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1. Introduction 

OPTIMAL GROUP TESTING 

By 

Milton Sobel 
University of Minnesota 

The problem of group-testing is concerned with the classification of each of 

a finite number N of given units into one of two dist1nct categories which we 

call satisfactory and unsatisfactory (or simply, good and de~tive). The 

characteristic feature of the testing procedure is that any number '~(1 s x s N) 

of units can be tested simultaneously with two possible results: (i) e'ither all 

x are good or (ii) at least one of the x is defective; in the latter ca~ 

it is not known which ones or how many of the x units are defective. The 

model considered is that the N units are realizations of N independent and 

identically distributed Bernoulli chance variables with connnon, known probability 

q of a unit being good and p = 1-q of a unit being defective. The problem is 

to devise a scheme which minimizes the expected number of tests required to 

classify each of the N units as good or defective; the scheme can be sequential 

in the sense that the present test can depend on the results of previous tests. 

Different procedures have already been considered for this problem with N <= 

by Dorfman [1], Sterrett [12], Sobel and Groll [7], Sobel (8], and Finucan [2]. 

Several procedures were considered in [7] and [8] but special emphasis in (7] 

was given to a procedure called R1 and in [8] to a procedure called RO• It 

was pointed out in [7] that the procedure R1 has some optimal properties but 

that for q close to unity it is not optimal. In [8], the procedure RO was 

developed and it follows from the construction that it is as good or better than 

R
1 

for all values of q ( O C q < 1). In this paper we show that the procedure 

R
O 

has additional optimal properties but that it also is not optimal. Necessary 

properties for an optimal procedure are used in this paper to develop another 

procedure R
OO 

which is as good as or better than RO (and hence also as good as 

or better than R
1

) for all values of q. 
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The procedure ROO coincides with both R
1 

and R
0 

for q <~-: t5 .. -l)h~ =r..G-18 •. -,. 
1 

and tests units one at-,a-time for any finite N; in this range of q, this simple 

rule is known to be optimal [J.3]. In constructing R00 a special effort was 

made for each N (see Tables Al and A2) to make it optimal for q arbitrarily 

close to one; it is conjectured .that R
00 

is optimal for alt -q and .all integers 

N of the form 3-·. • 2b-2· ~ N ~ 2b for some integer · .b ;a: O. 

The procedure R
00 

is explicitly worked out for N = 1 through 8 for all 

values of q and for N larger than 8 it is defined implicitly PY recursion 

formulas. In addition two lower bounds, each of which holds for any group-testing 

procedure, are developed in [7] and [8] so that meaningful numerical comparisons 

of the expected numbers of tests E[TjR], for R = R
0

, R
1

, R
00 

and the lower· 

bounds can be made. 

Based on the fact that R
00 

is either optimal or very close to optimal, 

we define the percentage efficiency of procedures R
1 

and R
0 

by 

(1.1) PE(R. I q) 
1 

= (i = o, 1). 

We find that the efficiencies of R1 and R
0 

are quite good and better than 

those based on using either lower bound in the numerator of (1.1). The numerical 

I ! 

I : 

computations (see Table 1) for N ~ 8 indicate that R1 and R
0 

have a minimum ~ 

efficiency over all q of at least 95% and 99.9%, respectively. From the fact 

that E(TIR} increases with N for each of the above procedures and gets close • 

to the lower bounds (see Table 2), there is good reason to suspect that these 

lower bounds on the efficiency hold for all values of N as well as for all 

values of q. 

Two closely related problems to the one treated here are (i) the case of finite 

N and unknown q treated in _Q.O] , and (ii) the case of known q and infinite N ~ 

treated in [8]; the latter case will also be considered in this paper. A somewhat 

different problem is obtained by assuming that the number of defectives D is 

known at the onset; for this hypergeometric problem optimal solutions are obtained 

for D = 1 in (6] and (14] and for D ~ 2 in (11]. 
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TABLE 1 

Comparison of the Expected Number of Tests for Procedures R00 , R0, R1 
for selected values of n and q. 

I 

I 

1=5 
l .i 

f 

q = .75 * 
E(T) Efficiency 

R00 3.33203 

3.33203 

3.33203 

4.15723 

~oj 4.15723 

R1 4.15723 

100.00 

100.00 

100.00 

100.00 

,rt=6 R0 4.97583 100.00 
j 

T 

T 

R1 4.97583 100.00 

R00 5.79938 

5.79938 100.00 

5.79938 100.00 

R00 6.61922 

6.61922' 100.00 

6.61922 · 100.00 

q = .90 * 
E(T) Efficiency 

1.62700 

1.62700 100.00 

L66100 

2.01700 

2.01890 

2.05100., 

2.44868 

2.44887 

2.48951 

2.90873 

2.91046 

2.94341 

3.37973 

3.38146 

3.41441 

3.86572 

3.86620 

3.90441 

97095 

99.91 

98.34 

99.99 

98.36 

99.94 

98.82 

99.95 

98.98 

99.99 

99.01 

* Efficiency is defined in equation (1.1). 
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q = • 95 ~ q = • 99 * 
E(T) Efficiency E(T) Efficiency 

1.30713 

1.34013 

L50463 

1.50487 

1.53763 

1.71354 

1.71356 

1.77122 

1.95500 

1.95536 

2.00921 

2.19085 

2.19088 

2.25184 

2.43862 

2 .. 43904 

2.49934 

97.54 

99.98 

97.85 

100.00 

96.74 

99.98 

97.30 

100.00 

97.29 

99.98 

97e57 

lo06o30 

1.06030 100.00 

1.10020 

1.10020 

1.10950 

1.14059 

1.14059 

1.15881 

1.18236 

1.18244 

1.20831 

1.23177 

1.23177 

1.258o2 

1.28167 

1.28167 

1-.30792 

99.13 

100.00 

99.16 

100.00 

98.43 

99.99 

97.85 

100.00 

97.91 

100.00 

97.99 
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Table 2A 

Expected Number of Tests for Procedures R1 , R0 and R00 and Lower Bounds for 

any Group Testing Procedures Starting with a Binomial Set of Size N. 

q = .90 

t. 

Information 

.. 
., 

Initial Expected Number of Tests under Huffman # 
Number Lower Bound Lower Bound* 
of Units Procedure R1 Procedure RO Procedure R00 

N H(N;q ,R1) H(N;q,R0 ) H(N;q,Roo> HB(N,q) IB(N,q) 

• 
1 1.000 1.000 1.000 1.000 
2 1.290 1.290 1.290 1.290 
3 1.661 1.627 1.627 1.598 
4 2.051 2.019 2.017 1.970 
5 2.490 2.449 2.449 2.401 

6 2.943 2.910 2.909 2.825 
7 3.414 3.381 3.380 3.320 
8 3.904 3.866 3.866 3.806 
9 4.395 4.356 4.356 J., .• 275 

10 4.872 4.834 4.833 4.767 

11 5.327 5.288 5.287 .5.2o6 
12 5.790 5.755 5.753 5.640 
13 6.261 6.226 6.224 6.128 
14 6.732 6.697 6.696 6.607 
15 7.213 7.176 7.175 7 .085 

16 7.695 7.657 7.656 7.547 
l '7 8.161 8.123 8.123 8.012 
18 8.629 8.593 8.592 8.458 
19 9.100 9.o64 9.063 8.940 
20 9.572 9.536 9.535 9.420 

21 10.044 10.008 10.007 9.891 
22 10.520 10.483 10.J.1-83 10.357 
23 10.996 10.959 10.958 10.812 
24 11.466 11.430 11.429 11.274 
2j 11.937 11.901 li.900 11. 752 

30 14.301 14.265 14.264 14.091 
35 16.661 16.625 16.624 16.492 
J+o 19.024 18.988 ~8.987 18.790 
45 21.387 21.351 21..350 21.139 
50 23.750 23.714 23. 713 23.482 

f10 28.475 28.439 28.438 28.168 
'?0 33.200 33. 164 33.163 32.860 
i~o 37.925 37.889 37.888 37.549 
90 42.650 42.614 42.6i3 42.238 

11·,,·, .._,v 47.375 I 47.339 I 47.338 46.928 99 
# See References [7] and [4]. 
* IB(N,q) = -N{p log2 p + q log2 q] (See reference [7J). 
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Table 2.B .. 
... l l 

'Expected Number of Tests for Procedure R
1

, R
0 

and R00 and lower Bounds for 

any Group Testing Procedures Starting with a Binomial Set of Size N. 

q = .95 

Initial Expected Number of Tests under Huffman Information* 
Number ', Lower Bound Lower Bound 
of Units Procedure R1 Procedure R0 Procedure R00 

N H(N;q,R1) H(N;q,R0 ) H(N;q,Roo) HB(N,q) IB(N,q) 

1 1.000 1.000 1.000 1.000 0.286 
2 1.148 1.148 1.148 1.148 0.573 
3 1.340 1.307 1.307 1.300 0.859 (.I 

4 1.538 1.505 1.505 1.469 1.146 
5 1.771 1.714 1.714 1.681 1.432 

6 2.009 1.955 1.955 1.897 1.718 
7 2.252 2.191 2.191 2.126 2.005 
8 2.499 2.439 2.439 2.390 2.291 
9 2.767 2.696 2.696 2.651 2.578 

10 3.039 2.977 2.977 2.920 2.864 

11 3.315 3.251 3.251 3.177 3°150 
12 3.594 3.533 3.533 3.449 3.437 
13 3.878 3.817 3.816 3.742 3.723 
14 4.166 4.104 4.103 4.042 4.010 
15 4.458 4.392 4.391 4.336 4.296 

16 4.753 4.684 4.684 4.626 4.582 
17 5.051 4.982 4.982 4.913 4.869 
18 5.348 5.285 5.285 5.197 5.155 
19 5.648 5.585 5.584 5.494 5.442 
20 5.940 5.872 5.872 5.807 5.728 

21 6.220 6.151 6.151 6.077 6.014 
22 6.499 6.435 6.435 6.345 6.301 
23 6.780 6.716 6.716 6.609 6.587 
24 7 .o64 . - 7.000 7.000 6.892 6.874 
25 70348 7.285 7.284 7.183 7.160 

30 8.791 8.724 8.724 8.634 8.592 
35 10.240 10.175 10.175 . 10.050 10.024 
40 11.671 11.607 11.607 11.491 11.456· 
45 13.116 13.050 13.050 12.920 12.888 
50 14 .. 555 14.490 14.490 14.350 14.320 

- 60 17.438 17.372 17.372 17.213 17.184 
70 20.316 20.251 20.251 20.078 20.o48 
80 23.197 23.132 23.132 22.943 22.912 
90 26.078 26.013 26.013 25.807 25.776 

100 28. 28.894 28.894 28.670 28.640 959 

* IB(N,q) = -N[p log2 p + q log2 q]. 
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Table 2C I 

t. ~ ,, 

Expected Number of Tests for Procedure R1 , R0 and R00 and Lower Bounds for 

any Group Testing Procedure Starting with a Binomial Set of Size N. 

q = .99 
.. 

Initial Expected Number of Tests under Huffman Information 
Number Lower Bound Lower Bound 
of Units· Procedure R1 Procedure R0 Procedure R00 

N H(N;q ,R1) H(N;q,R0 ) H(N;q,Roo) HB(N,q) IB(N ,q) 

1 1.000 1.000 1.000 
2 1.030 1.030 1.030 
3 1.070 Lo60 Lo60 
4 1.110 1.100 1.100 
5 1.159 1.141 1.141 

6 1.208 1.182 1.182 
7 1.258 1.232 1.232 
8 1.3o8 1.282 1.282 
9 1.366 1.332 1.332 

10 1.425 1.384 1.384 

11 1.484 1.437 1.437 
12 1.543 1.492 1.492 
13 1.603 1.550 1.550 
14 1.662 1.609 1.609 
15 1.722 1.668 1.668 

16 1.782 1.728 1. 728 
17 1.849 1.788 1.788 
18 1.916 1.850 1.850 
19 1.984 L913 1.913 
20 2.051 1.977 1.977 

21 2.119 2.043 2.042 
22 2.187 2.110 2.109 
23 2.255 2.177 2.176 
24 2.324 2.244 2.244 
25 2.392 2.312 2.311 

30 2.738 2.654 2.654 
35 3.101 3.007 3.007 
40 3.478 3.384 3.384 
45 3.859 3.768 3.767 
50 4.243 4.154 4.154 

60 5.026 4.936 4.936 
70 5.830 5.735 5.73~ 
80 6.647- .. 6.557 6.557 
90 7.477 7.387 7.387 

100 8.~20 8.227 8.227 7 79 

* IB(N,q) = - N(p log2 p + q log
2 

q]. 
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2. Group-Testing and the Huffman Code 

J. 

In this section we point out that every group-test can be interpreted as a 

uw code but the converse is not true. In particular, it is shown that for N ~ 3 

no Huffman encoding scheme [4] for the complete binomial problem leads to a 

group-testing code if q is close to zero or one. In fact, it is only for values 

of q in some small interval centered at q: 1/2 (the length of which approaches 

zero as N tends to infinity) that the Huffman Code corresponds to a group-test 

code; the associated group-test is the one that tests units one at a time. 

To show that every group-test gives rise to a binary code we simply write 

down 2N rows of zeros and ones, each row corresponding to a possible sequence 

of experimental outcomes with (say) 0 representing a test that passes an~ 1 

representing a test that fails. For a group-test the number of rows, corresponding 

to the possible states of nature, must be a power of 2 (in fact 2N) and this 

already shows that not all binary codes can be interpreted as group-test codes. 

In fact, a code must satisfy several conditions to be a group-test code; a 

detailed discussion of some necessary conditions is given in appendix I to this 

paper. 

For example, the code 

Code State of Nature Probabilit? 

0 s s q2 

10 s u pq 

110 u s pq 

111 u U· p2 

Figure 2.1 A Group-Testing Code 

corresponds to a group-test with N ~ 2 units, in which the first test is on 

both units and subsequent tests are on one unit each. Clearly there are exactly 

two possible codes for group-testing with 2 units; in the other code each 

word has 2 digits and all units are tested one at a time. 

We define the cost of the code to be the expected number of tests which is 

exactly the same as the expected number of digits per row (or per word in coding 

theory terminology). In the above example this is easily seen to be E{T} = 3-q-q2 • 
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The Huffman encoding for our problem with N units starts with a complete~ 

listing of 2N probabilities 

(2.1) N N-1 N-1 2 N-2 N-1 N 
q , pq ' pq ' ••• 'p q , ••• 'p q' p 

and proceeds by the well known algorithm [4] of combining the two smallest probab­

ilities, replacing them by their sum, reordering and repeating the procedure until 

only one number (equal to one) is left. If we replace each of the probabilities 

• 

by the states of nature they represent and then follow the Huffman algorithm in 

reverse, i.e., separate the states of nature into disjoint sets instead of combining 

them, then it is knowµ [4] that the resulting search procedure is optimal .•• Hence 

if the Huffman encoding corresponds to a group-test it would have to be the optimal 

group-test procedure. We shall be particularly interested in values of q close 

to one, but not equal to one, since this is the region in which the maximum 

saving in expected number of tests is obtained by group-testing, and since the 

optimal result for small values of q is known [13). It is therefore desirable 

to prove the lemma 

Lennna 1: For N ~ 3 and q close to one (or zero), no Huffman encoding for the 

complete binomial problem is a group-test code. 

Proof: For q sufficiently close to one, p is close to zero and the last 

2N - (N+l) probabilities in (2.1) combine in the Huffman algorithm to form their 

sum (say e) before any of the first N + 1 probabilities enter into any sums. 

Similarly for q sufficiently close to one we obtain the sum Nv + e, where 

N-1 
V = pq before N V = q enters into any sum. Hence for q 

obtain the typical scheme, using N = 4 as an illustration, 

~- Col.2 Col.3 Col.4 Col.5 

V------------------
2v~}-4v+e )-1 

V------t--+.----"'l_+ __ e\JJ 

~}-----. 
) Figure 2.2 N = 4, q ~ 1, Huffman Coding 
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in which at least two v's are sunnned before combining either with any part 

of e. This means (looking at the algorithm in reverse) that in a final test 

we distinguish two states of nature such as SSUS and SUSS, i.e., for the 

2nd and 3rd units we distinguished SU from US on the last test. This 

implies that the possibility UU for these units was previously eliminated, 

but there is no group-testing method of eliminating UU without having class­

ified each of the units in question. Hence we have a contradiction. 

The lemma also holds for q close to zero since the Huffman cost is 

symmetrical and approaches one as q approaches zero, while the best group­

testing code clearly has a cost of N for small q. This completes the proof 

of the lennna. 

Although the Huffman encoding for N ~ 3 and q close to one is not a 

group-test code it is still possible that some group-test attains the same 

minimal cost as the Huffman encoding. We now show that no group-testing code 

attains the Huffman cost for N ~ 3 and q close to one. Thus the Huffman 

cost becomes a strict (i.e., unachievable) lower bound for the expected number 

of tests in a group-test on N units for N >- 3 and q close to one. 

In the following theorem we use the fact that with any exhaustive binary 

code containing W words we can associate an arborescence with W pendant 

vertices (or endpoints) and W-1 branching vertices (or continuation points); 

the latter including the root (or starting point). (See appendix I for explanation 

of terminology.) If probabilities pi (i = 1, 2, .•. ,W)· are assigned to the 

words (or pendant vertices) then we define the probability of any vertex V 

to be equal to the sum of all the probabilities of the pendant vertices that 

can be reached from V; in particular the root then always has probability one. 

The sum of the probabilities over all branching vertices is equal to the cost 

of the code. This follows from the fact that the number of digits in any word 

is the number of times that the probability associated with that word is included 

in the various branching point sums of the code. (See Picard (5] for another 

- 6 -



proof of this result.) Furthermore if, as in figure 2.2, we replace the t.. 

original (atomic) probabilities by the probabilities of any collection of disjoint, 

exhaustive subsets of pendant vertices (or words) then the analogous result also 

holds for the subproblem of finding out in which of these subsets the true state 

of nature lies. 

Theorem 1: For N ~ 3 and q close to one (or zero) no group-testing code 

can achieve the cost of the Huffman encoding. 

Proof: The result for q close to zero is clear from the remark in lennna 1 and 

we need only consider q close to one. We again use N = 4 to illustrate 

certain ideas but it should be noted that the argument holds for any N ~ 4; 

the case N = 3 is treated as a special case. 

Consider for N = 4 the following partition of the 16 states of nature into 

7 subsets: {ssss}, {sssu}, {ssus}, (suss}, (usss}, {sstru} and {the remaining 

, 
_., 

ten possibilities} with probabilities denoted by q4 = N, pq3 = v, v, v, v, e1= p2 q2 

and e2, respectively; let e = e 1 + e
2

. [More generally, el and e
2 

correspond 

to the events "The first two units are both satisfactory and at least 2 units 

are unsatisfactory" and "at least two units are unsatisfactory, at least one 

being among the first two units".] 

