.45578268 76 
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MN19AF6866-1 1.45577777 77 

MN19TX18014-1 1.45551649 78 

MN19TX18032-6 1.45495158 79 

Atlantic 1.45495058 80 

MN18AF6643-9 1.45431023 81 

MN18AF6643-13 1.45418283 82 

Lamoka 1.45418134 83 

MN18AF6675-2 1.45416968 84 

W17043-37 1.45410655 85 

MN18AF6680-12 1.45409577 86 

MN18AF6661-9 1.45392051 87 

MN18W17043-14 1.45390756 88 

W17039-31 1.45388778 89 

MN18AF6643-12 1.45384578 90 

MN18W17039-12 1.45378677 91 

MN18AF6643-7 1.45377187 92 

MN18AF6730-5 1.45363031 93 

MN18AF6728-7 1.45360438 94 

MN18W17043-17 1.45360275 95 

MN18W17092-7 1.45345125 96 

MN18AF6658-5 1.45329691 97 

MN18AF6717-2 1.45312639 98 

MN18AF6726-4 1.45301307 99 

MN18AF6725-1 1.45301032 100 

MN19TX18188-1 1.45300336 101 

MN19TX18032-

10 

1.45300039 102 

MN18AF6643-10 1.45297679 103 

MN18AF6745-4 1.45292729 104 

MN18W17037-9 1.45285375 105 

MN18AF6718-1 1.45272236 106 

MN18W17039-13 1.45269881 107 

MN18AF6725-2 1.45262877 108 

MN18AF6722-2 1.45261178 109 

MN18AF6717-9 1.45248309 110 

MN18AF6730-3 1.45238409 111 

MN18AF6648-8 1.45235335 112 

MN18AF6726-2 1.45232079 113 

MN18AF6648-14 1.45226088 114 

MN18AF6680-8 1.4522592 115 



 
119 

MN18AF6661-2 1.45224521 116 

MN18AF6717-3 1.45223843 117 

MN18AF6724-8 1.45221878 118 

MN18AF6717-6 1.45217849 119 

MN18AF6717-10 1.45217502 120 

MN18AF6724-5 1.45214907 121 

MN18AF6724-9 1.45213316 122 

MN18W17065-7 1.45196608 123 

MN18AF6730-6 1.4519422 124 

MN18AF6720-2 1.45192356 125 

MN18AF6734-1 1.45180076 126 

MN18AF6648-9 1.45175531 127 

MN18AF6716-2 1.45164943 128 

MN18AF6729-1 1.45154686 129 

MN18AF6717-7 1.45131264 130 

MN18AF6648-10 1.4510504 131 

MN04844 1.44992127 132 

Superior 1.44971015 133 

Cascade 1.44901502 134 

 

 
Figure S1: Distribution of all phenotypic traits A) Fresh market B) Chips. 
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Chapter 3 Supplementary Material 

 

Table S1. Spectral variable features based on combined stages (1-5) versus selected stages 

Features 

(Bands and Indices) 

Combined stages 

(65) 

Simulation annealing  

(SA, 26) 

Selection by filtering  

(SF, 46) 

Red 1,2,3,4,5 2,3,4 1,4 

Green 1,2,3,4,5 2,4 1,2,3,4,5 

Blue 1,2,3,4,5 2,3,4,5 1,4,5 

NIR 1,2,3,4,5 2 1,2,3,4 

Red Edge 1,2,3,4,5 2,3 1,2,3,4 

NDVI 1,2,3,4,5 3 1,2,3,4,5 

GNDVI 1,2,3,4,5 3,4,5 2,3 

NDRE 1,2,3,4,5 1,4,5 1,2,3,4,5 

CIRE 1,2,3,4,5 1 1,2,3,4,5 

CIG 1,2,3,4,5 1 2,4 

GLI 1,2,3,4,5 5 2,3,4,5 

NDWI 1,2,3,4,5 2,4 2,3 

TCARI.OSAVI 1,2,3,4,5 4 1,2,5 

 

 

 

 



 
121 

 

Figure S1. Broad-sense heritability of multispectral bands and indices within the chips market 

 

 

Figure S2. Broad-sense heritability of multispectral bands and indices within the fresh market 
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Figure S3. Prediction ability for traits within the chips market clones across growth stages using 

multispectral bands and Indices  
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Figure S4. Prediction ability for traits within the fresh market clones across growth stages using 

multispectral bands and Indices  

 
Figure S5. Prediction ability for 2022 using 2023 within the chips market clones across growth 

stages using multispectral bands and Indices  
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Chapter 4 Supplementary Material 

 

Table S1a. Significant variable features across growth stages fresh market 

Features 

(Bands and Indices) 

Stage 

1 

Stage 2 Stage 3 Stage 4 Stage 5 Combined stages 

Red √  √ 
   

3,5 

Green √  √    
   

Blue √ √  
   

2,3,5 

NIR 
  

√  √  
 

3,4 

Red Edge √ √  
 

√  
 

1 

NDVI √  
  

√  √ 
 

GNDVI √  
   

√ 
 

NDRE √ √  √ 
 

√ 
 

CIRE √  √   √  
 

√ 
 

CIG √  √   
  

√ 2 

GLI 
 

√ √  √ √ 
 

NDWI √  
     

TCARI.OSAVI 
    

√ 3 

 

Table S1b. Significant variable features across growth stages for chips market 

Features 

(Bands and Indices) 

Stage1 Stage 2 Stage 3 Stage 4 Stage 5 Combined stages 

Red 
    

√ 
 

Green √  
 

√  √ √ 
 

Blue 
  

√ √ √ 
 

NIR √ √ √  √ √ √ 

Red Edge 
  

√ √ √ √ 

NDVI √ √ 
 

√ √ 
 

GNDVI √ √ 
   

√ 

NDRE √ 
 

√ √ 
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CIRE √   √ 
   

CIG 
 

  √ 
 

√ 
 

GLI √ √ 
 

√ 
  

NDWI 
 

√ 
    

TCARI.OSAVI 
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