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FULLY DISCRETE GALERKIN METHODS
FOR THE KORTEWEG - DE VRIES EQUATION "

sk ++
Jerry L. Bona, = Vassilios A. Dougalis,+ Ohannes A. Karakashian

Fully discrete schemes for the numerical simulation of solutions of the
periodic initial-value problem for the Korteweg -de Vries equation are introduced,
implemented and tested. Of especial interest are stable schemes featuring rates of
convergence of order higher than two in both the spatial and temporal variable. A
careful analysis of the relative and absolute efficiency of these schemes is carried
out and one of the schemes is applied to demonstrate that solutions of certain
generalized Korteweg -de Vries equations apparently may develop singularities in

finite time.

* Work supported in part by the National Science Foundation and in part by the
U.S. Army Research Office. Part of this work was done while the first author
was visiting the Institute for Mathematics and its Applications at the University
of Minnesota.

*** Department of Mathematics, The University of Chicago, Chicago, IL 60637,

* Mathematics Department, University of Tennessee, Knoxville, TN 37996 and
Mathematics Department, University of Crete, Iraklion, Crete, Greece.

H Mathematics Department, University of Tennessee, Knoxville, TN 37996.



1. INTRODUCTION

Described herein are some numerical methods for approximating the
solutions of a class of partial differential equations that model the propagation of
small-amplitude, long waves in nonlinear, dispersive media. In this paper, the
first of two, the numerical schemes will be described and analyzed in the context
of the periodic initial-value problem for the Korteweg -de Vries (KdV) equation,
which is to determine a function u = u(x,t) defined for all x and nonnegative t

which, for all t> 0, is periodic of period 1 in x and satisfies

(1.1a) u,+m +uu + €u =0, for xeR, 0<t,
t X X XXX

(1. 1b) u(x,0 = uO(X), for x€R,

where u0 is a given,l-periodic function and € > 0, n> 0 are constants. In the

sequel to this paper the generalized KdV equation with nonlinear term up

u. P21,
and the KdV - Burgers equation with dissipative term —vuxx, v >0, will also be
considered. TFor the KdV equation itself, the problem expressed in (1.1) has a

smooth solution u corresponding to smooth initial data uO (cf. [8] or [21]).

In addition to presenting classes of numerical schemes, the existing theory
concerning their stability and accuracy will be reviewed to provide a context for a
series of numerical experiments on representative problems for (1.1) whose exact
solution is known. An especial focus of attention will be issues concerning the
effective implementation of the proposed methods and an assessment of the resulting

computational efficiencies.

Many numerical methods have been proposed, analyzed, and implemented
for approximating solutions of (1.1). Zabusky [35] has given an authoritative survey
of the literature in a recent review paper. The existing techniques include finite-
difference methods (e. g., [—19], [24], [_28],_ E’i 1], and [36]), spectral methods (e. g.,
(1], [14), [17], [20], [23], and [29)) and Galerkin-finite-element methods (e.g., [2],

[4], [5], [16], [25], [32], and [34).



The numerical schemes studied here are fully discrete Galerkin methods
that are based on a standard semi-discretization in the spatial variable x ﬁsing
smooth periodic splines on a uniform mesh on ([0,1). (Most of the experiments
described below were performed with quadratic or cubic splines.) For the temporal
discretization various procedures are proposed, mainly second- and third-order
accurate, A-stable,diagonally implicit Runge-Kutta methods coupled with Newton's
method to solve the attendant nonlinear systems at each time step, and Rosenbrock
methods. Because the solutions of problems of the type exemplified in (1. 1) are
smooth, these methods are well suited to performing stable and accurate compu-
tations with relatively large time steps, a feature of considerable practical importance
(cf. the discussion in [10] and [11]). Indeed, it will appear that taking k to be of
order h suffices in all cases to guarantee good accuracy; here k and h denote the
temporal and spatial discretization lengths, respectively. These methods were
implemented in a FORTRAN program that gives the user the choice of using spatial
discretizations with splines of order r in the range 3 < r £ 9, combined with any

of the aforementioned time-stepping procedures.