We refer to the problem of finding out in which of these 7 subsets the true 

state of nature lies as a subproblem and to the corresponding code (see figure 2.2) 

as a subcode. The cost c1 associated with the subcode in figure 2.2 is clearly 

(2.2) c1 = 1 + 9v + 3e. 

If we let C*(S jR) denote the conditional cost of finding the true state of 
e 

nature given that it is in the subset S , which has probability e, 
e 

and that 

some continuation procedure R is used, then the total cost C(R) is given by 

(2.3) c(R) = c1 + eC*(sejR) = c1 + c(sejR); 

here C(S IR) = e C*(S jR) is the result obtained if we use the same algorithm e e 

as above but start with probabilities summing to e, instead of one. If the 

Huffman procedure has a strictly smaller value of c
1 

than any group-testing 
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1 code then it is clear (from the fact that the Huffman procedure is optimal) 

that the total cost must also be strictly smaller than any group-testing 

code. In other words it suffices to show that the Huffman cost is unachievable 

in the subproblem. 

We now consider three basic modifications, at least one of which is needed 

to change a Huffman encoding to a group-testing code, and we shall show that 

each of them increases the cost c1 of the subcode. 

Modification 1: This modification first tests all N units and, if that fails, 

we then test a subset containing fewer than N - 1 unitso We use N = 4 to 

illustrate the ideas. 

State of Nature Prob. Col.2 Col.3 Col.4 Col.5 

ssss V 

4v+e 1 -v+e) 1 

sssu V 

ssus 
::} / 

ssuu 
v+e~ 

suss 
2v+e

2 
V 

usss 
:~~ Remainder 

Figure 2o3 N = 4 2 Modification 1 for Grou2-Testing 

The cost of the subcode in figure 2.3 is 1 + lOv + 3e and since and 

both contain p2 it follows that the total cost of any code that uses this 

subcode is 1 + lOv + {j(p2 ) as q ~ 1. Similarly, using (2o2) and (2o3), any 

code that uses the subcode in figure 2.2 has a total cost of 1 + 9v +b{p2 ). 

Hence for N = 4 and q close to one the cost of the Modification 1 is strictly 

greater than that of the Huffman encoding. 

For higher values of N, we could form subsets of size 3 = 22 -1 containing 

two v's as in figure 2-3 or of size 7 = 23-1 containing three v's (for 

example, SSSSU, SSSUS, SSUSS, SSSUU, SSUSU, SSUUS, SSSSS, with the first three 

being v's) or etc. For any such grouping at least two v's have to be separately 

combined with e's and this introduces at least one extra v into the total cost. 

- 8 -



[Later we give explicit formulas for the coefficients of v in the Huffman 

encoding and in Modification 1 for group-testing; these provide another proof 

'-

that the former is less than the latter for N ~ 4.] It follows that for N ~ 4 

and q close to one, the code of Modification 1 is strictly greater than that 

of the Huffman encoding. 

Modification 2: This modification first tests all N units and, if that fails, 

it then tests separately for each of the N states of nature with probability 

v. We again use N = 4 to illustrate the ideas. 

State of Nature 

ssss 

sssu 

ssus 

suss 
usss 
Remainder 

Figure 2.4: 

Prob. Col.2 Col.3 Col.4 Col.5 Col.6 

V-------------------) r3v+J -1 -4v+e 
vr-------------1----
v r2v+e1J 
v~}J 
:}_J 

N = 4, Modification 2 for Group-testing 

The cost of the subcode in Figure 4 is 1 + lOv + 4e which, for N = 4,· is 

even greater than that obtained for Modification 1 for all values of q, and the 

resulting partition is actually coarser since all 11 states making up the 

probability e are combined here as one. For N > 4 we can disregard the e 

since the coefficient of v in Modification 2 will be larger than that in 

Modification 1. This follows from the fact that for any integer w with 

2 s w s N-2 we can get a better result than for the coefficient of v 

by simply breaking up N into two subsets of size w and N-w and using 

Modification 2 within each subset. The result is better since it is easily 

seen that the inequality 

(2.4) 

holds for any N ~ 4 and this inequality is strict for N ~ 5 •. Hence we can 
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·i disregard Modification 2 for N ~ 4; we shall return to this later to 

discuss the case N = 3. 

Modification 3: In this modification we combine V and v before combining 

either with any other probability. This adds an extra N 
q to the cost and 

makes this modification inferior to both of the other two modifications for q 

close to one. We therefore disregard this possibility in the subsequent search 

for an optimal procedure for q close to one, i.e., the optimal procedure must 

start by testing all N units if q is close to one. 

Consider any modification of a Huffman encoding to form a group-testing 

codeo It must involve one or more of these three basic modifications, i.e., 

to avoid adding two v's in Column 2, we must either form subgroups as in 

Modification 1, or add the v's one at a time to e as in Modification 2, 

or add at least one v to V as in Modification 3. In each case the cost 

is strictly greater than the Huffman cost for N ~ 4 and q close to one. 

' 

For N = 3, it is easy to verify directly that for the subproblem considered 

above (with three v's) the cost of the subcode using the Huffman encoding is 

1 + 6v + 2e which is strictly less than the result 1 + 6v + 3e obtained by 

using Modification 2. Moreover for N = 3, Modification 2 gives a result that 

is strictly less than that obtained by using Modification 1. (In addition, the 

latter has no group-testing interpretation for subsets containing one or two 

v's.) Modification 3 can be disregarded for the same reason as before. This 

completes the proof of theorem lo 

Remark 1: For N = 2 and q close to one the Huffman encoding is identical 

with Modification 2; the resulting code is given in Figure 2.1. 

Remark 2: The above comparisons of three modifications gives us considerable 

information about the structure of optimal group-testing procedures for q close 

to one: For any N we start by testing all N units~ If in the course of 

experimentation we reach.a similar situation in which there are only n units 

unclassified (n s N) and the a ·posteriori knowledge about them consists only 
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of the (binomial) assumption made at the outset then we again test all n ~-

units; we call this an H(n)-situation (see[7]). We now consider what to do 

next if the n units do not pass, i.e., in the so-called G(n,n)-situation 

with n ~ N (see [7]). For N = 3, we found above that Modification 2 is 

strictly better than Modification 1 (with three v's and two e's) and the 

former is the optimal group-testing procedure for n = 3 and q close to 

one •. This procedure for the G(3,3)-situation is to keep trying different 

pairs of units until one pair passes or all three pairs fail, whichever comes 

sooner. If one pair passes we are through; otherwise we then test one unit 

at a time until one unit passes or all fail, whichever comes sooner. Since 

Modification 2 is inferior to Modification 1 for n ~ 4 it follows tha~ for 

q close to one,Modification 2 yields an optimal procedure for n = 3 only. 

The procedure R
0 

defined in [8] as well as R
00 

defined in this paper both 

have this property for n = 3, but R1 does not. 

Remark 3: Although the Huffman cost is not attained for q close to one, it 

would be useful to have an explicit expression for it since it is a lower 

bound for any group-testing procedure (see Table A6). For any N we define 

the integer 

(2.5) 

r. 
]. 

r. 
2 ]. 

by the inequalities 

(~) < 
]. 

r.+1 
2 ]. 

The cost of the Huffman encoding of the subproblem consisting of N + 2 events 

with probabilities N-1 
vl = pq (repeated 

for q close to one is given (proof omitted) by 

Cost = + 
(2.6) 

N times) and 

and the latter result also holds for the complete binomial problem. If we apply 

the Huffman algorithm to the subproblem consisting of 

probabilities v.* = v./e. 1 ]. ]. J.-
(repeated (~) 

]. 
times) 
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i N-i 
v. = p q 

]. 
and e. -

]. 
then we obtain for i == 2, 3 , ••• >N-1 

and q close to one 

(2.7) 

The left side of (2.7) is the probability that there are at least i 

defectives present multiplied by the conditional cost of determining which of 

the above (~) + 1 events is the true state of nature given that there are at 
]. 

least i defectives present. Summing the results in (2~6) and in (2.7) for 

each i, we find that the total cost of the complete binomial problem for q 

close to one and any N is 

N-1 
Cost = 

N-1 N r.+l . N. 
1 + E ((r.+2)(.) - 2 1. +1] p1 q_-1. + r: (r.+l)e. 

(2.8) i:::-1 l. l. i=l ]. ]. 

= 
N • N • N i r ~+1 

1 - pN + ~ pi --1
[(:) I:: (r +1) - 2 i +1]. 

i=O q 1 a=O a 

For example, for N = 2 this gives 1 + 3pq + 2p2 = 3 - q - q.2 which is the 

result for ($-1)/2 <. q < 1 in each of the procedures Rl, RO and Roo· 

3. Qetimal Modifications for the G(m 2n}-Situation for g Close to One 

In section 2 we applied the Huffman type analysis to the H(n)-situation 

and the G(n,n)-situation; in this section we apply a similar analysis to the 

G(m,n)-situation (see [7]). In .a G(m,n)-situation there are n units still 

unclassified and included among these is a subset of m units (2 sms n) 

which is known to contain at least one defective unit. This partition of the 

n units into 2 subsets of size m and n-m is in direct correspondence with 

the partition of the n events with probability v in Modification 1 (see 

Figure 2.3 where n c N = 4 and m = n - m = 2) into two subsets with m of 

the v's in one subset and n - m of the v's in the other. The details are 

similar to what we had before with modification 1 and 2 with the following 

minor changes: 
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1. 

2. 

N t. 
The event "all good" with probability q is omitted. 

n-1 The value of v is pq where n ~ N, but the number of v's is 

only m; we replace v by v* = v/(1 - qm). 

3. m The value of e is 1 - q - mv; we replace e 
e· by 

an'J: A e .. * = e . / ( 1 - q m) ( i = 1 , 2) . 
n l. l. 

Then v*, e 1*, e2* are the conditional probabi!ities of the m + 2 events 

in our subproblem analogous to those of Modification 1, and v*, e* are 

the conditional probabilities corresponding to those of Modification 2; we 

use the same terminology "Modifications 1 and 2" and as before with the above 

3 changes and with e* = e1* + e2* in Modification 1. The cost of the subproblem 

for Modification 1 for m = 4 ~ n is 1 + 6v* + 2e* and the contribution to 

the total cost for the complete binomial problem is the product 

4 4 (3.1) (1 - q) Cost= 1 - q + 6v + 2e = lopqn-1 6 (2 5) 2 n-2 + n - p q + ••• 

The corresponding cost for Modification 2 for m = 4 ~ n is 1 + 6v* + 3e* 

and the contribution to the total cost for the complete binomial problem is 

the product 

(3.2) = n-1 ( ) 2 n-2 lOpq + 8 2n - 5 p q + ••• 

the last expression in (3.1) and (3.2) in powers i n-i p q for increasing i is 

not needed here but is useful for later discussions. Hence for m = 4 and q 

close to one, Modification 1 gives a better result at a lower cost than 

Modification 2. Moreover we find for n ~ m ~ 5, as in the proof of theorem 1, 

that by using Modification 1 with a single subset of two v*'s and e1* we 

replace (m-l)v* by 3v* in Modification 2, and hence Modification 1 is 

strictly better than Modification 2 for n ~ m ~ 5 and q close to one. On 

the other hand, for m = 2 < n and m = 3 < n it is easy to verify that 

Modification 2 is better than Modification 1. In fact with the given definition 

of e*, we are forced to use Modification 2 for m = 2 and it follows as in 
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( ' .. 

lennna 1 that Modification 1 has no group-testing interpretation for m = 3.) 

The above results show for n ~ m and q close to 1 that Modification 1 

is strictly better for m ~ 4 and Modification 2 is strictly better for m = 2 

and 3. The use of Modification 2 for m = 2 and 3 does imply the nature of 

the next m tests (see Tables Al and A2) for q close to one. However we 

should not assume that a procedure with Modification 1 and with the best leading 

coefficient is necessarily a unique group-testing procedure (even for the very 

next test). We now describe a class of procedures R(j) (j = 0, l, .•. ,n-4) 

all corresponding to Modification 1; it follows from the results of Section 4 

that any procedure with Modification 1 and with the lowest leading coefficient 

must be in this class. We again use m = 4 to illustr.ate the ideas; in this 

case optimal means th~.t it corresponds to Modification 1 and the leading 

coefficient in the cost expression is 10. 

Figure 3.1 A Class of Procedures (Modification 1) for n ~ m = 4. 

Here s
1 

denotes a terminal stopping point with exactly one defective. For j = 0 

we·,replace K(2,n) ·by G(2,n) after the first test fails and we replace L(2,n) 

by J(2,n) after 3 successive failures. For each j ~ 0 we get the same 

leading term, lOv, in (3ol); hence we will have to make a deeper analysis of 

the cost to show that j = 0 gives the best reaults; this will be done later in 

Sections 5 and 6. 
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First we obtain several results on the basis of the following temporary 

Assumption 1: In a G(m,n) situation with n ~ m ~ 4 the next test-group 

of size x = x(m,n) is taken only from the defective set. 

In an H(n) or G(m,n) situation with n ~ m ~ 4 the size x of the 

next test-group is determined by the basic recursion formulas 

(3.3) H(n) = 1 + Min (q~(n - x) + pG*(x,n)], 

.. 

(3.4) G*(m,n) = 1 + m-1 
q + ••• + q + Min [qxG*(m-x,n-x) + G*(x,n)] 

1 S XS m-1 

and the boundary conditions H(O) = 0 and G*(l,n) = H(n-1) for n = 1, 2, ••• 

these formulas are derived in [7] and are used there (for n ~ m ~ 2) to define 

procedure R1 which is optimal for all small values of q. H(n) is the 

expected number of tests starting with a binomial or H-situation and 

pG*(m,n)/(1 - qm) = G(m,n) is the expected number of tests starting with 

a G(m,n) situation. Under procedure R00 the results for H(n) and G(m,n) 

are different than those obtained for procedure R1 only because we derive 

special subroutines (and corresponding recursion formulas) for m = 2 and 

m = 3. These special subroutines are obtained in Section 7. 

On the basis of assumption 1 we now prove that for m ~ 4 and any q the 

integer solution x = x(m,n) of (3.4) depends only on m; this makes it much 

easier to describe the proced·ure R
00

• It is interesting that this result 

does not depend on the definitions of R
00 

for the G(2,n) and G(3,n) 

situations. 

Theorem 2: Under assumption 1 for a G(m,n) situation with n ~ m ~ 4 and 

q close to one the optimal number x = x(m) of units for the next test does 

not depend on n. 

Proof: Let F(m,n) with n ~ m ~ 4 denote the expected number of tests 

necessary to reach a G(m,n) situation with m = 1, 2 or 3; we will show that 

F(m,n) = F(m) depends only on m. For convenience we set 
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(3.5) F*(m,n) = (1 - qm) F(m,n)/p. 

For mc?:4 we have (using assumption 1) 

I b. 
(3.6) G*(m,n) F*( ' 

. 
n-b.) = I: ...... ,.,,lt.. ( \m,n) + q v··· a.' 

i::::l l. l. 

where ai == 1, 2, or 3, I is the number of paths leading to a G(m,n') 

situation with m = 1, 2, or 3 and b. 
l. 

is the number of units proved good 

along the i
th 

path (i = 1, 2,••o,l); for m = 1, 2, or 3 equation (3.6) 

is an identity and yields no reduction. Moreover, if c. 
l. 

is the number o( 

tests needed along the i
th 

path, then F*(m,n) in (306) is a polynomial of 

the form 

I b. a. 
(3.7) F*(m,n) . l.11 ].) = p ~ c.q \ - q o 

i==l l. 

To show that F*(m,n) does not depend on n we consider the best continuations 

assuming that x ~ j yields the minimum in (3.h); the number of paths I= I(j) 

can depend on j. For some integer 1
1 

(0 s I
1 

s I) we can then write 

(3.8) G*(m-j, n- j) ::: F* ( m- j , n- j ) 
!1 b" -j 

+ I: q 
1 G~~ ( a . , n- b • ) 

i~I 1 1. 

(3.9) G*(j ,n) + n-b.) 
l. 

where the a. and b. are the same as in (3.6) and (3.7). Then, substituting 
l. ]. 

(3.6), (3.8) and (3o9) in (3.4), we find that the three summations cancel for 

any j giving the result 

(3.10) F*(m,n) = 
m-1 

I + q + ••• + q + Min [qjF*(m-j,n-j)+F*(j,n)], 
1 s j s m-1 

the same equation as for G*(m,n). We now use induction of m and the fact 

that F*(l,n) = F*(2,n) = F*(3,n) = 0~ independent of n. By the induction 

hypothesis the roh.s. of (3.10) does not depend on n and hence the l.h.s. 

also does not; hence we can write FK-(m) for E*(m,nJ. Since the integer 

(say, j = x) that minimizes the r.h.s. of (3.4) is the same as the integer that 
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minimizes the r.h.s. of (3.10) it now follows that x (the size of the next~ 

test for a G(m,n) situation with n ~ m ~ 4) also does not depend on n; 

we write x = x(m). This proves theorem 2 under assumption 1; the:·_problem of 

~emovtng this. .. ass.urop.t;:ion :i~Lstudied in Section 6. 

Remark: For q close to one and m ~ 4 we can disregard the possibili~y 

that a.= 1 in the above proof; then we need only coqsider paths leading 
]. 

to G(2,n') and G(3,n') situations to get the conclusion for q close to one. 

4. Derivation of the Optimal Leading Coefficient for G*(m,n) with n ~ m ~ 4. 

In general group-testing situation we have a problem of optimal encoding 

subject to special restriction. We have a number M of states of nature with 

equal probability s N-s 
V = p q where s,N are fixed integers with 0 s s < N. 

All the other states have probability of the form e = ptqN-t with t > s 

and we shall also use e for the sum of such probabilities. One restriction 

is that.we can never reduce the set of possible true states of nature to 

exactly two of the M states above without including another state with 

probability s+l N-s-1 
e = P q This means that no two of the v's can be 

added at the outset, i.e., in forming Column 2. It follows that for any 

partition of the problem into two categories, if a category has two or more of 

the M states then, it must also have at least one state with probability e. 

We consider the subproblem consisting of M states with probability v 

and (say) Q states with probability e1 , e
2

, ••• , eQ, wliich need not be 

equal. We can assume that the sum of these e's and Mv is unity since, 

if it is not, we merely divide each by the sum and in computing the contribution 

to the total cost, the denominator cancels. 

