
Nodal excitations in superconductors: 
insight from symmetry and topology
Daniel F. Agterberg, University of Wisconsin – Milwaukee 

Philip Brydon (Otago), David Abergel, Hyunsoo Kim, (Maryland)  Johnpierre Paglione 
(Maryland), Carsten Timm (TU Dresden), Andreas Schnyder (MPI-Stuttgart), Kefeng Wang 
(Maryland), Liming Wang (Maryland), Mike Weinert (UWM), Victor Yakovenko (Maryland), 
Mark Fischer (ETH), Manfred Sigrist (ETH), Aline Ramires (MPI-Dresden)

NSF DMREF-1335215, PRL 116, 177001, PRL 118, 127001, PRB 96, 094526 
(2017), PRB 98, 224508 (2018), Science Advances, 4 eaao4513 (2018), PRB 99, 

214503 (2018), PRL 121, 157003 (2018) 

1- Motivation
2- Review of “classical” single-band case: nodes from group theory
3- Topological nodal classification based on superconducting symmetries
4- Surprise from classification: Bogoliubov Fermi surfaces
5- Bogoliubov Fermi surfaces:  materials, microscropic description, and 

topological protection.



Nodal superconductors: 
similarities to nodal-metals

Protected by “sub-lattice” aka chiral symmetry
(Ryu and Hatsugai PRL 89, 077002, 2002)

Chiral symmetry gives “flat-band” edge states (true 
in d-wave SC as well)

Graphene:



Basic Superconductivity
• Fermi sea unstable to formation of Cooper Pairs

• To ensure that the states k and –k are both on the Fermi 
surface requires symmetries: I or T

• Note that antiunitary (IT)2=-1 and takes k to k, this 
ensures 2-fold degeneracy at each k (pseudospin).



ARPES: cuprates

Z.X. Shen



Cuprates-Thermodynamics
London penetration depth

YBa2Cu3O7

Hardy et al.

Low temperature 
behavior reveals 
low energy 
excitations

In many lower Tc superconductors, nodes are identified this way.

Thermal conductivity: Sr2RuO4
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Tanatar, PRL (2001), Hassinger, PRX (2017)

d-wave like



Single Band Cooper Pairing

Even parity, spin singlet:
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Parametrization of the gap function ∆k,ss’

Pseudospin: Kramers degenerate fermions with same k: | , , | , | ,k IT k k↑〉 ↑〉 ≡ ↓〉



Origin of Gap Structures: Group Theory
Point group:   D4h

Γ E         C2 2C4             2C2’ 2C2’’

A1 1          1           1            1            1

A2 1          1           1           -1           -1

B1 1          1          -1            1           -1

B2 1         1           -1           -1            1

E        2         -2           0            0             0 

Character table for D4

D4h  contains inversion
even and odd
representations

C2’’

Even parity labelled with g (pseudo-spin singlet)
Odd parity labelled with u (pseudo-spin triplet)

d-wave



Example of a tetragonal crystal with spin orbit coupling
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Point group:   D4h
4 one-dim., 1 two-dim. representation
even (g) / odd (u) parity

Conventional:  A1g Unconventional:  everything else

only one representation is relevant for the superconducting phase transition



Excitation Spectrum: Single Band

built in charge conjugation C symmetry
(always present even with more bands) 

Gor’kov and Volovik (1986), Rice, Sigrist and Ueda (1991).

Even parity

Odd parity

Anti-unitary



Excitation spectrum 

If ψ(k) vanishes on a  line in k-space, get point nodes.
If ψ(k) vanishes on a  plane in k-space, get line nodes.

Means k is on Fermi surface

For nodes

This offers no way to generate Fermi surfaces in a single band SC system



URu2Si2 Example

Here consider a spherical Fermi surface

Consider: ψ(k)=kz(kx+iky) (breaks time reversal symmetry)

ψ(k)=0 along line kx=ky=0, Weyl point nodes (+-2) (boundary arc states)
ψ(k)=0 on plane kz=0, line nodes 

)(|)(| 2222
yxz kkkk +=ψ



Traditional Origin of Nodes: Group Theory
Point group:   D4h

Γ E         C2 2C4             2C2’ 2C2’’

A1 1          1           1            1            1

A2 1          1           1           -1           -1

B1 1          1          -1            1           -1

B2 1         1           -1           -1            1

E        2         -2           0            0             0 

Character table for D4

D4h  contains inversion
even and odd
representations

C2’’

Spin-singlet wavefunction, so only k rotates under C2’’

Gor’kov Volovik (1987)



ARPES: Fe-based superconductors

KFe2As2

Around Γ point

Accidental nodes: not 
dictated by symmetry

Common mechanism: 
repulsive inter-pocket 
scattering (Mazin,Kuroki, 
Hirschfeld, Chubukov).



Superconductivity in monolayer FeSe
Highest Tc in Fe 
superconductor family

FeSe seems “s-wave” – where have e-e interactions gone?
Zhang et al, Phys. Rev. Lett. 117, 117001 

Ge et al Nature Materials14, 
285 (2015).

Gap changes signs on the two ellipses: this is a 
d-wave state.

Where have the nodes gone?



Homotopic Classification of Nodes
In 3D



Space of Hamiltonians M

Symmetry choice from T. Bzdušek and M. Sigrist, Phys. Rev. B 96, 155105 (2017)

Momentum space

kx

ky

kz

Node

Hamiltonian: 

Homotopy groups

Homotopic Classification of Nodes
1- Identify relevant symmetries and symmetry classes
2- In each class find the dimensionality of nodes (co-dimension arguments)
3- Identify topological invariants associated with nodes:



Mark H Fischer UZH2018-12-12

Superconducting Nodal Symmetries

Key symmetries: T and I

Superconducting pairs:

weak coupling instability 
equal energy  of                   &

For nodal classification, want symmetries that take k to k. 
Should also include C (particle-hole).  
Key symmetries: TI and CI and S= (CI)(TI)=CT.

AU

AU

U

Same symmetry conditions as  Altland-Zirnbauer classes: ten-fold way



“Bulk classes”  vs.  “nodal classes”

Symmetries local in r-space: Symmetries local in k-space:

(invariants of gapped systems) (charges of nodes in gapless systems)

Time reversal T

Particle-hole C
(charge conjugation)

Chiral S (sublattice)

Altland-Zirnbauer classes

Composition TI

Composition CI

Chiral S
(where I is spatial inversion)

ten “AZ+I” classes
T. Bzdušek and M. Sigrist, Phys. Rev. B 96, 155105 (2017)



TIlabel

Nodal “AZ+I” Classes
TI CI SNode Dimension: Consider class DIII

Minimal model has pseudospin (σ) 
and particle-hole (τ) symmetry:

Imply: only cxy(k) and cyy(k) are non-zero
This has codimension δ=2, allowing line nodes in 3D  



Nodal “AZ+I” SC Classes

Charge on                         in k-space.

Not all “AZ+I”classes can be reached in superconductors since:

1- All superconductors have C symmetry 
2- All superconductors also have I symmetry (not obvious)
3- Superconductor can break T (though not normal state), when present T2=-1

For even parity: I=τ0, for odd parity I=τz

label TI    CI        S π0 π1 π2
DIII (even I) -1           +1        1 2Z

D (even I) X           +1         X Z2 2Z
CII (odd I) -1           -1          1
C (odd I) X            -1         X Z

Point nodes are classified by Chern number (surface arcs), point nodes by winding number 
(flat band Majorana surface states).

Surprise is Bogoliubov
Fermi surfaces: not 
found in single-band 
superconductors

Point Nodes
Line Nodes
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