The paper is organized as follows. In Section 2 the numerical schemes are
introduced and the rigorously established stability and convergence results for
them are quoted. Section 3 is devoted to features of the coding of the schemes.
Special attention is given to the description of data structures used to improve the
efficiency of the procedure. Work estimates for the various methods are also pro-
vided. In Section 4 the outcome of an extensive experimental study of the accuracy
and stability of these methods is presented. Using calculations performed over
short temporal intervals, values of k and h are determined that minimize the work
each method requires to achieve a given error tolerance. The relative computational
efficiencies of the thus optimized procedures are then compared in detail. Com-
parisons are also effected over longer time scales. The overall conclusions are
summarized in Section 5 and an interesting sample result is presented that make s

use of the techniques in an exploratory mode.



2. THE NUMERICAL METHODS

We introduce here the precise numerical techniques that will be used

throughout and provide commentary on theoretical aspects of these procedures.

All the fully discrete methods to be discussed are based on a standard
Galerkin semi-discretization using smooth, periodic splines in the spatial variable.
Let N be a positive integer, let h = N-1 denote the uniform mesh length of the
spatial discretization, and for integers j, set xj =jh. If r>3 is an integer and
h is as just defined, denote by st

h
splines of order r, that is, the space of 1-periodic, piecewise polynomial functions

the N-dimensional space of smooth, 1-periodic

of degree r - 1 on each subinterval [x X +1] which have r - 2 continuous derivatives.
An element of Sh is determined by its values on [0,1]. A convenient basis for

Sh may be constructed as follows (cf. [30]). Let x denote the characteristic
function of the closed interval [-1/2, 1/2] and let y = x*r be the r-fold con-

volution of X. For any je€Z, set x,[/j(x) = zp(h_lx—j) and define

g () = Z%HN

LeZ

Then {z} form a basis for Sh with the peak of ;6 occurring at xJ, j=1,,2,...,N.
The ba81s {g‘ } actually used in our computations are obtained from the ;6] by
scaling and a cychc permutation so that the maximum value of each é is one and

the peak of ,6 occurs at x = (N (r-1)/ 2])h+(]-1)h modulo one.

The usual inner product in L2([0, 1]) is denoted (-,-) and the associated

. ” Let T >0 be given. A semi-discrete approximation u, = uh(x, t)

to (1. 1) lying in S-

h for each t in [0, T] is defined by requiring that

(2. 1a) (uht+ o + uu p) - E(u‘hxx’ $) = 0 for all ,668; and 0Kt T,

(2. 1b) w (+,0) = P,



where PuO is an element of S; that approximates u0 well and the third-order

term has been integrated by parts to permit the use of quadratic splines. In practice
P was taken to be the orthogonal projection of u0 onto SE in L2, that is

(Puo, $) = (uO,é) for all de SE. Other choices are possible however: Pu0 could be
taken as a polynomial interpolant, or one of the various quasi-interpolants, of uO.

It was established in [5] and [32] (for € =1 and n =0, but the analysis carries
over without essential change to the case at hand) that if the initial data u ( ,0) is

optimally close in L_ to ¥ in the sense that ”uh( ,0 -u ” =0(h") as h-—>0 and

2
if the solution of (1.1) is sufficiently smooth, then uh(x, t) exists, is unique, and
satisfies the relation
max “u.h( 9 -u(-, 8] = o’
0LtT
as h—0. (In [5] the relevant theorem is stated and proved for r > 4, but if the

third-order term is integrated by parts, the proof works in case r = 3.)

The system of equations (2. 1a) and the initial conditions (2. 1b) are equivalent
to an initial-value problem for a system of ordinary differential equations. Indeed,
setting

N

w (%, = Zci(t)¢i(x),

i=1

(2.1) forces the conclusion that the unknown vector ot) = [cl, ves,sC N] satisfies

A

dc

(2. 2a) G-djc-+nM3+F(3)+€Sé\=0, 0<tLT,
with

0
(2.2b) e = ¢ .

Here G, M, and S are N XN matrices whose entries are given by
= = ': /s d S.. = - '.‘, s

for 1<i,j<N, F(c) is an ]RN—valued function of ¢ whose components are



N

b, = ),
— 1 .
F(o), = y jzlckcj(¢k¢j,¢i), for 1<igN,

and 80 is the vector of coefficients of u.h( -,0) = PuO. Note that if Pu0 is the

C L 0 T A0 . . A0 10
L2—pro;|ect10n of u” on S, then ¢ is the solution of the linear system Gc =TU

A 0
where U0 = ((uO, ¢$1), oo,y (u ,éN)). The matrix G is symmetric and positive definite
whereas M and S are skew-symmetric. One verifies straightforwardly that G, M,

and S are cyclic (circulant) matrices.