Let h(m) denote the coefficient of v for the best group-test encoding 

of this subproblem. Let the integers y and M - y denote the number of the 

M-states assigned to each of two categories by the first partition of the M 

states. For M ~ 4 and the best group-test we have 

(4.1) h(M) = M + Min (h(y) + h(M-y)J, 
1 s: y s: M-1 
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f 
and the optimal value of y is the one that minimizes the right hand side of 

(4.1); the choice y = 0 need not be considered. Eq~ation (4.1), together 

with the boundary conditions 

(4.2) h(l) == 0, h(2) = 3, h(3) == 6, 

define h(M) for every positive integer M; we could also use (4.1) with 

M ~ 3 and omit the last boundary conditiono 

We now produce an explicity function satisfying (4.1) and (4.2) and show 

exactly which set of integers y = y(M) satisfies (4.1) for each M; in 

particular, the integer (or integers) closest to M/2 are always included in 

this set. This limits severely the possible encodings that have to be searched 

to find the optimal one. 

For any M ~ 1, let the integer b = b(M) ~ 0 be defined by 

(4.3) 

so that b is the exponent of the power of 2 that is closest to M, when that 

power is uniqueo Let h1(M) be defined so that h1(1) = 0 and for M ~ 2 

(4.4) 

Lennna 2: The function h(M) in (4.1) and (4.2) is identical with h1(M) 

given in (4.4). For M ~ 4 the set of y-values that minimize the right hand 

side of (4.1) includes the integer (or integers) closest to M/2. 

Proof: Suppose first that h1(y) + h1 (M - y) is minimized by taking y as 

close as possible to M/2. Then for even M ~ 4 we put h1 (M/2) for h(M/2) 

in the right hand side of (4.1) and obtain for y =:: M/2 

M ) b-2 M + 2( -(b+l - 3 • 2 ] 
2 

) b-1 
~ M(b+2 - 3 • 2 

which agrees with (4)¾-) of (4 .. 1).. Similarly for odd M > 4 and M :/: 3 • 2b-l_l 

we obtain for y = (M-1)/2 

(4.6) M + ((M;l)(b+l) - 3 • 2b-2 ] + [(~1)(b+l) - 3 • 2b-2 = M(b+2)-3•2b-~ 
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b-1 and for M = 3 • 2 -1 we obtain 

(4.7) M + [(M-l)(b+l) _ 3 • 2h-2] + 
·2 

fl 

which agree with (4.4). Thus h1(M) satisfies (4.1). It is easily verified 

that h1(2) = h(2) = 3 and h1(3) = h(3) = 6 and, by definition, h1(1) = h(l) 

Hence if the above supposition is true, then h1(M) = h(M) for all M.~ 1. 

We now show that for any M ~ 4 the value (or values) of y closest to 

M/2 minimize 

(4.8) (1 sys M-1) 

where h1(y) is given by (4.4). Clearly, for any M, h(y; M) is symmetric 

about y = M/2. If we can show for any M ~ 4 that h(y; M) is convex on 

the domain of integers y (1 sys M-1), then it follows that the minimum 

is achieved at an integer y which is closest to M/2. For this convexity 

it is sufficient to show by (4.8) that h1(y) is convex for y ~ 2. For the 

latter result it is sufficient to show that for any 3 consecutive integers 

(y-1, y, y+l) with y ~ 2 the second difference of h1(y) is nonnegative, 

i.e., 82h1(y) = h1(y+l) - 2h1(y) + h1(y-1) ~ O. For y ~ 3, three disjoint 

and exhaustive cases arise according as 

i) all three integers have the same b-value, or 

ii) only the two smallest integers have the same b-value, or 

iii) only the two largest integers have the same b-value. 

If we take y = 3 • 2b-2 + x for M in (4.4), then for case i) we have a 

linear function in x, since b is constant, and hence 82h1(y) = O. For 

case ii) we set y + 1 = 3 • 2b-2 and obtain 

., 

=O. 

(4.9) 82 hl (y) = [3 ° 2b-2 (b+2) - 3 • 2b-l] + [ (3 • 2b-2-2) (b+l) 0 -· 3 ·'. :i2b-2 ] 

- 2((3 .- 2b-2-l)(b+l) - 3 • 2b-2 ] = o. 
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~ For case iii) we set y = 3 • 2b-2 and obtain 

(4.10) ~2hl(y) = [(3 • 2b-2+1)(b+2) - 3 • 2b-l] + ((3 • 2b-2-1)(b+l)-3 • 2b-2 ] 

2(3 • 2b-2(b+2) - 3 • 2b-l] = 1. 

Finally, for y = 2 we see (from the values of h1(y) for y = 1, 2, or 3 

given above) that ~2h1(2) = 0. This proves the convexity of h1(y) and hence 

h
1

(y) assumes its minimum at the integer (or integerj closest to M/a: 
To c~~iete the proof we use induction and assume that h(x) = h1(x) 

-! 

for all 1.ntegers x < M. 
/ 

/" 
(4.1_~/ h(M) - M = 

Then by (4.1) 

Min [h(y) + h(M-y)] = 
1 sys M-1 

Min [h1(y) + h1(M-y)] 
1 sys M-1 

Thus h(M) = h1(M) and since h(l) = h1(1) = 0, the lennna is proved. The 

above lemma with different boundary conditions (4o2) also appears in [11]. 

Lennna 2 gives a value of y that necessarily minimizes h(y; M) in (4.1) 

but it is also useful to know all the values of y that minimize h(y; M). 

The answer is given in 

Lennna 3: For any M :i? 4, with b defined by (4.3), an integer y will 

minimize the r.h.s. of (4.1) if and only if y and M-y are both in the 

clo~e.si interval bounded by 3 • 2b-3 and 3 • 2b-2• 

Proof: Since h(y) = h1(y) is synnnetric about y = M/2, it is sufficient 

to prove the result for y s M/2 or y s M-y. We now consider different 

values for y and M - y. 

(4.12) Case 1: 

Then b(y) = b(M - y) = b-1 and to check the equality in (4.1) we-use (4.4) 

and obtain for the r.h.s. of (4.1) 

(4.13) M + h(y; M) r M + [y(b+l) - 3 • 2b-2 ] + [(M-y)(b+l) - 3 • 2b-2 ] 

= M(b+2) - 3 • 2b-l = h(M). 
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Thus all y values satisfying (4.12) will yield the minimum h(M) in (4.1). ~ 

(4.14) Case 2: b-3 b-2 3 • 2 s; Y < 3 • 2 ~ M - y. 

Then b(M - y) = b = b(y) + 1 since M - y s; M and we obtain as above 

( 4.15) M + h(y; M) = M + [y(b+l) - 3 • 2b-2] + [(M - y)(b+2) - 3 • 2b-l]. 

( ) b-1 b-2 
= M b+2 - 3 · 2 + [M - y - 3 • 2 ]. 

Since the last quantity in brackets is nonnegative, we get the minimum value 

b-2 for h(m) only when M - y = 3 • 2 • 

( 4. 16 ) Case 3 : b-3 b-2 y<3•2 S:M-y<3•2 • 

Then b(y) < b(M - y) = b-1 and the same calculation gives 

(4.17) M +. h(y; M) = M + [y(b(y) + 2) - 3 • 2b(y)-l] + [(M-y)(b+l)-3 • 2b-2] 

= h(M) + [3 • 2b-2 - 3 • 2b(y)-l_y(b-l-b(y))] 

> h(M) + 3 • 2b(y)-l[2x-(x+l)] 

where we have replaced y using the second inequality of (4.3) and let 

x = b-1-b(y) ~ 1. Since 2x ~ x+l for x = 1, 2, ••• it follows that the 

strict inequality holds in (4.17). This proves that no value of y satisfying 

(4.16) attains the minimum h(M). 

(4.18) Case 4: b-3 b-2 
0 < y < 3 • 2 , 3 • 2 ~ M - y. 

Then b(y) + 1 < b = b(M - y) and the same calculanion gives 

( 4.19) M + h(y; M) = M + [y(b(y) + 2) - 3. 2b(y)-l] 

+ [(M-y)(b+2) - 3 • 2b-l] 

= h(M) + [(M-y) - y(b-1-b(y)) - 3 • 2b(y)-l] 

> h:(M) + [3•2b-2-3•2b(y)-l(b-b(y))] 
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~ h(M) + 3 • 2b(y)-l(2x - (x+l)] 

and the same argument as in Case 3 shows that no value of y satisfying 

(4.18) attains the minimum h(M). Since these four cases are exhaustive, 

lenuna 3 is proved. 

Remark: The result of lemma 3 is useful not only to delimit the possible 

values for the first test-group size x under Assumption 1, but also in the 

more general framework in which this assumption is dropped. Starting with a 

G(m,n) situation, let xA and xB denote the number of units in the first 

test-group from the defective set and the binomial set, respectively; let the 

total size of the first test be x = xA + xB. Lemmas 2 and 3 tell us how to 

break up the m states of nature each with probability n-1 pq so as to obtain 

the smallest value h(m) of the leading coefficient in the cost expression 

(for q close to 1). It follows that the results of lemmas 2 and 3 can also 

be applied to in the more general framework, e.g., both and 

have to lie in the closed interval [3 • 2b-3 , 3 • 2b-2J where b is defined 

by (4.3) with M = m. Also xA = xA(m) depends only on m and we are .inter­

ested as in Figure 3.1 to consider primarily the same values for xA that 

we find to be best for x under Assumption 1. 

5. Optimal Test Size for the G(m,n) situation with m ~ 4 and g Close to One. 

In this section we show how to apply the results of Section 4 to find the 

optimal test size x(m) for any G(m,n) situation with m ~ 4. A simple 

explicit formula for the optimal x(m) is given together with expllcit 

formulas for the first two coefficients, h(m) and g(m,n), in a~ asymptotic 

expression for the expected number of tests starting from a G(m,n) situation 

with m ~ 4, n-1 2 n-2 i.e., for the coefficients of pq and p q in pG*(m,n) 

when the expected number of tests is expressed as a linear combination of the 

quantities 
i n-i · ·. 

p q (i = 1, ..• ,n-);.:·. {) 

Under Assumption 1 the next test-group in a G(m,n) situation with n ~ m ~ 4 

is taken from the defective set of size· m and hence x(m) < m. For q close 
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to one, our first concern is about the m states of nature with probability •-

~1 ) pq so that s = 1, N = n and M = m. By lemma 3 we know that x = x(m 

must be such that both x and m - x are in the closed interval 

[3 • 2b-3 , 3 • 2b-2 ], where b is defined by (4.3). If m is of the form 

3 • 2b-2 then it follows from lennna 3 that x = 3 • 2b-3 = m - x, so that 

the result for x(m) is then unique. In other cases there are several values 

of x all yielding the same leading coefficient h(m). ·:The .appt·optis1te:. :: 

criterion for choosing the optimal x (for q close to one) is to select 

from all those yielding the same first coefficient h(m) the one that yields 

the smallest second coefficient g(m,n). Of course, if the latter did not 

give a unique result we would go to the third coefficient, fourth coefficient, 

etc; computation of the first and second coefficients usually turn out to be 

sufficient to give a unique optimal value of x = x(rn). 

Before giving an explicit formula for the optimal x(m) for q close to 

one, we need some more lennnas. 

Lennna 4: The coefficients of p2qn- 2 in (1-q2 )G(2,n) and in (1-q3)G(3,n) 

are, respectively, 

(5.1) 

(5.2) 

g(2,n) = h(2n-3) + 2(2n-3), 

g(3,n) = h(3n-6) + 3(3n-6). 

Proof: For the G(2,n) situation with q close to one we test (a
1

, b
1

, ••• ,bn_
2

) 

where the a's are units from the defective set and the h's are units from the 

binomial set. If that fails we test (a2 , b1 , ••• , bn_
2

) and if they both fail 

we have a J(2,n) situation with 2n-3 possible states of nature, each having 

exactly 2 defectives and probability p2qn- 2/s, where s = l-q2 • Letting 

e = 

(al 

(a2 
(all 

) 2 n-2 (2n-3 p q /s the Huffman Analysis takes the form 

States Probabilities Col. 2 Col. 3 
defective, all others good) n-1 

............. ' _... 1 pq /s 

defective, all others good) n-1/ 

} 
n-1 J-(c + 2pqn- )/s pq s 

(e: + pq )/s 
remaining states) tis 

Figure 5.1 Mixing Routine for G(2,n) Situation under Procedure R
00

• 
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The cost associated with reaching the e~states is (2e + 3pqn-l)/s. If 

we add to this the cost h(2n-3)p2qn- 2/s which is the future cost of determining 

which of these 2n-3 states is the true state of nature and multiply bys to 

* get pG (2,n) = (1-q2 )G(2,n), then we obtain the contribution to the cost in the 

form 

(5.3) 

where h(2) = 3. Similarly, the corresponding result for m = 3 is 

(5.4) 

If we write 1-qm in (3.4) as (q+p)n-m ((q+p)m - qm] and take the coefficient 

of p2qn-2 after multiplying both sides of (304) by p, then we obtain for 

m:i:?4 

(5.5) g(m,n) = Min [g(x,n) + g(m-x, n-x)] + (;)~(R;~). 
2~x~a-l 

not 
We shalll\attempt to solve (5.5) directly as was done for (4.1) in lennnas 

2 and 3 but after some more lemmas we do give explicit solutions for x and 

g(m,n), respectively, in theorems 3 and 4 below. 

Let lb for b ~ 2 denote the set of integers in the closed interval 

I (a= 0,1) denote the integers in the closed 
a 

intervals [0,1] and [l,3J, respectively. Then the slope (or difference) of 

the function h(x) increases (when and) only when x is at the right end 

point of one of these intervals. 

Lennna 5; If h(x) is a convex function (defined for integers or real numbers) 

and the vectors x = (x1 , x2 , ••• , xn) and y = {y1 , y2 , ••• , yn) are such 

that 

(5.6) xl :ii? x2 :ii? • •. :ii? X • n' Y1 :ii? Y2 ~ ••• :ii? y and n 

j j 
(5.7) r: x. ~ r: Yi j = 1,2, ••• , n 

i=l l. i=l 

with equality in (5.7) for j = n, then 
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n n 
(5.8) r: h(x. ) s: r: h(y.). '-

i=l 
]. 

i=l 
]. 

For the h(x) of section 4 with the vectors x and y not identical, strict 

inequality holds in (5.8) unless all the 2n components of x and y are in the 

Proof: The main result (5.8) is proved in Theorem 108 of Hardy, Littlewood 

and Polya [2] (see also Theorem 250) and is used extensively in the sequel. 

For the second part of the lemma we first consider n-vectors of the form 

x0 = (x
1

, x
2

, ••• , x
2

) and yo= (y1 , y2 , ••• , y
2

) with non-negative components. Set 

d = n-1 ~ 1 and hold y
1

- dx
2 

= x1- dy2 = c fixed. We assume x2 ~ 1 since other­

wise x
2 

= y
2 

= 0 and the two vectors are identical. Applying the method of 

lemma 2 above to the function 

(5.9) 

we find that if x2 and c + dx2 are in the same lb then H(x2 ) = H(x2 lb,b) has 

the constant value c(b+2) + (d-1)3 b-1 • 2 • 

b +a~ b + 1 then we obtain for H(x2 lb+a,b) a strictly increasing (in x2 

for fixed a and b) function 

(5.10) H(x
2

lb+a,b) = c(b+2) + 3d • 2b-l + [a(c + dx
2

) - 3 • 2a+b-l] ~ H(x
2

lb,b). 

This inequality is easily shown separately for a= 1 and a~ 2 and equality 

b-1 holds only if a= 1 and c + dx2 = 3 • 2 ; i.e., strict inequality holds when 

and only when x2 and c + dx2 are not in the same lb. If x2 ~ y
2 

(or y1 = 

c + dx
2 

~ c + dy
2 

= x1), it follows that 

(5.11) 

and strict inequality holds if and only if y
2 

and c + dx
2 

(and the other two 

arguments) are not in the same lb. Rewriting.our result, we have 

(5.12) 

and if the vectors x0 and yo are not identical then strict inequality holds in 

(5.12) if and only if all four arguments are not in the same lb. It is easily 

noted that the two conditions x2 > y
2 

and y
1 

+ dy
2 

= x1 + dx
2 

imply the 
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other inequalities. In particular, with d = 1 we obtain the desired result 

for n = 2; we need the general result for the induction below. 

For general n ~ 3 we assume y1 > x1 since otherwise and 

we can use the induction hypothesis. If yn-l > yn we set y~-l = yn-l - e, 

y' = y + e, and y! = y.(i = 1,2, ••• , n-2), keeping the x-values fixed. 
n n i 1 

Increasing & ~ 0 until some inequality becomes an equality, we either first 

get y' = x in which case we have one less argument and can use the 
n n 

induction hypothesis or we first get Y I - y' • n-1 - n If at the 

outset then we go inunediately to the next step. In the next step we set 

y" = YI - 2e y'.1 = Y ~ - S n-2 n-2 ' J J 
for j = n-1, n and yi = yi (i = 1,2, ••• , n-3) 

and, using the induction argument, the only case that remains is the one in 

which the vector y has (at least) 3 equal, smallest components. We continue 

thus until we obtain a vector equal 

components. For each of these steps we can use our result in (5.12) to show 

that 

(5.13) 
n n n 0 
E h(y.) ~ E h(y!) ~ ••• ~ E h(y.) 

~=1 1 . 1 1 . 1 1 • i= ' i= 

with strict inequality between the two extreme sums if and only if the 

original y.(i = 2,3, ••• , n) 
1 

are not all in the same Similarly, if 

x 1 < x we set x' 1 = x 1 + s, x' = x - sand x! = x.(i = 1,2, ••• , n-2). n- n n- n- n n i 1 

Applying the same methods as above we obtain a vector x0 with the last 

n-1 components equal and using (5.12) we have 

n n n 0 
(5.14) E h(x.) ~ E h(x~) ~ ... ~ E h(x.), 

i=l 1 i=l 1 . 1 1 
i= 

where strict inequality holds between the two extreme sums if and only if 

the original x.(i = 2,3, ••• , n) 
1 

are not all in the same 

the last sums in (5.13) and (5.14) we note that by (5.12) 

(5.15) 
n O n 0 
E h(y.) ~ E h(x.) 

i=l 1 i=l 1 

Comparing 

with strict inequality if and only if the four argtnnents are not in the same 
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lb. Combining those results after (5.13), (5.14) and (5.15) with 2 different,. 

vectors x,y~ we obtain (5.8) with strict inequality if and only if the original 

2n components are not all in the same lb. 

We need a final remark for the induction part of the proof. If, in 

reducing the problem from one with n components to one with n-1 components 

(and using induction), we change from a state in which all components are 

not in a connnon lb to one in which they are, then the strict inequality shows 

up in a step corresponding to (5.13) or (5.14) and we use the weak inequality 

(5.8) for the induction step; if all arguments remain in their respective Ib's 

then the strict inequality shows up in the induction step. 

Since lemma 5 was shown to hold for n = 2, the induction proof is now 

complete. 

Define r = r(m) by the inequalities 

(5.16) 2r , r+l 
~m<2 • 

Theorem 3: Under Assumption 1 the optimal test size x = x(m) for a G(m,n) 

situation with n~m ~4 and q close to one is given by 

for 4 . 2 r-2 :s:m< 5 . 2 r-2 

(5.17) r-2 for 5 . r-2 
:s;; m < 7 • r-2 

x= 3 • 2 2 2 
2r for 7 . r-2 2 :s;; m < 8 2 r-2 

where r is defined by (5.16). 

R k O t th t ( ) · b · f 5 • 2r-2 emar s: we µo e a x m increases y ones as m increases rom 

to 7 • 2r-2 and remains fixed otherwise; in particular, it is a nondecreasing 

function of m •. We also note that either x is a power of 2 (and then it 

remains a power of 2 at all later steps) or x is congruent to m modulo 

3. For q close to one we start by testing all n units and if it fails 

we get a G(n,n) situation. For any G(m,n) situation reached after this if 

m is not a power of 2 then the integers m and n must be congruent modulo 3. 

It follows that the only G(3,n) situations that can arise for q close to 

one are those in which n is a multiple of 3. This same phenomenon arises 
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~for q close to 1 under ~rocedure R
0 

defined in [81. (See footnote to 

Table A7 in this paper.) 

It should also be noted that for q close to one the expression for 

x in (5 .17) does not agree with the results for x = x(m) to be used for .. : q 

close to one under ?rocedure R1 in [71- However it does agree with the 

results for q close to one under Procedure R0 in [81 although the dividing 

points are not the same; this agreement has not been rigorously proved~ 

.Proof of Theorem 3: Consider the triangular pattern.:(or arborescence) 

induced if we use (5.17) to define x and the recursion (3.4) to define our 

?rocedure R
00 

for m ~ 4. For examples, if m = 10, 13 and 19, respectively, 

the arborescences are 

10 

ff "4 
/'\ I' 3 3 2 2 

m = 10 m = 13 

Figure 5.2 Breakdown of them-value for m = 10 2 13 and 19. 

m = 19 

We note that the first argument is broken down until we reach a first 

argument equal to 2 or 3. We have arbitrarily put x(m) corresponding to a 

test that fails below and to the right and m - x(m) corresponding to a test 

that passes below and to the left in the above arborescences. We note that 

with the definition of x(m) in (5.17) we have the following properties: 

i) The two's all come out on the same level, say b. 

ii) The three's all come out on the same level, say r. 

iii) If r 
2 < m < 3 • 2 r-1 then b = r and all the two's fall to 

the right of the three's. 

iv) If 3. 2r-l < m < 2r+l then b = r+l and again the two's 

are on the right. 

v) If m = 3 • 2r-l we obtain only three!s and if m = 2r we 

obtain only two's. 
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To see these properties we note from (5.17) that if m is in the closed ·-

interval [3. b-2 
2 ' 3 • 2b-l] then xl and m - x 1 

are both in the closed 

interval [3 • b-3 
2 ' 3 b-4] • 2 ; we now strengthen this result • 

If 3 • 2b-2 ~ m ~ 2b then by (5.17) we have for x
1 

(5.18) b-3 b-1 3 · 2 ~ m-x ~ 2 1 

and similar results hold for x. and m-x. on the i th level (i ~ 1). By 
]. ]. 

(5.17) if any number in the arborescence is of the form 2r or 3 • 2r 

then it gives rise only to numbers of the same form as itself. It follows that 

all the four's in the triangle (corresponding to b = 3 in (5.18)) have to 

line up only with any three 1!S that arise and that no five's can arise in this 

case; thus b = r+l as in property (iv). 

b b-1 
If 2 ~ m ~ 3 • 2 then by (5.17) we have for x1 

(5.19) 
b-1 b-2 b-1 b-2 

2 ~ x1 ~ 3 • 2 and 2 ~ m-x1 ~ 3 • 2 

and similai::results hold for x. and m-x. on the i
th 

level (i :?! 1). It 
]. ]. 

follows in this case that all the four's in the arborescence (corresponding 

to b = 3 in (6.19)) have to line up with any five's and six's that arise; 

thus the two's line up with the three's and b = r as stated in property (iii). 

To prove the rest of the 5 properties we note that by (5.17) either 

x1 is a power of 2 or m - x is 3 times a power of 2. In the first case 

be integer x is repeatedly halved so that we end up with two's on the right 

and if m-x is not of the form 3 times a power of 2 then we repeat the 

argument with m-x replacing m. In the second case m-x is repeatedly 

halved giving us three's on the left aid if x is not a power of 2 we 

repeat the argument with x replacing m. Since x and m-x are both less 

than m and the properties hold for m ~ 4, the induction is completed. 

We shall refer to the above arborescences as "optimal triangles." Another 

property they have .(wliich we do::not::prove) is that (i) if any number is of 

the form w = 2t then all the numbers to the right of it (on the same level) 
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are equal to w and (ii) if any number is of the form w = 3 • 2t then all 

the numbers to the left of it (on the same level) are equal tow. 

It is quite clear that the specification of arborescences for each m 

(which give consistent instructions) is equivalent to a rule or a formula for 

x = x(m). The two's and three's in each arborescence are pendant vertices 

and m is called the root; their relative position determines the cost of 

the procedure. We wish to show that the "optimal triangles" induced by (5.17) 

yield the lowest cost·. For this purpose we consider any arbitrary rule which 

does not mix in the G(m,n) situation for m ~ 4 and which yields a different 

configuration of pendant vertices (different from the optimal triangles above) 

in its arborescence for any root m. We wish to show that by means of a set 

of basic changes, each of which reduces (or does not increase) the cost, 

we can get from the arbitrary pattern to the optimal triangle. Consider the 

four changes in the following list. 

Figure 5.3 Arborescence Chanses to Reduce Cost. 

1. (2,3) _. (3,2) 

2. (4,3) _. (3,4) 

3. (2,x) _. {3,x-1) and (x,2) _. (x-1,3) for X ;a:4 

4. (3,x) _. (4,x-1) and (x,3) _. (x-1,4) for X ;a: 5. 

The arrow points to the lower cost in each case. We shall prove some of these 

results (not all of them) but first we illustrate these changes. Suppose that 

with. m = 10 we start by taking x(l0) = 5 in one example (and x(l0) = 2 

in another example) and then use (5.17) in all later steps. 

Example 1 Example 2 

By chang~ 1 in Figure 5.3 we can replace the middle pair (2,3) in example 1 

by (3,2) thus giving the "optimal triangle." By change 3 we replace (8,2) by 
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(7,3) and then we use change 4 to replace it by (6,4) in example 2. This 

causes changes in the other numbers but not in the root m = 10. Clearly, 

the pair (6,4) gives the "optimal triangle." 

To prove that change 1 in Fig. 5.3 reduces the cost we consider any 

pair (3,2). The contribution to the second term of the cost, using lemma 4 

and starting from a G(5,n) situation with n1 ~ 5, is 

(5.20) CR= g(2,n1) + g(3,n1-2) + 5n1 - 15 

= h(2n1 - 3) + h(3n1 - 12) + 18n1 - 57; 

the same result also holds if the 2 and 3 stem from different predecessors 

in the arborescence. If we interchange the 2 and 3 the result depends on 

whether or not the 2 and 3 stem from the same number (m = 5) or from different 

numbers. In the first case, using lemma 4, we obtain 

(5.21) CL= g(3,n1) + g(2,n1 - 3) + 5n1 - 15 

= h(2n1 - 9) + h(3n1 - 6) + 18n1 - 51. 

To show that CL is strictly larger than CR we drop the difference 6 

in the last two terms and it is sufficient to show that for n1 ~ 5 

(5.22) h(2n1 - 3) + h(3n1 - 12) ~ h(2n1 - 9) + h(3n1 - 6). 

This follows from lemma 5 and the convexity of h(x). In the second case 

we compare (y,3; 2,x) and (y,2; 3,x) where x,y are integers ~ 2; 

the notation is clear from Fig. 5.3. For (y,3; 2,x) the total contribution 

to the second term of the cost starting with a G(x + y + 5, n
2

) situations 

with 4 ~ x+y ~ n2 - 5, is 

(5.23) CR= g(x, n2 ) + g(2, n2 - x) + g(3, n2 - x - 2) + g(y, n2 - x - 5) 

+ (x + y + 5)(2n2 - x - y - 6) 

and for (y,2; 3,x) we obtain the comparable quantity 

(5.24) CL= g(x, n2 ) + g(3, n2 - x) + g(2, n2 - x - 3) + g(y, n2 - x - 5) 

+ (x + y + 5)(2n2 - x - y - 6). 
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Hence to show that CL is strictly larger than CR we use lennna 4, drop 

the "extra" 6 that arises for CL and it is sufficient to show that for 

(5.25) h(2n2 - 2x - 3) + h(3n2 - 3x - 12) ~ h(2n2 - 2x - 9) + h(3n2 - 3x - 6). 

This again follows from lennna 5 and the convexity of h(x). 

For change 2 in Fig. 5o3 we again examine the contribution to the second 

term of the cost. For (3,4) we obtain, starting with a G(7,n
3

) situation 

with n
3 

~ 7, 

(5.26) CR= g(2, n
3

) + g(2, n
3 

- 2) + g(3, n
3 

- 4) + lln
3 

- 38 

= h(3n
3 

- 18) + h(2n
3 

- 3) + h(2n
3 

- 7) + 28n
3 

- 112; 

the result is the same if the 4 and 3 stem from differ~nt predecessors. 

If we interchange 3 and 4 the result depends on whether the 3 and 4 stem 

from the same number (m = 7) or from different numbers. In the first case 

we obtain 

(5.27) CL= g(3~ n
3

) + g(2, n
3 

- 3) + g(2, n
3 

- 5) + lln
3 

- 50 

= h(3n
3 

- 6) + h(2n
3 

- 9) + h(2n
3 

- 13) + 28n
3 

- 112. 

Unfortunately the last 2 terms are the same in (5.26) and (5.27) and (5.8) only 

gives the weak inequality CR~ CL. The last part of lemma 5 still allows 

possibiliti~s of equality for n
3 

= 31, ••• , 34, 55,···~ 66, etc. 

However, we remark that these will not lead to any inconsistency under 

the proposed rule since if we start with an H-situation and use (5.17) 

for q close to 1 then a G(7,n) situation can arise only if n = 2(7) - 1 

= 13 or 2(13) - 1 = 25 or etc. and these are always of the form 3 · 2s t 1 

with s ~ 1. Hence we have for the first (A1) and the third (A
3

) arguments 

in (5.27) with n
3 

= 3 • 2s + 1, 

(5.28) s s+l ( s 
A1 = 9 • 2 - 3 = 3 • 2 + 3 2 

Strict inequality now follows from the second part of lemma 5, i.e., CR< CL. 
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In the second case we compare (y,3; 4,x) with (y,4; 3,x) where x,y ~ 

are integers ~ 2. The only difficult case is y = 4 and x = 3 where (5.8) 

only gives the weak inequality. As above we note that for q close to one 

a G(14,n) situation arises only for n = 2(14) - 2 = 26 or 2(26) - 2 = 50 

s or etc. and these are always of the form 3 • 2 + 2 with s ~ 2. Hence we 

have for the largest A1 = 3n
3 

- 6 and the smallest argument A
6 

= 2n
3 

- 31 

with s n = 3 • 2 + 2, 
3 

(5.29) A
1 

= 9. ·~ 2s = 3 • 2s+ 1 + 3 • 2s > 3 • 2s+ 1 > 3 • 2s+ 1 - 27 = A
6

. 

Thus the strict inequality CR< CL follows from the second part of lennna 5. 

For the change (2,x) - (3,x-1) with x ~ 4 it is sufficient to look 

at the contribution to the first coefficient. For (2,x) we obtain x + 5 + h(x) 

and for (3,x - 1) we obtain x + 8 + h(x - 1) and it is sufficient to show 

that h(x) - h(x - 1) > 3 for x ~ 4. This follows from the facts that 

Lih(x) is increasing (proved in leDlllla 2) and h(4) - h(3) = 4. The same argument 

applies to the change c~,2) - (x - 1, 3) and also to the cases in which the 

integers 2 and x stem from different predecessors in the arborescence. 

The same proof also holds for the change (3,x) - (4, x - 1) with x ~ 5 

(the case x = 4 which only gives equality was discussed above) and the 

change (x,3) - (x - 1, 4) for x ~ 5. 

We have shown that the definition of x(m) by (5.17) for q close to 

one induces a particular type of arborescence with 5 properties. Any other 

definition which gives a different pattern yields an increase in the first 

or second coefficient of the total cost starting from an H-situation. In 

this sense the definition x(m) in (5.17) is optimal for q close to one; 

this completes the proof of Theorem 3. 

1 .. 
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One consequence of (5.17) which will be useful is 

Corollary 3.1: Under Procedure R
00 

for m ~ 4 and q close to one 

(5.30) 

and the upper bound holds with (x,m) replaced by (m,n), respectively, if 

we start with an H-situation. 

Proof: It is easy to see from (5.17) that (m-x)/m has a maximum when 

5 2r-1 d . . h 7. 2r-1 m = · an a minimum wen m = , and these values are J/5 and 

3/7, respectively. The result (5.30) is then inunediate. If we start wit~ 

an H-situation with q close to one then we test all n units and if it 

fails we have a G(n,n) situation. Hence x/n ~ 4/7 and, since the x 

becomes a future: m-value, it is clear that the same inequality holds for m/n; 

this proves the corollary. 

If we need to prove that a result holds for a G(7,n) situation with 

n ~ 7 then by this corollary we need only show it for n ~ 7(7)/4 or for 

n ~ 13; this illustrates the use we will make of the corollary. 

Theorem 4: The coefficient g(m,n) of p2qn-2 in (1 - qm)G(m,n) = pG*(m,n), 

which together with the definition of x = x(m) in (5.17) constitutes a 

solution of (5.5), is given by 

(5.31) 

where 

g(m,n) = g*(m,n) + (r+2)[mn - (m.+1)] + m*(2m* + 1 - 2n)] 
2 

* r-1 r is defined by (5.16), m = Max (3 • 2 - m, O], 

(5.32) 
* d (m-3d)/2 

g (m,n) = ~ h(3n - 3m - 6 + 9i) + ~ h(2n + 1 - 4i), 
i=l i=l 

d(m) = d is the distance from m to the nearest power of 2, and h(x) is 

defined in (4.4). 

For example, if m = n = 7 then r- = 2, 

and the coefficient of p
2q5 is 

x(7) = 4, 

(5.33) g(7,7) = h(ll) + h(7) + h(3) + 84 = 156. 
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If we took 3 units for the first test instead of 4 and then use (5.17) 

afterwards then we obtain 

(5.34) g(3,7) + g(4,4) + 21 = h(l5) + h(5) + h(l) + 84 = 164, 

where (5.31) is used to obtain g(4,4). 

6 The coefficient of pq is 23 for both cases. 

Proof of 'lbeorem 4: 

We use the recursion formula (5.5) and the definition of x(m) in 

(5.17) in this proof by induction. By Lennna 4, the result (5.31) holds for 

m = 2 and m = 3. Assuming it holds when the first argument is less than m, 

we substitute (5.31) in both places on the r.h.s. of (5.5) and show that it 

also holds for m. We consider four disjoint and exhaustive cases according 

as j · 2r-2 ~ m < (j+l) • 2r-2 for j = 4, 5, 6 or 7 with arbitrary r ~ 2. 

" 

Using (5.17) we note that in Case 1 we have 2r-l = x ~ m/2 ~ m - x < 3 • 2r-2 

so that in terms of r = r(m) we have r(x) = r(m - x) = r-1. From (5.31) 

and the r.h.s. of (5.5) we obtain by straightforward (but tedious) algebra 

2r-2 r-1 
(5.35) t h(2n + 1 - 4i) + (r+l)[n2r-l - (2 +l)] + 2r-2(2r-l + 1 - 2n) 

i=l 2 

+ ( ) r-1)( r-1) 1 2r-l 1 r+l [m-2 n-2 (m+ -
2 

)] + (5 • 2r-2 - m)(7 • 2r- +1~2m - 2n) 

= 

r-1 
m-2r 3•2 ··ru 
t h(3n - 3m - 6 + 9i) + t h(2n + 1 - 4i) 

i=l i=l 

+ (r+2)[mn - (~1)] + m*(2m* + 1 - 2n), 

which agrees with the result for g(m,n) in (5.31). We omit the algebra 

for the remaining three cases since the computation is similar to that above. 

This completes the proof of the theorem. 

- 35 -

I ! 

• 4-1 

_, 

I I _, 



Corollary 4 .1: * If we define g (m,n) by (5.31) then the recursion (5.5) becomes 

(5.36) * * * g (m,n) = Min [g (x,n) + g (m-x, n-x)] 
2~m-l 

and the solution is given by (5.17) and (5.32). 

Proof: It suffices to consider the same four cases as in Theorem 4. For 

example, for Case 3 we have 6 • 2r-2 ~ m < 7 • 2r-2 * * so that m (m) = m (x) = 

* = m (m-x) = 0 and r(x) = r(m-'X) = r(m) - lo Substituting (5.31) into the 

r.h.s. of (5.5) gives for any r ~ 2 and any x ~ 2 

,5.37) 
g*(x,n) + (r+l)[xn - <x;

1
)] + g*(m-x, n-x) + (r+l)[(m-x)(n-x) - (m-r1)] 

,,., 
m+l) + mn - ( 

2 
* = g (m,n). 

A similar computation holds for the other 3 cases and this proves the corollary. 

6. On the Problem of Removing Assumption 1. 

We would like to show in this section that other modification 1 procedures 

that (unlike Procedure R
00

) mix units from the defective and binomial set in 

a G(m,n) situation with m ~ 4 are not better than the proposed Procedure R
00

• 

A complete definition of the latter is given in Section 8, but we will only use 

(5.17) and its consequences. 

We define m ~ 2 (and also n) to be of type 1 if for some b ~ 2 

(6.1) 

and to be of type 2 otherwise; thus, m = 5 is the smallest m-value of type 2. 

d· We define a procedure to be A2 optimal, or asymptotically (q ~ 1) 2 degree 

optimal, if its cost has the smallest first coefficient and, among procedures 

with the same smallest first coefficient, its cost has the smallest second 

coefficient. In this section we will prove by induction that if we start with 

n units, where n is of type 1, then Procedure R
00 

is A2 optimal; the main 

idea here is to show that we can remove assumption 1 if n is of type 1. We 

also show with counterexamples that if n is of type 2 then this result does 

not hold; thus Procedure R
00 

is not optimal if q is close to 1 and n is 

of type 2. 
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Let x = x
00

(m) denote the integer obtained from (5.17). We shall 

refer to the long chain from the upper left to the lower right in our 

schematized diagrams (see e.g. Figure 6.1) as the main diagonal. To 

explain the proof and also start the induction we consider the special 

cases m = 4, 6, 7, 8; the cases m = 4 and m = 7 are treated in more 

l, 
) 

\ ' 

detail. _. 