To compute an approximation to the solution u of (1.1) the system (2.2) of
ordinary differential equations must be discretized. To achieve this several
single-step methods were used which reduce,in the context of linear systems of
ordinary differential equations,to A-stable schemes. These choices allowed the
retention of higher-order accuracy without undue stability restrictions on the tem-
poral discretization as a function of h. In what follows k will denote the constant
positive time step and t* will stand for nk, n=0,1,...,J, where it is taken that

T = kJ for some positive integer J.

Perhaps the most obvious temporal discretization is a Crank-Nicolson scheme

in which one seeks {Vn}izo in Sr such that

h
R T
(2. 3a) (V' "=V +knv “+kV v, , 9) —ke(VXX , 6N =0
for all ¢ in SE, 0<ngJ-1, and
(2. 3b) V0 = PuO,

1

n+§ n +1
where V. % = (V" +V"

)/2. For every n in the range [0,J-1], Vn-l-1 is obtained
from (2.3a) as the solution of a nonlinear system of equations. In [5] it was shown
that if the solution u of (1.1) is sufficiently smooth (for n =0, € =1, and r > 4,
but the proof is easily extended to cover the present case, even for r = 3) then for k
and h sufficiently small the solution of (2.3) exists, is unique, and satisfies the
error estimate maxnllu(- ,tn) -Vn” = O(k2+hr). For the uni ueness of Vn, the

-1/2

proof given in [5] requires the weak condition that kh ke sufficiently small.



As a practical matter one computes an approximation Un+1 to the exact solution
V™ of (2.3) by Newton's method. It is further established in (5] that if K3/

is sufficiently small and if a starting value for the Newton method is obtained by
extrapolation from known values of Un, then a single Newton iteration (i.e., solving
one linear system of equations) suffices to guarantee stability and to preserve the
overall accuracy of the exact solution {Vn}zzo. Thus there emerges a scheme
requiring the solution of one system of linear equations at each time level that pro-
duces an approximation {U } -0 satisfying the overall error estimate

max ﬂ UP-u(-, th | = O(k +h"). We shall return to (2.3) below, interpreting it
within a general class of Runge-Kutta-type schemes for the temporal discretization.
(A technical aside is warranted here. The proof of convergence of Newton's method
for (2.3) given in [5], when adapted to the case r = 3, requires the additional

3/2

k < ch3/ % mentioned above.)

assumption k>h ', a requirement that is certainly compatible with the presumption

Attention is now given to higher-order accurate, single-step methods for use
in the temporal discretization of the system (2.2). The first family of schemes
considered here are the well known semi-implicit Runge-Kutta (RK) methodé (cf.
f3] or [15] and the references contained therein). A q-stage diagonally implicit
RK (DIRK) method for the autonomous, nonlinear system of ordinary differential
equations y = f(y) is determined by a table of constants Alg where A = (a ,),
1<1,j<q, is alower triangular q xq matrix such that a, =840, 1<igq, and

(b sees ,b ). The matrix A and vector ﬁ are used to compute approximations

y to y(tn) as follows.

q
(2.9 y = yn"'kZaijf(yn’j), l1giga,
=
and
q
(2.9) yn+1 = yn+kijf(yn’j), 0<ngd-1.
=

At each time step, such a method requires the solution of one nonlinear system of



equations of the form, yn’ L ka(yn’]) = known vector, for each of the q intermediate
stages i, 1<i<q. If the off-diagonal nonlinear terms in (2. 4) are eliminated and
the results substituted into (2.5), there results the usual form of these methods,

namely

(2.6) Lowpiy™h =y +§ }t(y“’ ", 1gigaq,

(2.7) y oy +kZb(A ), ( -y

i,j=1

The entries of the strictly lower-triangular, qxq matrix (/Jij) are
1] = 6 —B(A ) where 61] is Kronecker's delta function. In (2.6) and henceforth
we follow the conventlon that Z =0 if n <m. In general, a q-stage DIRK

method whose order of accuracy is p will be referred to as a (q,p) scheme.