We start with a G(4,n) situation with 4 < n and consider the 

Procedure ¾f which starts by testing (2 + t) units, i.e., two from the 

defective set of size 4 and t (0 ~ t ~ n-4) from the binomial set; for 

t > O it is a mixing procedure and for t = 0 it reduces to R
00

• The 

scheme is given in Figure 3.1. The first coefficient is h(4) = 10 for 

any t ~ 0 and the second coefficient for ¾f is 

(6.2) h(2n + 2t - 3) + h(2n - 2t - 7) + 12n - 30 

and the same result holds for R00 with t = O. By Lemma 5 

(6.3) h(2n + 2t - 3) + h(2n - 2t - 7) ~ h(2n - 3) + h(2n - 7) 

and this shows that no ~ is better (with respect to the first two 

coefficients) than R00• 

For a G(6,n) situation with 6 < n we start with (3 + t) units in 

the first test and obtain h(6) = 18 for the first coefficient for any 

t ~ 0 and for the second coefficient under ~ we obtain 

(6.4) c2 (1\i) = h(3n + 3t - 6) + h(3n - 3t - 15) + 24n - 84. 

Lemma 5 again proves that this is a minimum for t = O. 

For a G(7,n) situation with 7 < n we start by testing (4 + s) 

units. If it fails we then test (2 + t) units where the s and t 

binomials can have c units in common. The scheme is given in Figure 6.1. 
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G(3, 
3n -

G(?,n) (?n - 28 states with exactly two defectives) /~3' a4, b1•···,bc, b~+1•···,bs') 

;:4:sf8 /e~(a1 , a2 , a5, a6, a7, b1 , ••• ,bc,b~+l'·•·,b~) 

G(2, n-5-t) 
2n - 2t - 13 

K(~\test all except a1 

E/~:)except a2 

1 
2n + 3s + 2t + 3 

Figure 6.1: Procedure ~ for m = 7 < n • 

The first coefficient for ~ is h(?) = 23 for any t ~ O. The second 

coefficient of the cost of ~ is given by 

(6.5) c2(1\r) = h(A1) + h(~) + h(A3) + 28n - 112 

where A1 = 2n + 3s + 2t + 3, A2 = 3n - 3s - 18 and ~ = 2n - 2t - 13. The 

same result holds for R
00 

with coefficients A1 ', A
2
', A

3
1 obtained from 

those above by setting s = t = O. 

We have already noted that for m = 7 and q close to one the possible 

values of n are of the form 3 • 2b + 1 with b ~ 2. For b = 2 and 

n = 13 we have A'>A'>A' 
1 2 3 

and A1 > max (A
2

, A
3

). If A2 ~ A3, then 

we have Al ~ Al I, A+A~A'+A' 
1 2 1 2 and A +A +A =A'+A'+A' 

1 2 3 1 2 3 
so that Lemma 5 can be used to show that c2(~) ~ c2(Roo)· If A3 > A2 then 

Al + A3 > Al + A2 ~ Al I + A2' 

Suppose now that b ~ 3 

and Lemma 5 again applies. 

so that n ~ 25 and A ' > A • > A , 2 ·1 3 • Although 

we know that A1 > A
3 

we have to consider two cases according as A
2 

~ A
1 

> A
3 

or A1 ~ max (A
2

, A
3

) . 
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Case 1: A
2 

~ A1 or n ~ 6s + 2t + 21 

We note that b+l 
A1 ' = 3 • 2 + 5 e Ib+l' 

and we wish to show that 

n ~ 6s + 2t + 21 we have 

A1 e Ib+l and A2 e 

b+l 
A = 3 • 2 + 3 

2 

A2 ' = 3 • 2b+l + 3 • 2b - 15 e Ib+l 

Ib+1 • Using the fact that 

2b - 15 - 3s ~ 3·~b:f-l++ ;!·2b7l ~5+t 

and since b ~ 3 and A2 s: A2 ' we have A2 e lb+l • Since A
1 

s: A
2 

and 

b+l Ai= 3 • 2 + 5 + 3s + 2t we also have ~ e Ib+1• It is also clear that 

* * A2 = ~ + 3s e Ib+l and A1 = Ai - 3s e Ib+l and hence by Lennna 5 

(6.6) * * = h(Ai) + h(A2 ). 

* Now ~ = ~·, and 

so that c2(1\t) ~ c2(R
00

) since by Lennna 5 

(6. 7) 3 * * * i~lh(Ai) = h(Ai ) + h(A2 ) + h(~,:} ~ h(Ai) + h(~) + h(Aj). 

Case 2: Ai > Max (~, ~) 

If A1 ~ ~' then we can apply Lemma 5 since A1 + A
2 

~ A
2

' + Ai' and 

A1 + ~ + ~ = A1 ' + ~' + ~' • Otherwise ~' ~ Ai or n ~ 3s + 2t + 21. 

As in Case 1 we have A1' e Ib+l and ~· 

+ 3 • 2b - 15 - 3s ~ 3 • 2b+l + 2t + 5 e 

e Ib+1• Then ~ = 3 • 2b+l + 

Ib+l and Ai= 3 • 2b+l + 5 + 3s + 2t 
b+l b 

s: 3 • 2 + 3 • 2 - 16 e Ib+1• Hence the same argument as in Case 1 applies. 

This completes the proof for m = 7. 

For G(8,n} with 8 < n the same result c
2
(~) ~ c2(R

00
) holds. 

Although we now get four h-functions, none of the above difficulties arise 

and we omit the proof. 

We note that in each of the above cases (m = 4, 6, 7, 8) the size of 

the first group-test has two components and the first component (or the number 

of units taken from the defective set) is x(m) given by (5.17). This 

value of x(m) is used for two reasons. First, we can only use values 

which minimize the first coefficient of the cost and x(m} accomplishes this. 

Second, if we used different values, say x'(m}, and denote the resulting 
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mixing procedure by ~·, then we could use the above analysis to find 

another non-mixing procedure, say R', that is as good or better than 1\i'· 
It then follows from the results of Section 5 that Procedure R

00
, which is 

the best of the non-mixing procedures, must be at least as good as R'. 

For example, suppose that for the case m = 7 treated above we started with 

x'(7) = 3 units from the defective set. Then the three arguments of the 

h functions are 3n + 4s - 6, 2n - 2s - 9, 2n - 2s - 13 and it is easily 

seen that c
2
(~') ~ c

2
(R'). Later we briefly indicate a generalized version 

of this argument to any m value of type 1. 

Consider now any m ~ 12 
0 

of type 2. The cases r 
m = 2 

0 
and m = 3 • 2b-2 

0 

present little difficulty although the latter have to be treated separately. 

b-2 We first assume that m = 3 • 2 + c with b ~ 4 and c ~ 1. 
0 

Theorem 5: If we compare Procedure R
00 

with the best mixing Procedure~ 

that has the same first coefficient as Procedure R
00

, then, starting with a 

G(m,n) situation with m < n and q close to 1, 

(6.8) if m is of type 1. 

Proof: The proof is by induction on m; suppose we start with m of type 1. 
0 

We use the notation x1 = x(m~) ,_ x2 = x(x1), x
3 

= x(x2 ), etc., and let ti 

denote the number of binomial units in the i
th 

test on the main diagonal. 

Omitting the breakdown of all G(m,n) situations with m <m and also the 
0 

steps from K(2,n) to L(2,n), the mixing procedure ~ is schematized in 

Figure 6.2. 

Figure 6.2 

G(x
2
-x3, 

Mixing Procedure R 
- IJ.o - M 



By the induction hypothesis we do not have to consider mixing in any of 

the G(m,n') situations with m < m in Figure 6.2. If we now break down 
0 

all these G(m,n') using (5.17) then we obtain R = 2b - m pendant vertices 
0 

of the form G(3,n'), B-1 = 2(m - 3 • 2b-2 ) - 1 pendant vertices of the 
0 

form G(2,n') and one of the form K(2,n). The values of n' for the first 

R pendant vertices are n - t 1 - (m
0
-3), ••• ,n - ta - 4c where 1 ~a~ b-1 

and the corresponding numbers of states of nature with exactly two defectives 

are N1 = 3n - 3t1 - 3m
0 

+ 3, ••• ,~ = 3n - 3ta - 12c - 6. 

'-

If 7 • 2b-3 ~ m ~ 2b then the corresponding number of states for K(2,n) is 

(6.9) a b-1-j b-1 b-1-j 
N0 = 2n - 3 + 3ct1 + 3 r 2 t. + 2 r 2 t .• 

j=2 J j=o-+1 J 

Here a is the smallest integer such that 2b-2-a ~ c; since c ~ 1 and 

b ~ 3 we have 1 ~a~ b-2. If N0 ~ Ni (i=l,2, ••• ,R) then we have no 

difficulty in showing that c2(¾f) ~ c2(R00). Assuming that NO~ Nj for 

some j we wish to show that N
0 

and Nj belong to the same I-interval. 

If m -- 3 • 2b-2 + c for O < c < 2b-2 d · 1 h an q is c ose to one, ten we 
0 

can assume that n = 3 • 2s + c for some s ~ b-1 and the same c. We can 

assume that t 1 ~ 1, since if t 1 = 0 we could again invoke the induction 

hypothesis. For c ~ 1 and t 1 ~ 1 we have N
0 

~ ~ and 

(6 .10) N
0 
~ 3 • 2s+l + [2c - 3 + 3ct

1
] + 3 ~ 2b-l-jt. ~ 3 • 2s+l, 

j=2 J 

(6.11) 

It follows from these inequalities that N0 and NR both belong to Is+l; it 

* also follows that NR = NR + Bta and * N0 = N0 - 3ta both belong to Is+i· 

It follows that if N0 ~ Nj for any j (j = 1, 2, ••• ,R) then N0 ~ Nj ~ NR 

Nj is also in Is+l· Moreover if Nj contains the term 3tS and 

* N. 
. J 

* ff * = Nj + 3tS, NO = N0 - 3tS and N0 = N0 - 3ta - 3tS ~ N0 

Is+l • 
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It follows that 

(6.12) 

** * * = h(N0 ) + h(NR) + h(Nj ·) 

where Nj' are the corresponding N-values for the non-mixing Procedure R
00

. 

Continuing in this manner and letting ~+i (i = 1, 2, ••• ,B-1) denote the 

N-values for the G(2,n') pendant vertices, we easily obtain with the help 

of Lemma 5 

(6 .13) 
R+B-1 m+l 

= E h(N.) + (b+l)[mn - ( 
2 

)] 
j=O J 

If 3 • 2b-2 < m < 7 · 2b-3 and b ~ 4 then the only change in (6.9) 

is that the coefficients of the t. are rotated so that the coefficients of 
l. 

tl, t2, ... 3 
b-3 

3 
b-4 and 3c is the coefficient of are . 2 ' . 2 , ••• , t 

y 

where b-3 
y = 2 - C + 1; the same changes take place in the N'-values. Since 

b ~ 4, c ~ 1 and t 1 ~ 1 we again have 2c - 3 + 3 • 2b-3 > O and the 

same proof holds. 

b-2 If m = 3 • 2 then we terminate the main diagonal in Figure 6.2 with 

K(3,n) and all the pendant vertices are of the form G(3,n'). Then N
0 

> Ni 

for all i (i = 1, 2, ••• ,b-1) and the proof that c
2

(1\t) ~ c
2

(R
00

) is then 

straightforward; we omit the details. 

To complete the proof of Theorem 5 we remark that if the x-values are 

not taken from (5.17) but are subject only to the condition that the first 

coefficient of the cost is h(m) then all of the five properties of the 
0 

arborescence noted in Section 5 hold except that the order of the two's and 

three's is arbitrary. Essentially the same proof as above shows that for any 

- 42 -



mixing Procedure l\t' the corresponding non-mixing Procedure R' is at least L 

as good. Since R00 is the best of the non-mixing procedures it follows that 

c
2

(R') ~ c
2

(R
00

); this completes the proof of Theorem 5. 

To show that the condition that m be of type 1 is necessary, we now 

0 
give a mixing procedure, say ¾f, for m = 5 that improves on R00 for 

q close to one. To be specific we take n = 11 and show the:scheme in . 

Figure 6.3. 

Figure 6.3 

G(5,11) 
test 2+3 

/ '\ 
G(3,6) K(2,ll): test all but a1 I~ s1 test all but a

2 

/~ s1/~ test (a1 , a3) 

/~ 7~ ;es~ G(8,8) G(4,9) G(l0,10) 

G(3,6) G(3,7) 

Mixing Routine R._ 0 
-11 for m = 5. 

The first coefficient of the cost for ~o is easily seen to be h(5) = 14. 

The number of states of nature with exactly two defectives for each of the 

six pendant vertices is 12, 3, 3, 8, 4 and 10 which sum to 55 - (~) = 40. 

The second coefficient of the cost for !\to is 

(6.14) c2(~
0

) = h(l2) + 2h(3) + h(8) + h(4) + h(lO) + 48 + 2(18) + 40 

+ 20 + 50 = 330; 

the corresponding second coefficient of the cost for R
00 

is 

· (6.15) c2(R00 ) = h(21) + h(19) + 4(21) + 3(19) = 102 + 90 + 141 = 333. 
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It should be noted that 8Mo is not necessarily the best mixing procedure 

for G(5,11) but it has been shown to be better than R
00 

for q sufficiently 

close to one • 

The results of this section are used as a basis for conjecturing that 

Roo is an optimal procedure if we start with a number of units N which is 

of type 1. 

%015 ,11) * The explicit formulas for and GM(5,ll) under Procedures Roo 
and the above mixing Procedure ~, respectively, are given as polynomials in 

~ increasing powers of q by the coefficients 

\al 

.J 

.I 

\.al 

(6 .16) 

(6.17) 

* G
00 

(5,11) = [43, 6, -3, -1, -6, -2, -12, -5, -16, 21, -11], 

* GM ( 5 , 11 ) = [ 44 , 6 , - 3 , -2 , -8 , - 2 , -8 , 3 , - 30 , 15 , -1 ] • 

Using the basic recursion formulas given in (8.1) and (8.2) below we can then 

write for q close to one 

(6.18) Hoo<n) * q11 5 * * = 1 + pG00 (11,11) = 2 - . + pq G00 (6,6) + pG00 ·(5,11) 

= [45, -37, -9, 2, -5, 23, -21, -2, -10, 27, -20) 8], 

\aJ (6.19) ~(11) = [46, -38, -9, 1, -6, 25, -17, 2, -32, 35, -4, -2]. 

An examination of the difference ~ of (6.19) and (6.18) yields 
\al 

(6.20) 
2 2 ·:1,. 5 6 7 8 9 

~ = (1-q) (1 + q + q - 2.q - 2q + 2.q + lOq - 4q - lOq ), 

'-
which is of interest only in the interval .975 < q < 1.000. The value of ~ 

negative and 
'- throughout this interval i~at least ~001; this gives some idea of the kind of 

improvement that can be expected by such mixing procedures. 

-
ta 

\a 

\al 
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7. Analysis of the G(2,n) and G(3,n) Situations for g Close to One. 

We have already seen that in a G(2,n) situation the optimal procedure for -., 

q close to one is to first test all units except a1 and if that fails we 

test all units except a2 • If either test passes we are finished; if both fail 

we refer to the resulting situation as a J(2,n) situation. For q close to 

one the relation between the expected number of tests G(2,n) for the G(2,n) 

s~tuation and J(2,n) for the J(2,n) situation is 

(7.1) pG*(2,n) = 3pqn-l + [p 2 + 2pq(l - qn-2 )] [2 + J(2,n)] 

where G*(2,n) is defined in (3.4) (see also Table A2). This can also be 

written for q close to one as 

(7.2) J*(2,n) = G*(2,n) + qn-l - 2(1 + q) = pJ**(2,n). 

where J*(2,n) and J**(2,n) are defined in terms of J(2,n) by 

(7.3) J*(2,n) = [p + 2q(l - qn- 2 )] J(2,n) = pJ**(2,n). 

We denote the two units that are known to contain a defective by a.(i=l,2) 
l. 

and the remaining units by b.(i = 1,2, ••• ,n-2). 
l. 

In a J(2,n) situation the number of states with maximal probability when 

q is close to one is 2n-3. One possible continuation at this point is to test 

a
1 

alone and this leads to a G(n-2,n-2) or a G(n-1,n-1) situation according 

as is good or bad. For both of these we have an optimal way of proceeding 

since the test on a
1 

cuts down the M-set with 2n-3 states into n-2 and 

n-1 states. It is easily seen that no other test that includes a1 or a . 
2 

will be as good as testing a1 alone (or equivalently a2 alone); we refer 

to such a test as being of type 1. 

However, we must also consider tests that include only units from the set 

i.e., that exclude a1 
and The same argument that 

yielded the result for x(m) in (5.17) also shows that the number of units y ! 1 

from this set should be such that the 2n-3 states are partitioned (as closely 

- ~5- -



... • 
'-' 

-i 

al 

tail 

.,I 

-' 

.... 

-' 

!al 

~ 

'-' 

I.al 

\,al 

._ 

-' 

al 

la/ 

al 

a~ possible) into x = x(2n-3) and 2n-3-x(2n-3) states. If we take y units, 

then the number of states corresponding to a successful test is 2(n-2-y) + 1 

and setting this equal to 2n-3-x gives y = x/2; we refer to such a test as 

being of type 2. An optimal test must be of type 1 or 2 and we are now interested 

in comparing these two types. 

We will show by induction that if n is of the form 2s + 2 then a 

particular test of type 2 is better than any type 1 test. 

Theorem 6: If we have a J(2,n) situation where n is of the form 2s + 2 

for some integer s ~ 1 then for q close to one there is a procedure of type 

2 that starts by testing 

(7.4) y = 
x(2s+l+l) 

2 
= 2s-1 

units, excluding a
1 

and a2, which is better than any procedure of type 1. 

Proof: We assume that for 
t 

nl = 2 + 2 (with t < s) we can find a procedure 

of type 2 for the J(2,n
1

) situation which is superior to the type 1 procedure. 

We show this later for t = 1. 

The optimal procedure of type 2 for the J(2,n) situation has the form 

J ( 2 , ~ 2+2 s ) l 
s- ) (test y = 2 , excluding a1 and a

2 

J(2, .2+2£.) ~est a1 (This test partitions the 2s states 
/"' J with maximal probability into two 
~ ~ equal parts.) 

G(2s-l,2s) G(2s-l,2s+l) 

Figure 7.1 Optimal Test of Type 2 for J(2,n) Situation. 

Here the left arrows denote a successful test and the right arrows denote an 

unsuccessful test. For q close to one, the optimal procedure of type 1 has 

the form 
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J(2, 2+2s) 
(test a1 ) 

/~ 
G(2s,2s) G(2s+l, 2s+l) 

s-1 ) ( s-1 ) (test 2 units test 2 units 

~"\. / ~ 
G(2s-1 ;~~:}) .· .. - .. ·:\: G(2s~1·;2s}· )G(2s-i~ ,2s-1+1) G(2s-1 ,2s+l) 

Figure 7.2 Optimal Test of 'I)7pe 1 for J(2 2n) Situation. 

• 

If the event J(2, 2+2s-l) in Figure 7.1 is analyzed one step further by 

.. 

( s-1 s-1) ( s-1 s-1 ) testing a1 then we obtain the two results G 2 ,2 and G 2 +1,2 +1 

and this makes the last line of Figure 7.1 identical with that of Figure 7.2
1 

but by the induction hypothesis we can do better than this. Hence to complete 

the proof we need only show that for s = 1 we can do better by testing b1 

than by testing a1• In fact we obtain for s = 1 from the procedure in 

Figure 7.1 and using Table A4 

(7.5) J*(2,4) = {2p2q2 + p(l - q2)[1 + G(2,3)] + pq(l - q2)[2 + G(2,2)}/p 

= 14pq2 + 19p2q + 6p3 

and by testing a
1 

we obtain for the procedure in Figure 7.2 with s = 1 

(7.6) {pq(l - q2)[1 + G(2,2)] + p(l - q3 )[1 + G(3,3)]}/p 

= 14pq2 + 2lp2q + 7P3 , 

which is uniformly larger; this completes the proof of theorem 9. 

It can also be shown by a similar induction argument that if x(2n-3) is 

a power of 2 (say 2s) and n is not of the form 2s + 2 then the best procedure 

of type 1 is equivalent;to the best procedure of type 2. In fact the best 

procedure of type 2 for q close to one has the form 
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Here 

Figure 7.3 Optimal Test of Type 2 for J(2,n) Situation. 

s-1 
n1 = n - y = n - 2 

t 
is not of the form 2 +2 if n is not of that 

form since if n = 2s + 2 + 8 with 8 :/:. 0 then by (5.17-) we find that 

s-3 s-2 -2 ~ 8 ~ 2 and thus s-1 
n1 = 2 + 2 + 8 is not of the form t 

2 + 2. 

Hence by the induction hypothesis the best procedure for J(2,n1) is to start 

by tes~ing a1 • We have used the hypothesis that x(2n-3) is a power of 2 

to insure that testing a1 is optimal if the first test in Figure 7.3 fails. 

Hence the best procedure of type 2 has the form in Figure 7.3. 

Since x(2n-3) = 2s and 2n-3 is odd, ic follows from the definition of 

x(m) in (5.17) that x(2n-4) and x(2n-2) are also equal to 
s 

2 and hence 

x(n-2) and x(n-1) are both equal to 2s-l. Hence the corresponding 

procedure of type 1 for q close to one has- the form 

J(2,n) 
(test a) 

/~ 
G(n-2,n-2) G(n-l,n-1) 

(test 28
-

1) (test 2s-l) 

/ "\_l I ~ s-1 
G(n1-2,n1-2) G(2 ,n-2) G(n1-1,n1-1) G(2 ,n-1) 

Figure 7.4 Optimal Test of Type 1 for J(2,n) Situation. 

where 2s-l b h h n1 = n - as a ove. We note tat tis is equivalent with the 

procedure of type 2 in Figure 7.3 since we have merely interchanged the order 
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• 
of two tests. To complete this proof we must show that for J(2,3) 

and J(2,5) the best procedures of type 1 and type 2 are identical. For 

J(2,3) we get complete symmetry and the result is clear. The result for 

J(2,5) can also be thrown back on the result for J(2,3), and this 

completes the proof. 

In the remaining cases where x(2n-3) is not a power of 2, it has been 

found empirically that the procedure of type 1 is as good or better than any 

of type 2 but this has not been proved to be optimal and must be regarded as 

a conjecture. 

In the case of the G(3,n) and J(3,n) situations for n ~ 3, we have 

given in Table A2. general patterns for 

?s+3 ~ n ~ 2s+l. 

s 
n = 2 + 1, n = 2s + 2 and 

It is known that in the G(3,n) situation with n ~ 3 the best procedure 

for q close to one tests all except a
3 

and if that fails all except a
2 

and if that fails all except a1• If any one of these passes, the test is 

clearly over and if they all fail, we are then in a J(3,n) situation. For q 

close to one the relation between the expected number of test G(3,n) for 

the G(3,n) situation and J(3,n) for the J(3,n) situation is 

(7.7) 

where G*(3,n) is defined in (3.4) (see also Table A3). This can also be 

written for q close to one as 

(7.8) J*(3,n) = G*(3,n) - 3(l+q+q2-qn-l) = pJ**(3,n) 

where J*(3,n) and J**(3,n) are defined in terms of J(3,n) by 

(7.9) J*(3,n) = [p2 + 3pq + 3q2 (1-qn- 3 )] J(3,n) = pJ**(3,n). 

To give some indication why the procedures in Table A2 ate optimal for 

the J(3,n) situation when n = 2s + 2 for some integer s ~ 2, we first 

note that the number of maximal probability states for q close to one is 
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~M = 3n-6 = 3°2s. In this case we have already noted by considering the coefficient 

of qn that if there are group tests that partition this M-set exactly in half 

then the optimal procedure must be among them. We now show that for J(3,n) 

with n = 2s+2 and s ~ 2 there is a unique first group-test that accomplishes 

this partition into "half and half" and hence it must be the best possible first 

test. 

Denote the 3 units that are known to contain a defective by a. (i = 1,2,3,) 
]. 

and remaining units by b. (i = 1,2, ••• , n-3). 
J. 

We can easily rule out the 

possibility that the next test contains 2 of the 3 units (a1 , a
2

, a
3

) since 

s the set corresponding to a successful test contains at most 2 -1 states, 

which is less than 3•2s-l. If the next test contains 1 of these 3 units 

of the units b. where j ~ 0, then it is easily 
]. 

verified that the set corresponding to a successful test contains 2n-5-2j 

states, which is odd and hence not equal to 3·2s-l for s ~ 2. If the 

next test contains none of the units a. and j of the units b. then the 
J. ]. 

set corresponding to a successful test contains 3n-6-3j states and setting 

this equal to 3·2s-l, we obtain the unique solution s-1 
j = 2 • 

If the first test passes then we obtain a similar situation, namely 

s-1 ) J(3,2 +2, and the argument is more involved since the optimal continuation 

is not unique. In the next test we can either test (b1 , b
2

, ••• , bw) where 

2s-2 ( b b b) h t = 2s-3• w = or a1 , 1 , 2 , ••• , t were In fact, if we choose 

the first alternative, then a1 can be brought into the 2rth test for any 

integer r provided s ~ 2r+l. The optimal continuation for any of these 

choices is determined by the fact that the maximal probability set has size 

3·2j for some integer j ~ 1 and the optimal continuation is a group-test 

that splits this set exactly in half. It can be verified {the proof is omitted) 

that all these procedures are equivalent in that they yield the same expected 

number of tests (See Table A2). The lack of uniqueness here for the optimal 

procedure is analogous to the lack of uniqueness observed for the J(2,n)­

situation when n is of the form 2s+2. 
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8. Definition of Procedure R00 

We now use the previous results to define the procedure R
00 

for all 

values of q. As in the case of procedures R0 and RP the procedure 

,_ 

R
00 

is defined recursiv.ely. 

* . G (m,n) with n ::::: m to denote 

We use H(n) to denote 

(l+q+ ••• +qm-l)G(m,n) 

E{TIH(n),q,Rool and 

where G(m,n) = : : -~~,.:-~ 

E{Tf G(m,n) ,q,Rg 0}. 

In the H(n) situation with n ~ 1 we test x = x(n) 

by 

(8.1) H(n) = 1 + Min [q~(n-x) + pG*(x,n)J. 
lgs:n 

In the G(m,n) situat"ion with n ~ m ~ 4 we test x = x(m) units from the 

defective set (without mixing) where x(m) is determined by 

(8.2) G*(m,n) = (l+q+ ••• +qm-l) + Min 
lgs:m-1 

x* * (q G (m-x,n-x) + G (x,n)]. 

The derivations of (8.1) and (8.2) are given in (7]. The value of x = x(m,q) 

does not depend on n (see theorem 2 above); for any m ~ 4 the value of x 

is given by (5.17) for q sufficiently close to one. 

Corresponding to the value of the r.h.se of (8.2) for x = 1, we define 

for n ~ m = 2 and n ~ m = 3, respectively, 

(8.4) 

G1(2,n) =l+q+ qH(n-2) + H(n-1), 

* G1(3,n) = 1 + q + q2 + qG (2,n-1) + H(n-1). 

For m = 2,3 and n ~ m we shall u_se G' (m,n) tp denote (for all q) 

the polynomial expression that holds for * G (m,n) when q is close to one. 

According to Procedure R
00 

when n ~ m = 2 or 3 we either test one unit 

from the defective set of size m (as in procedure R1) or we use the 

appropriate subroutine given in Tables Al and A2. Hence we have for m = 2,3 

and any n ~ m 

(8.5-) G* (m,n) = Min[G1 (m,n), G' (m,n)]. 

* It should be noted that G (2,2)eG1(2,2)=G'(2,2) since in this case 
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1-le can only test one unit from the defective set. Using G'(m,n), we can also 

rewrite (7~2) and (708), respectively, so that they hold for all values of q, 

namely 

(8.6) J*(2,n) • G'(2,n) (2+2q-qn-l) 

J*(3,n) s G'(3,n) - 3(1+q+q2-qn~l) 

(n~), 

(n~:3) • 

In particular, we note from (7o3) and (769) that 1~(2,3) ~ J*(3,3) for all 

q; this holds because the J(2,3)- and J{3,3)-situations are identical6 

Putting (8.6) and (8.7) in (8.5) we obtain for ~·-1n-= 2,3 and n ~ m 

(8.8) * ) . ) * ( ) n-1 J G (2,n· m Min[G1(2,n, J 2,n + 2 + 2q - q , 

&*(3,n) ~ Min(G1(3,n), J*(3,n) + 3(1 + q + q2 - q~-1}J 

and the only remaining problem is to use the procedures in Tables Al and A2. 

* * to find recursion formulae for J (2,n) and J (3,n) for higher values of no 

* For m ~ 2 we note that J (2,2)50 for all q and using the procedures 
-

in Table Al we obtain the following recursion formulas.. For n a.a 3. or 4 

(8.10) J*(2,n) = 1 + q - 2qn-l + qJ*(2,n-l) + pG*(2,n-l). 

l:L n ;::: 5 and not -._of the form 28 +2 for any integer s 

*( n-1 *( * (8.11). J 2,n) • 1 + q - 2q ~ ~qG n-2,n-2) + pG (rt.1,n-1)~ 

lf. n • 2s+2 for some integer s-1 s;::: 2, letting z a 2 ~ 2, 

) * ) ( z) n-1 z *< ) *c ) * . (8.12 J (2,n = 2-q (l+q) - 2q + q J 2,z+2 + pqG z,n-2 + pG (z,n-1). 

* * For m • 3 we have noted above that J (3,3)=J (2,3) given in (8010) 

and using the propedures in Table A2 we further obtain the following 

recursion formulas. For n • 4 or 5 

If n ~ 28 + 2 for some integer s ;::: 2, letting z a: 2s-l, 

{8.14) J*(3,n) z (l+q+q2 )[s-(s-l)qz]-3qn-l+ qzJ*(3,z+2) + p ~ qi-lG*(3,n-i) 0 

i:.:al 



For n = 7, 8 or 9 

* 3 n-1 * (8.15) J (3,n) = 3 + 3q - 2q - 4q + q2J (2,n-2) 

If 

* * * + pq2G (n-3,n-3) + pqG (2,n-2) + pG (2,n-1). 

s 2 + 3 ~ n ~ 2s+l for some integer s-2 s ~ 3, letting w = 2 , 

* 2 w+l w+2 n-1 w+l *( ) (8.16) J (3,n) = 3 + 4q + 4q - 3q - 4q - 4q + q J 2,n-1-w 

L,. -., 

~ 

... 

-
w+2 * * * * + pq G (n-w-3,n-w-3~ + pq2 G (w,n-3) + pqG (w,n-2) + pG (w+2,n-1). ~ 

If n = 2s+l for some integer s ~ 4, letting w = 2s-2 , 
..., 

( ) * ) 2 w w+l n-1 w *( 8.17 J (3,n = 3 + 4q + 4q - 4q - 3q - 4q + q J 2,n-w) 

w* * * * .-+ pq G (3w,3w) + pq2 G (w-1,n-3) + pqG (w-1,n-2) + pG (w,n-1). 

The boundary conditions for G*(m,n) * and H (m,n) are the same as for .. 
G(m,n) and H(n) in [7], namely, for all q 

H(O) = 0 .. 
(8 .18) 

* G ( 1 , n) = H ( n:- 1) n = 1,2, .... -This completes the definition of procedure R
00

• 

It is worth remarking that the expressions for J*(2,n) * and J (3 ,n) _, 

* either have no J (m,n) on the right side or can be iterated to remove 

* ~ J (m,n) from the right side. Hence it is possible to write all the equations 

in terms of H1(n) and G*(m,n) only, without any * J (m,n) at all. For 

example, we can use (7.2) to replace (8.12) by 

(8.19) * z · n-1 z * * * J (2,n) = (2-3q )(l+q) - q + q G (2,z+2) + pqG (z,n-z) + pG (z,n-1) 

and we can substitute this in the right side of (8.8) for s n = 2 +2 and 

z = 2s-l_ This may be useful for computation but the result does not appear 

to be simpler; such expressions were given in a preliminary report [9J on this 

paper. 

We note that in (8.1) either the argument is reduced or we obtain a 

* * G (x,n)-term. For each G (m,n) by (8.2) either the second argument is 
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~educed or the first one is. The same is true in all the apove formulas. 

Hence the testing procedure must come· to a conclusion after a finite number 

of tests. 

Explicit polynomial expressions for H{n) * and G (m,n) for 

n s 8 and all values of q can be found in Table A3 and A4, respectively; 

* the polynomial for G (m,n) defined after (3.4) then yields an explicit 

expression for the corresponding values of G(m,n). Polynomial expressions 

** ** for J (2 ,n) and J (3 ,n) for n s 8 and q close to one .(:or p · close to 

zer·o) are· given in Tables A6 and A7; these are given in powers of p. 

9. Concluding Remarks and Conjectures 

The--above procedure R00 has all the properties that have been shown in 

this paper to be necessary for a procedure to be optimal. As mentioned in 

Section 7, several of the subroutin~s for the J(3,n) situation, schematized 

in Table A3, have not been proved to be optimal. In addition it has been 

implicitly assumed that if we were to "combine" (see (8.5)) the recursion 

formulas for Procedure R1 , which is optimal for small values of q, with a 

special procedure which is optimal for q-values asymptotically close to 1 then 

the resulting procedure would be optimal for all values of q; this has not 

been proved. However it _is conjectured that the procedure R
00 

is optimal 

for all values of q. if N is of type 1 (see Section 6). 

The procedure R0 defined in (8] was introduced in this paper mainly for 

purposes of comparison (see Table 1). However it was pointed out in [6] that 

the procedure R0 (as well as R1) has the "first come, first served" property, 

i.e., if the unit u. stands before the unit u. in a given (original) ordering 
i J 

then uj will not be classified before u
1

• This property is destroyed for 

procedure R
00

, e.g., in the special subroutine for J(2,4) in Table Al. 

It is conjectured that Procedure R
0 

is the best procedure retaining this 

property. 

It has already been noted that procedure R1 is the best non-mixing· 
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procedure; this follows from the derivation of the recursion formulas (3.3) 

and (3.4). It was noted in I7] that if the units are not labeled (so that 

their individual past history is lost after each test) then the mixing sub-

routines of both procedures R0 and R00 are no longer possible. 

that Procedure R1 is optimal under this restriction. 

It is conjectured 

Some further general remarks and conjectures about Procedures . R
1

. and 

R
0 

ar€~ giv;n; in [ 7] and [ 8] • 
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1. 

~ 

Table Al 

.~.~~ .-special· ·subroutines for Procedure R
00 

in the G(2,n) and J(2,n) 

Situations for n ~- 2 and q Suffici-::tly Close to One.# 

s s 
G(2,2): T(a

1
)~T(a2)-4 S (Same as RO) 

s s 
G(2,n): T(a1 ,b1 , ••. ,bn_2)4T(a2 ,b1, ••• ,bn_2)4J(2,n) (Same as R

0
) 

n ~ 2 

J(2,3): T(a1)~(2,2) (Same as R
0

) 

J(2,4): 
~(2,3) 

T(b
1

) tG(2,3) 

If n ~ 5 and n :/: 2~-+2 for any positive integer r then the scheme is 

J(2,n): 
~G(n-2,n-2) 

T(a1)~G(n-1,n-l) (Same as R
0

) 

. r r-1 If n = 2:+2 for some integer r ~ 2 and we let t = 2 then the scheme is 

J(2,n): 
J(2,t+2)./G(t,n-2) 

T(b1 , ••• ,bt)4T(a1).~ G(t,n-1) 

#The symbol T(x,y) indicates that the procedure R00 calls for a 

test on x and y. A slanted arrow corresponds to a successful test; 
a horizontal arrow corresponds to an unsuccessful test. The symbol S 
indicates terminal stopping point; the symbols G(m,n) and J(m,n) 
indicate situations as explained in the text. 
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G(3,n): 
n ~ 3 

J(3,6): 

Table A2 

Special Subroutines 1 for Procedure R00 in the G(3,n..) and J(3,n) 

Situations for n ~ 3 and q Sufficiently2 Close to One :3 

.• ! .. 

; 1--; .. .,, 

. \.:,; ; ,' 

'I 

(Same as R0 ) 

(Same as R
0

) 

If n = 2r+2 for any integer r ~ 3 and we let t for 2r-3 , then the scheme is 

J(3,n): 

1The situations J(2,3), J(3,3) and J(3,4) are symmetrical and hence the test of any 
one unit gives the same results. 

2see Tables A4 and A5 for the explicit q intervals. 

3see footnote to Table Al for explanation of symbols. 
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Table A2 cont. 