The simplest example of q-stage DIRK schemes is when q = 1 and the
method is given by the table

(2.9 1/2 \ 1.

In this case the method is defined by the equations

1 k ., n,
yolo= o iy 1)
+
yn 1 _ yn+kf(yn’ 1).

1 +1
As yn’ = (yn +yn)/ 2, this scheme is equivalent to the second-order accurate
midpoint scheme,
nt+l n
=y + +
o= yrkt(y  y)/2),
which, in the case of the semi-discretization (2. 1a), coincides with the Crank-
Nicolson scheme (2.3). Thus q =1 and p = 2 and so (2. 8) defines a (1,2) scheme.
Another example of interest here is the (2,3) DIRK method given by the tableau



B 0] 1/2
(2.9) , where 8= -1-(1+3
1-28 B | 1/2 2

/2

Our computer code included both (2. 8) and (2. 9) as time-stepping options. Also
included was the well-known (3, 4 DIRK method with diagonal elements

B = %cos(w/lS) + %

(cf. [3], [_12], [15] or [16]), but its use in the present context was found to be

expensive and so it will not be featured further in this exposition.

In the scalar case y+\Ay = 0 it is well known that these DIRK methods reduce
to A-stable schemes associated with Ndrsett rational approximations r(z) to exp(-z),
with denominator (1 +Bz)q, where z = Ak (cf. [3], [15], [22}. In particular the
rational approximation corresponding to (2. 8) is the (1,1) Padé approximant to exp(-z)
given by r (z) =(1- 5 z)/(1+ Y z) WhllSt the (2 3) DIRK method (2.9) corresponds
to 1'2(2) [1+(23 l)Z"'(B2 2B+ —)z ]/(1+Bz) where B = —(1+3 1/2) Both of
these rational approximations (and the one corresponding to the neglected (3, 4)

DIRK method mentioned above) satisfy |r(z)| <1 for all complex z with Re(z) >

so yielding A-stable schemes. Actually, both M and S are skew-symmetric and

so possess purely imaginary spectra. Hence, if the nonlinear term F is ignored,

the stability of the time stepping procedure in the context of integrating the system

(2. 2a) may be understood by studying the behavior of r(z) for purely imaginary z.

The (1,2) DIRK method has |r1(ix)| = 1 for any real x, and so this method is con-
servative for linear ordinary differential equations of such form. The (2,3) DIRK
scheme has

sup |[r, (ix] <1
r<Ix]

for real x and any v> 0. In fact, as x—0,
-i -1 4
r2(ix) =e *- %x +O(x5),

and so this method is dissipative in the context of the linearized KdV equation. In
n+ %
the nonlinear case wherein F is not ignored, it is easily seen by taking ¢ =V



in (2. 3) that the Crank-Nicolson scheme conserves the L2 norm of the initial data.
Our numerical experiments showed that even when the solution of the nonlinear
equations was approximated by a single Newton iteration per time step, a negligible
loss of conservation resulted. The (2,3) DIRK method is dissipative in the nonlinear

case as well.

Applying the DIRK methods in their general forms (2.6), (2.7) to the semi-

discretization (2. 1a) leads to the equations,

n,i n,i 1,.n,i2 n,i
R R CI A S DRV )

(2. 10a) 1
= (V9 + g u, (VIR 9,
e ij
=1
r 3
for all ¢€Sh, 1<ig<aq, and
q
+ - .
(2. 100) Ve D path v,
iFi Y

+
Hence to obtain V' 1 from V' via (2.10) one solves g, N xN, nonlinear systems of
equations to obtain the v for use in (2.10b). As for the (1,2) DIRK method
already discussed, it has been established in [16] that unique solutions {Vn} of the

nonlinear systems associated with the (2, 3) and (3,4) DIRK schemes exist and
r
h
h are satisfied. As before,the solutions of the systems in (2. 10a) may be approx-

comprise a stable sequence in S. provided that some weak relations between k and

imated by Newton's method, so yielding approximations {Un} to {Vn} in S For
n,i

0

T
h.
Newton's method to be effective requires good starting values U These are

obtained as linear combinations of the form,

(2.11a) ! = X

e, 00, UMY
0 i, i

,0 1 »q

1< i< q, which use previously determined values. The coefficients li i depend
upon the particular (q,p) DIRK method that is in question. (Note that (2.11a) may

only be used for n> q. Another starting procedure must be used for the first



n,i . .
1 ! denote the result of one Newton iteration performed on (2. 10a)

with initial guess Ug’ !