For example, we obtain for f n = 10 (i.e., r = 3) 

J(3,10): 

G(3,6) 
T(b3)4G(3,7) 

.--'J(3,6) l _,;rG(3,8) 
T(b1,h2 ,b3,h4)~T(b1,b2 )~T(b1)4G(3,9) 

For 2r +3 ~ n ~ 2r+l with r·. an integer ~ 3 (writing w for 2r-2 ) 

J(3,n): 

~G(w,n-3) 
, _...;rJ(2,n-1-w) G(n-w-3~T(a2)---.... G(w,n-2) 

T(a1,b1, ••• ,bw~T(a2 ,a
3

,b1, ••• ,bw}4T(a1) --------.G(w+2,n-l) 

For n = 2r+l with ran integer~ 4 (writing w for 2r-2) 

~(2,3w+l) G( ) __...,,.c(w-1,n-3) 

• J(3,n): T(al,bl, ••• ,b l)L;T(a a b b ) _,,,,,, (3W),3WJ__.T(a2)~G(w-1,n-2) 
w- 2' 3' 1, ••• , ~Ta ~;nG( 1) w-2 1 -, w,n-

._ fThe J(3,7), J(3,8) and J(3,10) situations arise only from a J(3,2r+2) situation with 
even r ~ 4 and only by passing the first test (see the appropriate scheme above); 
trying different starting n values and using (5.2), we find that they require at 

• least n = 22 units in the initial H-situation • 

.. 
~ 

-
-
_, 

.. 
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Table A3 

* Polynomial Expression for H (n) = E{TIH(n), q, R0O ) 

(The integer shown is the coefficient of the power of q at the 
top of the colulllll and the terms are then added to form H*(n)) 

.. 
II 2-'· a 4 q5 6 q7 8 1 .. q-interval n X q .. q_ q q q q 

2 1 2 .000 to 0618 
2 3 - 1 - 1 .618 to 1.000 

1 3 .000 to .618 

3 2 5 - 3 - 1 1 .618 to .707 
3 5 - 2 - 1 -1 .707 to .843 
3 7 - 3 - 6 3 .843 to 1.000 

1 4 .000 to .618 
2 7 - 5 0 1 -1 .618 to .707 

4 2 7 - 4 - 1 -1 1 .707 to .786 
4 8 - 4 - 2 -1 .786 to .843 
4 10 - 5 - 7 3 .843 to 1.000 

·• 

1 5 .000 to .618 
2 9 - 7 1 0 -1 1 .618 to .707 
2 9 - 6 0 -1 1 -1 .707 to .755 

5 3 9 - 5 - 1 -8r_: 1 .755 to .786 
3 10 - 6 - 2 -1 0 1 .786 to .817 
5 11 - 7 - 2 0 0 -1 .817 to .843 
5 13 - 8 - 7 4 0 -1 .843 to .891 
5 14 - 8 - 8 4 -3 2 .891 to 1.000 

1 6 .000 to .618 
2 11 - 9 2 -1 0 1 -1 .618 to .707 
2 11 - 8 1 -2 1 -1 1 .707 to .755 
3 11 - 6 -'.2 -2 2 0 -1 .755 to .786 
3 12 - 7 - 3 -1 1 1 -1 .786 to .817 

6 3 13 -. 9 - ·2 0 0 -1 1 .817 to .843 
3 15 -10 - 7 .. 4 0 -1 1 .843 to .844 
6 16 -11 -·-6 4 - .1 -1 .844 to .891 
6 17 -12 - 7 5 - 4 5 -3 .891 to .914 
6 19 -14 -10 13 -11 4 .914 to .948 
6 20 -11 - 9 1 -10 12 -2 .948 to loOOO 

#The entry x indicates that the next test is on x units. 
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- ~ ' .. 
n -

-
- 7 

..... 

-
.. 
-
.. 

8 -
-.. 
-
_, 

~ 

la 

-
._ 

X 

1 
2 
2 
3 
3 
3 
4 
4 
4 
7 
7 
7 
7 
7 

1 
2 
2 
3 
3 
4 
4 
4 
4 
4 
4 
8 
8 
8 
8 
8 
8 
8 

1 2 q .4 

7 
13 -11 3 
13 -10 2 
13 - 7 -3 
14 - 8 -4 
15 -10 -3 
16 -11 -3 
18 -12 -8 
19 -14 -6 
19 -13 -6 
20 -14 -7 
22 -16 -10 
24 -19 -8 
25 -17 -10 

8 
15 -13 4 
15 -12 3 
15 - 8 -4 
16 - 9 -5 
17 -10 -5 
18 -12 -4 
19 -14 -3 
21 -15 -8 
22 -17 -6 
22 -16 -7 
22 -15 -7 
23 -16 -8 
25 -18 -13 
26 -19 -12 
28 -24 -7 
29 -24 -8 
30 -22 -10 

Table A3 cont • 

4 6 8 q3 4 q5 6 q7 ts q-interval q q q 

.000 to .618 
-2 1 0 -1 1 .618 to .707 
-3 2 -1 1 ..;1 .707 to .755 
-2 2 0 -1 1 .755 to .786 
0 1 0 -1 .786 to .817 
1 0 -2 1 .817 to .819 
0 0 -1 1 .819 to .843 
4 0 -1 1 .843 to .844 
3 -1 0 0 1 .844 to .869 
3 -1 -1 .869 to .891 
4 -4 5 -3 .891 to .915 

12 -11 4 .915 to .939 
15 -21 12 -5 3 .939 to .948 
2 -8 19 -15 5 .948 to 1.000 

.000 to .618 
-3 2 -1 0 1 -1 .618 to .707 
-4 3 -2 1 -1 1 .707 to .755 
-2 3 0 -2 1 .755 to .786 
0 1 0 -1 0 1 .786 to .812 
0 1 0 -1 .812 to .817 
1 0 -2 1 .817 to .819 
0 1 -1 .819 to .843 
4 1 -1 .843 to .844 
3 0 0 -1 1 .844 to .869 
3 0 -1 0 0 1 .869 to .885 
3 -1 -1 1 0 -1 .885 to .891 
5 -4 4 -2 -3 2 .891 to .914 

15 -8 -5 8 -2 -1 .914 to .915 
14 -10 -2 7 -4 1 .915 to .939 
15 -23 16 -6 4 -2 .939 to .940 
15 -23 16 -6 1 1 .940 to .948 
2 -10 23 -16 3 1 .948 to 1.000 
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Table A4 

* 1 m Polynomial Expression for G (m,n) = (~)E(TIG(m,n), q, R00) for 

pairs (m,n) with n ~ 8 that can arise when using Procedure R00 • 

m n X 1 q_ q q q q q q q q-interval # 2 3 4 5 6 7 8 

2 2 1 2 1 .000 to 1.000 

l+0 3 2 .000 to .618 
2 3 l+0 4 1 - 1 .618 to .768 

1+1 5 2 - 4 .768 to 1.000 

1 3 3 ·'2 .000 to .618 
3 3 1 4 2 1 .618 to .843 

2 6 3 - 3 .843 to 1.000 

l+0 4 3 .000 to .618 

2 4 l+o 6 1 - 2 .618 to .707 
l+o 6 2 - 2 -2 .797 to .843 
1+2 8 3 - 6 -2 .843 to 1.000 

l+0 4 4 3 .000 to .618 
l+0 6 2 1 .618 to .707 

3 4 l+o 6 3 1 -2 .707 to .768 
l+o 6 4 2 -5 .768 to .843 
l+o 8 3 - 3 -1 .843 to .907 
2+1 10 4 - 2 -6 .907 to 1.000 

1 4 4 4 3 .000 to .618 
1 6 2'. 2 3 .618 to .707 

4 4 1 6 3 :2 1 .707 to .755 
2 7 3 1 .755 to .843 
2 9 4 - 3 .843 to 1.000 

l+o 5 4 .000 to .618 
l+o 8 1 - 3 .618 to .707 

2 5 
l+o 8 2 - 3 -2 .707 to .786 
l+o 9 2 - 4 -2 -1 .786 to .843 
l+o 11 3 -10 -3 3 .843 to .891 
1+3 12 4 -10 -3 .891 to 1.000 

l+o 5 5 4 .000 to .618 
l+o 8 2 2 -1 -1 .618 to .707 

3 5 
l+0 8 3 2 -3 -1 .707 to .786 
l+o 9 3 1 -3 -2 .786 to .843 
l+0 11 4 - 3 -3 -2 .843 to .934 
2+2 13 5 _n2 -3 -7 .934 to 1.000 

#The entry x=x
1

+x
2 

indicates that the next test is on x 1+x2 units, x1 from the set 
known to contain at least one defective, i.e., the a's, ana x~ from fhe remaining 
binomial set, i.e., the b's. If II1=:n then only 1 integer is shtJWn in the x column. 

-
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Table A4 cont. -
2 3 4 5 6 7 8 _. 1 C. q.) 4 q;J u qr u q-1interval m n X q q q q q 

·1 5 5 5 5 4 .ooo to .618 - 1 8 2 3 4 3 .618 to .682 
i2 9 2 2 3 2 .682 to .707 

5 5 (2 9 3 2 1 2 .707 to .786 
._ 2 10 3 1 1 1 .786 to .843 

.2 12 4 -3 1 1 .843 to .891 
~ 2 13 5 -3 1 -2 .891 to 1.000 .. 
l+0 6 5 .000 to .618 
l+0 10 1 -4 .618 to .707 
l+o 10 2 -4 -2 .707 to .755 

~ l+0 10 3 -5 -3 0 1 .755 to .786 
l+o 11 3 -6 -3 -1 1 .786 to .817 
l+o 12 2 -6 -2 -1 -1 .817 to .843 - l+0 14 3 -12 -3 3 -1 .843 to .891 
l+0 15 3 -13 -3 0 2 .891 to .913 
1+4 16 4 -14 -2 1 -2 . 913 to 1.000 

I,._ 

l+0 6 6 5 .000 to .618 
l+o 10 2 3 -3 -1 1 .618 to .707 

-' l+0 10 3 3 -4 -1 -1 .707 to .755 
l+0 10 4 2 -5 -1 .755 to .786 

3 6 l+0 11 4 1 -5 -2 .786 to .817 
l+o 12 3 1 -4 -2 -2 .817 to .843 - l+O 14 4 -3 -6 --3 2 .843 to .891 
l+O 15 5 -3 -=-6 -6 2 .891 to .949 
2+3 18 7 -2 -7 -14 4 . 949 to 1. 000 

4-' 

1 6 6 6 6 6 5 .000 to .618 
1 10 2 4 4 4 5 .618 to .652 

wl 2 11 2 3 3 3 4 .652 to .707 
2 11 3 3 2 3 2 .707 to .755 
2 11 4 3 1 2 2 .755 to .786 - 6 6 2 12 4 2 1 1 2 .786 to .817 
2 13 3 2 2 1 .817 to .843 
2 15 4 -2 2 1 .843 to .891 
2 16 4 -3 2 -2 3 .891 to .914 

~ 2 18 4 -6 7 -4 .914 to .948 
3 19 8 -1 0 -10 2 .948 to 1.000 

-
-
'-I 
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1 2 
m n X q q 

l+O 7 6 
1+0 12 1 -5 
l+O 12 -2 -5 
1+0 12 4 -7 
l+o 13 4 -9 

2 7 
l+o 14 3 -9 
l+o 16 4 .. 15 
l+o 17 3 -14 
l+o 18 3 -15 
l+o 20 1 -18 
1+5 21 2 -18 
1+5 22 5 -17 

l+O 7 7 6 
l+o 12 2 4 
l+o 12 3 4 
l+o 12 5 2 
l+O 13 5 1 

3 7 
l+o 14 4 1 
l+o 16 5 -3 
l+o 17 4 -2 
l+o 18 4 -3 
l+o 20 4 .. 6 
l+o 21 7 ... 5 
1+4 22 6 -4 

l+o 7 7 7 
l+o 12 2 5 
l+O 12 3 5 
2+0 13 5 2 
2+0 14 5 1 

4 7 
2+o 15 4 1 
2+o 17 5 -3 
2+0 18 4 -2 
2+o 19 ... 4 -2 
2+0 21 2 -5 
2+o 22 3 -5 
2+0 23 6 .. 4 

Table A4 cont. 

q3 4 q5 q 4 

-2 
-3 0 1 
-3 0 1 
-2 0 -1 
-3 4 -1 
-3 3 -1 
.. 3 0 2 
5 .. 7 1 
5 -7 1 

·--7 -6 9 

·-5 0 1 
-6 -1 -1 
.. 7 -1 
-7 .. 2 
-6 -2 -2 
-8 -3 2 
-8 -4 2 
-8 -7 5 
... 3 -9 2 

-15 -8 10 
-7 -7 0 

.-6 

.3 -3 
2 -3 -2 
0 -3 -1 
0 -4 -1 
1 -4 -3 
1 -6 -4 
1 ... 7 -4 
2 -10 -1 

10 -17 -2 
10 -17 -2 
-2 -16 6 
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6 q7 ~ q•interval q q 6 8 

.000 to .618 

.618 to .707 

.707 to .755 
-1 .755 to .786 

.786 to .817 

.817 to .843 

.843 to .844 
-1 .844 to .891 
-1 .891 to .914 
2 .914 to .929 

-1 .929 to .948 
-3 .948 to 1.000 

.000 to .618 
-1 .618 to .707 
1 .707 to .755 

.755 to .786 

.786 to .817 

.817 to .843 

.843 to .844 
-1 .844 to .891 
-1 .891 to .914 
-1 .914 to .948 
-3 .948 to .958 
-4 .958 to 1.000 

.000 to .618 

.618 to .707 

.707 to .755 

.755 to .786 
-1 .786 to .817 
-1 .817 to .843 
3 .843 to .844 
2 .844 to .891 

-1 .891 to .914 
2 .914 to .929 

-1 .929 to .948 
-3 .948 to 1.000 

.. 
~ i· 

; 

~ ._ 

'-I 

_,j 

... 

-
-
_, 

... 

~ 

... 

-
I.al 

.. 
--
--
'-' 

1..1 

'-' 

'1 

--



- -... -a 

Table A4 cont. 

1 
'.::2 

----~3 
4 q5 6 q7 8 q-interval m n X q q q q q 

1 7 7 7 7 7. 7 6 .000 to .618 
1 12 2 5 4 ~- 6 5 .618 to .637 
2 13 2 4 3 4 5 4 .637 to .682 
2 13 2 5 3 3 4 3 .682 to .707 
2 13 3 5 2 3 2 3 .707 to .755 
2 13 5 3 1 3 3 2 .755 to .786 
2 14 5 2 1 2 3 2 .786 to .817 

7 7 2 15 4 2 2 2 1 2 .817 to .843 
2 17 5 -2 2 2 1 2 .843 to .844 
2 18 4 -1 2 1 1 1 .844 to .857 
3 18 5 -1 2 1 .857 to .891 
3 19 5 -2 2 -2 3 .891 to. .914 
3 21 5 -5 7 -4 .914 to .939 
4 23 4 -4 11 -10 2 -3 .939 to .948 
4 24 7 -3 -1 -9 10 -5 .948 to 1.000 

l+o 8 7 .000 to .618 
l+o 14 1 -6 .618 to .707 
l+o 14 2 -6 -2 .707 to .755 
l+o 14 5 -9 -4 0 2 -1 .755 to .786 
l+o 15 5 -11 -3 0 1 0 -1 .786 to .817 
l+o 16 4 -12 -1 0 -2 0 1 .817 to .819 
l+o 17 3 -12 -2 0 -1 0 1 .819 to .843 

2 8 l+o 19 4 -18 -3 4 -1 0 1 .843 to .844 
l+O 20 3 -17 -3 3 -1 -1 1 .844 to .869 
l+o 20 4 -17 -3 3 -2 -1 .869 to .891 
l+o 21 4 -19 -3 1 1 2 -3 .891 to .914 
l+O 23 4 -24 ,..,2 2 -7 4 .914 to .939 
l+O 25 1 -22 5 -8 1 -1 3 .939 to .940 
1+7 26 2 -22 5 -8 1 -1 .940 to .948 
1+7 27 5 -21 -7 -7 9 -3 .948 to 1.000 

l+O 8 8 ·7 .000 to .618 
l+O 14 2 5 -7 1 0 -1 1 .618 to .707 
l+O 14 3 5 -8 0 -1 1 -1 .707 to .755 
l+O 14 6 -~2 -9 -1 .755 to .786 
l+O 15 6 ·.1 -9 -2 .786 to .817 
l+O 16 5 ·.1 -8 -2 -2 .817 to .819 
l+O 17 4 .1 -9 -2 -1 .819 to .843 

3 8 l;-0 19 5 ··-3 -11 -3 3 .843 to .844 
l+O 20 4 -~2 -11 -4 3 -1 .844 to .869 
l+O 20 5 -2 -11 -4 2 -1 -1 .869 to .891 
l+O 21 5 -3 -11 -7 5 -1 -1 .891 to .914 
l;-0 23 5 -8 -6 -6 -3 1 2 .914 to .929 
l+O 23 6 -7 -6 -6 -3 1 -1 .929 to .939 - l+O 25 3 -5 -3 -16 5 -4 2 .939 to .948 
l+o 26 6 -4 -15 -!5 13 -6 2 . 948 to .964 
2+5 28 5 -4 -16 -9 20 -17 -1 .964 to 1.000 
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Table A4 cont. '-' 

1 2 j Lj. q) 0 ·r 0 q-interval m n X q _q .q q q q q 2 4 5 6 7 8 
i.-1 

l+O 8 8 8' 7 .000 to .618 
l+o 14 2 6 3 -4 .618 to .707 ... 
l+o 14 3 6 2 -4 -2 .707 to .755 
2+o 15 6 2 0 .,5 :..1 -1 1 .755 to .786 
2+0 16 6 1 1 -6 -2 ... 1 .786 to .817 
2+o 17 5 1 2 -6 -4 -1 .817 to .819 -2+o 18 4 1 1 -6 -3 -1 .819 to .843 

4 8 2+0 20 5 -3 1 -8 ... 4 3 .843 to .844 
2+o 21 4 Q2,, 1- -9 -4 2 .844 to .869 .., 
2+0 21 5 -2 1 -9 .. 5 2 -1 .869 to .891 
2+0 22 5 -3 1 -12 -2 2 -1 .891 to .913 
2+o 24 5 -·r· 7 -12 -9 5 -2 .913 to .939 
2+0 26 2 -5 10 -22 -1 0 1 .939 to .940 --
2+o 27 3 -5 10 -22 -1 0 -2 .940 to .948 
2+o 28 6 -4 -a·: -21 7 -2 -2 . 948 to 1. 000 

--
1 8 8 8 8 8 8 8 7 .000 to .618 
1 14 2 6 4 "6 6 6 7 .618 to .629 
2 15 2 5 3 5 5 5 6 .629 to .652 

..., 
2 15 2 6 3 4 4 4 5 .652 to .707 
2 15 3 6 2 4 3 4 3 . 707 to .755 
2 15 6 3 1 4 4 2 3 .755 to .786 ... 
2 16 6 2 2 3 3 2 2 .786 to .817 
2 17 5 2 3 3 1 2 2 .817 to .819 

8 8 3 18 5 2 2 2 1 2 2 .819 to .843 
3 20 6 -2 2_ 2 1 2 2 .843 to .844 -
3 21 5 -1 2 1 1 1 2 .844 to .869 
3 21 6 -1 2 1 0 1 1 .869 to .891 
3 22 6 -2 3 -1 3 1 -2 .891 to .914 .... 
3 24 6 .. 7 8 0 ... 5 3 1 .914 to .915 
4 25 6 -6 8 -2 -4 3 -1 .915 to .939 
4 27 3 -4 11 -12'" 4 -2 2 .939 to .940 ... 
4 28 4 -4 11 -12 4 -2 -1 . 940 to .948 
4 29 7 .. 3 -1 -11 12 -4 -1 . 948 to 1. 000 

.. ~ -
~ 

~ 

I , 

~ 
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Table A5 

Diagram Showing the Number of Units to be Taken in any H-situation or any 

G-situation for n = 1 through 8 and m~n under Procedure R00• 

(Those G-situations. which will never arise if we start with an H-situation 

are omitted from the diagram.) 

Hoo(n) 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

1\\ 1 

1,, 1 2 

1\\ 1 2 .7 3 

11, 1 2 4 

l\\ 1 .618 2 3 .8 7 5 

11, 1 2 5 3 .8li-4 6 

1 \ \ 1 2 3 .81 7 

1/ I 1 2 4 8 

G00(2,n) 

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

1 

1// 1 1 + 1 

1 \ \ 1 .Bli-3 1 + 2 

11/ 1 .8 1 1 + 3 

1\\ 1 .913 1 + 4 

111 1 1 + 5 

1\\ 1 .9!1-0 1 + 6 

q = Probability of a Good Unit 

- 66 -



Table A2 cont. 

G00(3,n) 

0 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

3 1 2 + 0 

4 11 I 1 .9 7 2 + 1 

5 lh 1 .9 4 2 + 2 

6 l/1 1 .94 
! 

' 1 

8 1 

G00(m,n) for 1 n ;a: m ;a: 4 

0.60 0.65 0.70 0.75 0.80 0.85 o. 0 0.95 

.7 2 

5 1/11 2 

6 1 \ \ 1 2 

7 1/11 2 .8 3. 

8 1\\1 2 3 4 

1 By Theorem 2 this part of the rule R00 does not depend on n. 

I 
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'. :rable A6 

_. ,.The l'"olvnomials . J**,(2 ,n) . and· the First Test-Group ·in the .J.(2 ,n) Situation 
¢ 

under Procedures R00 and R0 for n s 10 · and ·. p Close to Zero' 

• '4.' 

** J (2,njROO) 

Test 1 2 p3 4 p5 6 p7 8 Range$ n p p p p p 

3 (al) 6 -3 p s .232 

4 (bl) 14 -9 1 p s ol57 

5 (al) 23 -13 -1 1 p s: .109 
6 (bl,b2) 33 -24 8 -4 1 p s .087 

7 (al) 43 -14 -19 9 3 -2 p s .052 

8 (al) 54 -18 -30 28 -12 4 -1 p s .052 

9 (al) 66 -44 26 -28 -5 31 -20 4 p s .052 

10 (b1,b2,b~~b4) 78 -64 75 -119 100 -46 15 -5 1 p s; .o48 

Test 1 2 p3 4 p5 6 p7 8 Range$ n p p p p p 

3 (al) 6 -3 p s: .232 

4 (al) 14 -7 p s: .149 

5 (al) 23 -13 1 p s: .109 

6 (al) 33 -22 5 -1 p s .086 

7 (al) 43 -13 -38 50 -28 6 p s .051 

8 (al) 54 -17 -49 69 -43 12 -1 p s: .051 

9 (al) 66 -44 · 32 -81 116 -87 33 -5 p s .051 

10 (al) 78 -62 68 -136 166 -114 41 -6 0 p s .o48 

# '.~ultiplying each cqe·ff~cient by the power of p above it and summing the row gives 

·** · . * . . · . n-1 .. 
~ (2,n) = ~ (2,n)/p ~ (1 + q - 2q J ~(2,n)/p . 

.i $ Each entry is one minus the last dividing point for the corresponding G(2, n) 
function. 
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\T~ble A7 
** The Polynomials J (3,n) and the First Test-Group in the J(3,n) Situation 

under Procedures R00 and R0 for n s: 10 and p Close to Zero# 

Test 1 2 p3 4 5 ' 0 p7 8 Range$ n p p p p p p 

3 (al) 6 -3 p ~ .157 

4 (al) 18 -14 3 p s: .093 

5 (al) 33 -38 19 -4 p s: .o66 

6 {bl,b2) 48 -40 -7 21 -7 p s: .051 

7 (al,bl) 66 -85 55 -22 6 -1 p s: .o42 

8 (al,bl) 84 -122 122 -94 40 -3 -2 p s; .036 

9 (al,bl) 102 -127 92 -86 95 -69 28 -5 p s: .031 

10 ;(b1,b2,b3,b4) 120 -93 -207 690 -997 840 -417 1;1.3 -13 p s: 0027 

Test 1 2 p3 4 p5 6 p7 8 Range$ n p p p p p 

i 
3 (al) 6 - 3 p s; .157 

4 (al) 18 -14 3 p s; D093 
!5 (al) 33 -36 18 - 4 p s: .o66 

§ 
6 (al) 49 -59 32 - 7 p s: .051 

7 (al) 66 -66 27 16 - 9 2 p s; .041 

§8 (al) 84 -100 46 3 -13 6 - 1 p s; .035 

9 (al) 103 -137 108 -87 78 -51 19 - 3 p s: .031 

10 (al) 123 -196 273 -408 472 -357 167 -44 5 p s: .027 

V 

# Multiplying each coefficient by the power of p above it and summing the row gives 

J** (3 ,n) = J* (3 ,n)/p = (1 + q + q2 - 3qn-l) J(3 ,n)/p. -' 

$ Each entry is one minus the last dividing point for the corresponding G(3,n) 

function. 

~Under procedure R0 , if we start with an H-situation, the only J(3,n)-situations 

that can arise are those for which n is an integer:. multiple of 3. 
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• Appendix 

.. Necessary Properties of Group-Test Codes 

Corresponding to the fact that each test has exactly two possible outcomes 

we consider only binary codes in this discussion. Any test is allowed in group­

testing provided only that we do not carry out a test whose answer we know in 

advanceo This also implies that any inference that can be made about the units 

will be made as soon as possible. 

The rows of a code will be called code words. It will be convenient to 

assume throughout that the code words are listed in lexicographic (or dictionary) 

ordering, although some properties (such as properties 1 and 2 below) can be 

stated without reference to any ordering. 

Any code whicp has a group-testing interpretation will be called a group­

testing code (GT code). The class of GT codes is a proper subset of the 

exhaustive codes (see property 2 below) and it should not be assumed that a 

GT code can have only one group-testing interpretation. Such questions of 

uniqueness wil~ be discussed later. 

The following properties are necessary properties of a GT code. Although 

it is conjectured that they are also sufficient, no attempt has been made to 

prove the sufficiency. In addition to stating and proving that these properties 

hold for a GT code, we show by examples how they can be used to prove that 

certain exhaustive codes are not GT codes. 

Property 1: Every GT code has the prefix property, i.eo, no code word W in a 

GT code can be the prefix of any other word in that code. Such codes are also 

called instantaneous. 

Proof: A group-test must eitL i: ·.-,top or continue after the sequence of tests 

indicated by W and cannot do both; henc t:-. property 1 follows. 

Property 2:. If w. 
J 

(j = 1, 2, ••• , J) 

denotes the length of W. then 
J 

(Al) f 2-L(Wj) ~ 1. 
j=l 

are the J words of a GT code and L(W.) 
J 



• ~ 

,. 1, 

For an arbitrary code satisfying property 1 is it well known [ ] that the weak 

inequality ~ holds in (Al). Codes satisfying (Al) may be regarded as efficient 

codes and in the presence of property 1 have been called exhaustive codes by 

some authors [ ]. 

Proof: Assume that the strict inequality holds in (Al) so that the code is not 

exhaustive. Then we can add at least one code word to our list without destroying 

property 1 and still have the weak inequality ~ in (Al). This means that there 

is a junction point in our code tree which emits only one line segment instead of 

the usual two. This in turn means that we carried out a test for which we knew 

the answer in advance. Since this is not allowed, it could not be a GT code. 

We shall use the symbol W = (V,Oa) to denote a code word with the prefix 

V of length v ~ 0 (consisting of zeros and ones) followed"a zeros. A 

c~rollary of property 2 is "'-t~) 

'\\ 
Corollary 2.1: Any code word of the form (V,O) is followed by the'\o..~,word 

'.:~ ... 
'-~~-for some integer a~ o. 

,,, ..., 

-' 

... 

-
... 
..., 

.... 

..., 

... 

~= If the next word has the prefix (V,O) then property 1 is destroyed~'~ i 

If it has the prefix (V,l) and is not followed only by zeros then we can insert' 

(V,l,Oa) -
at least one "missing" code word and property 2 is destroyed. If it does not have 

the prefix V and ~sin the correct ordering then (V,1) can be used as a missing 

code word and property 2 is again negated. 

Property 3: In a GT code any code word W of the form (V,l) has as an immediate 

-
-

predecessor the code word (V,O). This means that the last group test was on a -' 

single unit with no associated inference. 

Proof: From properties 1 and 2 it follows that the predecessor of W has to have 

the form W' = (V,O,V') where V' contains only ones (but we do not need this 

for·our proof). By the nature of group-testing, the last test can result iri 

I 

--
I I 
I 

--
failure (i.e., in a one) only if it is. a test on a single unit with no inference '-' 

and there are no other unclassified units left. Then we have to terminate after 
~ 

this test regardless of its result. Hence the code word (V,O) must be present 

-·7,?l - -

'· 



ift the code and in the lexicographic ordering it must be the immediate predecessor. 

As corollaries of property 3 we have the following properties: 

Corollary 3.1: Two successive code words of a GT code cannot both end in a one. 

Proof: Corollary 3.1 is an immediate consequence of property 3. 

Before giving the next corollary it is instructive to define a branch B of 

a GT code as a succession of code words Wi+l' Wi+2 , ••• ,wj (in lexicographic order) 

such that W ends in O for 
rt 

and both end in 1. The length 

L(B) of the branch B is the number of code words in B, so that L(B) = j. 

Then the code (or tree) is a collection of branches and we can think of the code 

words in a branch as "twigs" on that branch, and finally of the digits in a 

particular code word (or twig) as leaves on that twig. 

Corollary 3.2: The twigs in any branch are increasing in length except for the 

last two that have the same length and differ only in the last leaf (i.e., digit). 

Proof: Corollary 3.2 is a simple consequence of property 3 and corollary 2.1. 

(In going from a word ending in one to a word ending in zero, the length can 

increase, decrease or stay the same, i.e., all three possibilities can occur.) 

Property 4: For any GT code the number n. 
J 

of code words with prefix J for 

j ~ O is zero or a power of 2, the numbers [n.j forming a nonincreasing sequence. 
J 

For any j for which n. > O, if we isolate these code words and drop the prefix 
J 

Oj then we again obtain a GT code. For j = 0 this says that the total number J 

of code words must be a power of 2; in fact, J = 2N where N is the number of 

units being classified. For j = 1, if exactly half of the code words start with 

a zero then the first test is on a single unit; hence if we isolate the code words 

starting with 1 and drop the prefix 1 then we again obtain a GT code. 

Proof: If r units are passed by the first j tests as satisfactory then there 

are N-r units left to classify and these must lead to exactly N-r 
2 endpoints, 

which is the same as the number of code words. The first test is on a single unit 

if and only if half of the code words start with a zero and then if we drop the 

common first digit the remainder is a group test on N-1 units. 
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Corollary 4.1: The maximum number of digits in any code word of a GT is " -r J-1, 

where J = 2N is the number of code words. 

Proof: Since N 
J = 2 ' the maximal number of tests in any one code word is the 

number of non-empty subsets of the N units, i.e., 2N - 1 = J - 1. 

Equality in corollary 4ol can only hold if all the digits, except possibly 

the last, are ones. A stronger form of this result will be given in property 6 

below. 

.-_;.. 
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-­Property 5: If (V,00!) and (V,lS) are both code words of the same GT code, 

then O! s s. If O! = S then the number of units classified in the last a tests ._ 

equals O! and there is no inference associated with these tests. In particular, 

if the length v of V is zero then O! ~ N s s. 
Proof: Since the prefix V is in connnon, there is a common situation for both 

code words after the tests and the results corresponding to the digity of v. At 

this common situation the number of unclassified units must be the same. A ~ 

sequence of O! zeros classifies at least O! units and a sequence of S ones 

classifies at most S units. Hence we obtain a contradiction unless a~ S, and 

if 0t = S the common value must be the number of units classified in these 0t testsi 
-1 

If there was any inference associated with these tests then the 0t zeros would 

classify at least 0t + 1 units and we could not have O! = S· If the length v 1.1 

of V is zero then the number of unclassified units is N at the outset and the 

same argument tells us that O! s; N s; S• 

The following lemma is a generalization of property 3 above. We again assume 

that V is an arbitrary vector of zeros and ones with length V ~ o. 

Lemma 6.1: If a GT code contains all · 2j code words with the connnon prefix V 

and length v + j then the last j tests are on one unit each and there is no 

inference associated with these j tests. 

Proof: We use induction on j; the results hold for j = 1 by property 3 above. 

Since the GT code contains both (V,Oj) and (V,lj) then by property 5 the last 

I 

--

j tests associated with these two words are on one unit each without any inference • .i 

-··1~ ·- I i 

ii.J 
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, .. I~ follows that the last j digits of all the ~ code words with prefix V, 

and in particular of (V,lj), are used to classify exactly j units. Suppose 

the V + 1st tests are on one unit each and hence the code word (v, 1 j) can 

classify at most j-1 units after the prefix V; this is a contradiction of the 

above statement that j units are classified after the prefix v. Thus the 

V + 1st test must be on one unit. If the v + 1st test carried any inference 

with it then by the induction hypothesis the code word (V,O,lj-l) has to be 

shorter than (V, 1 j) or else the latter code word would leave at least 1 unit 

unclassified. Since both words are in the code and they have the same length, 

we have a contradiction. Hence there cannot be any inference associated with 

st this v + 1 tests, and using the induction hypothesis there cannot be any infer-

ence in any of the last j tests; this proves lenuna 6.1. 

Lenuna 6.2: In a GT code if the code word W' = (V,O,la) is followed by 

W'' = (V,1,0S) where the cOim11on prefix V co~tains d ones (a~ 0, d ~ 0) 

and S ~a+ d + 1 = o (say) then there must be an inference associated with 

at least one of the last o zeros in W''. 

Proof: st If the v + 1 test is on a single unit then W' classifies at most 6 

units after the prefix V, and W'' classifies at least S + 1 units after the 

prefix V. Since they must classify the same number of units, S + 1 ~ o and 

this contradicts our hypothesis. 
st 

Hence the v + 1 test.must be on u units, 

where u ~ 2. Since W'' st 
has only zeros after the v + 1 test, it must have an 

additional inference among the last S tests. If this inference is not associated 

with one of the last 6 zeros then the number of units classified by W'' after 

the prefix V is at least u + o. The number of units classified by W' after 

the prefix V is at most u + 6 - 1. Since they must classify the same number of 

units, we have a contradiction which proves lennna 6.2. 

Corollary 6.1: If W' = (oY) for y ~ 1 is followed by W'' = (oY- 1 ,1,oS) where 

S > 0, then there must be a single inference associated with the last zero in W". 

Proof: Set a= d = 0 above. 

7~ ... 



Property 6: In a GT code the code word W' = (V,O,la) 

,.. ,.. .. ;. 
with prefix V containini 

6 d ones (a~ 0, d ~ 0) cannot be followed by the complete set of 2 code words 

of the form (v,1,0S-oo6), ••• ,(v,1,0S-o1 6), all having the same length v + 1 + S, 

if S ~ 6 =a+ d + 1. 

'e':~ _, 

_., 

I I ..., 

~: By lemma 6.2 there must be an inference associated with at least one of -

the last 6 zeros of (V,l,OS). However by lemma 6.1 (using V* = (V,l,OS-o) as 

a new prefix) there is no inference associated with the last 6 testso This 

contradiction proves property 6. 

Illustrations: Four examples of codes for N = 3 and v = 0 that are ruled out 

as GT codes by property 6: 

a = 0; 8 = 2 a= 0; 8 = 2 a = 0; 8 = l a = l; 8 = 3 

0 0 0 00 

100 100 1000 01 

101 101 1001 1000 

110 1100 1010 1001 

11100 1101 1011 1010 

11101 1110 110 1011 

11110 11110 1110 110 

11111 11111 1111 111 

These examples are not ruled out by any of the previous properties of a GT code. 

For any code with J = 2N 

ones in w and let 

(A2) h(d;N) = 

code words let d = d(W) denote the number of 

, 
0 if d = 0 

1 if 0 < d ~ 2N-1 = 2N - 2N-l 
••••••••••••••••••••••• Q •••••••••••••••••••••••• 

j if 2N-j+l(2j-l_l) < d ~ 2N-j(2j-l) 
•••o••••••••o•o••••••••o•••••••••4'•••••••••••••• 

N if 

co if 

2N-2 < d s: 2N-l 

N 
d > 2 -1. 

(i.e., if N 
d = 2 -1) 

Then h(d;N) is the minimal number of defectives that must be present under W 

if d different tests fail. Let g = g(W) ~ 0 denote the number of zeros in W, 

so that N* = N - g is an upper bound to the number of defectives under W. Then 

-.. 7j .-:' 

.., 

__; 

I 

1w 

-' 

....-

-
--
I : -... 

... 

laJ 

... 
I ... 
: I 

~ 

I I 

'-I 

._I 

i I w 



I 

-' 

., 
·.--- k(d;~) ~ h(d;N) is a better lower bound to the number of defectives present 

under W since h(d;N) is a nondecreasing function of N. 

Property 7: For any code word W in a GT code with J = 2N 

(A3) h(d;N*) ~ N*. 

Proof: Since the left side of (A3) is a lower bound to the number of defective 

units and the right side is an upper bound, the result follows. 

Illustration: The following two codes for N = 3 are ruled out by property 7: 

00 0 

01 1000 

100 10010 

1010 10011 

10110 1010 

10111 1011 

110 110 

111 111 

They are not ruled out by any of the previous properties of a GT code. It is 

interesting to note that the weaker form of property 7 which states that 

(A4) h(d;N) ~ N* 

rules out the second code above but not the first. In particular, the 5th 

word of the first code gives N* = 1 and h(3;1) = 2. 

- 76 _.,. 
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