q steps.) Let U

The U?’l are obtained as the solution of the linear systems,

n’ i El i ’ i ’ i F) i
(U} + kB B - kB(UT, 69 - KU UT $9

(2.11b) i1

. . 2
= (U", ¢)+Zuij(Ur11’J Ut ) - %kﬁ([_Ug’l] , ?5'),

+
for all e SE, 1<i<q. Then gt is computed by the analog of (2. 10b)

q
+ - .

(2.11c) R L E b(a™). (U™ _uD.

— i ij 1

i, j=1

I

Hence a total of q, linear, NXN systems must be solved to compute u" 1. The
matrices associated with these systems are nonsymmetric, but positive definite
for k and h sufficiently small. The computational issues concerned with the

solution of these systems will be discussed in detail in Section.3.

Our computational experience indicates that the approximations {Un}_ satisfy
the error bound [[Un-u( . ,tn) ]l = O(kp+ hr), where p = 3, respectively 4, if the
(2, 3), respectively (3,4 DIRK scheme is used. The theoretical developments in
[16] did not quite establish this result, but rather demonstrated that the method
represented by (2.11a - ¢) is stable and that l{Un—u( ., tn)ll = O(k2+ hY). If the
scheme (2.11a-c¢) is modified by the addition of small order perturbations, then
the resulting scheme, producing an approximation {ﬁmg, satisfies
"ﬁn_ u( * ,tn)" = O(kp+ hr). In all cases, the proofs require that k/h remain bounded
as k,h—0. Thus there is a gap at this point between what is inferred on the basis

of numerical experiments and what can be proved unequivocally.

It is evident from (2. 11b) that the matrices associated with the linear systems
that have to be solved change not only from step to step, but even from stage to stage.
To avoid this, Rosenbrock-type methods [18, p. 223] of second~ and third-order

accuracy were also employed. In the context of linear, constant-coefficient systems

10



of ordinary differential equations these schemes are A-stable and, like their DIRK
counterparts, reduce to the same rational approximation to the exponential when

applied to y+Ay = 0. For the system y = f(y) the Rosenbrock methods take the

form

i-1
(2. 13a) [1- kay(yn)] yn’i = kf@“fz aijyn’> ,
j=1

for 1<ig<4q, and

q

+ .
(2. 13D) yn 1 _ yn_l_ E biyn, 1,

=1

where fy is the Jacobian of the nonlinear map f and J3, aij’ 1<igqg, 1LjKi-1,
and bi’ 1<i<q, are constants that are generally different from the analogous
constants that define gq-stage DIRK methods of the type given in (2.4 and (2.5).
Computing with Rosenbrock methods thus requires forming the Jacobian f once

at each time step and then solving q systems of linear equations with the same
matrix. Forming the Jacobian for the system (2. 1a) is quite easy. Moreover, this
J acobién was already being used in the Newton iteration associated with the DIRK
methods. Specifically, applying (2. 13) to the semi-discretization (2. 1a) produces

0
a sequence {Un}i_o in SE with U0 = Pu  which satisfies

(™t kBU”” g - ekB(UT" L g —kButu™i, gy

1—

- k(| n, j
(2. 14a) = 2<[U + - aIJU ¢> kn<U + - "y ] >

i-1
+ €k<[Un+ E a,,Un’]] , g5>
1) ]
XX

=1

for all gesS’

W 1<igq, and

+
(2. 14b) o™t o gty

et
[l M.Q
-

=

i
(!
B
- -

for 0<ngJ-1.

11



In our computer program two such Rosenbrock methods have been
implemented. The first amounts to a linearized version of the trapezoidal rule of

the form (2.13) with q = 1, B = 1/2, T 0, b, =1 which has second-order

1
accuracy and which is essentially as economical as the (1,2) DIRK-Newton method
(2.8). Also implemented was the Calahan method [13:}, [18:], a two-stage, third-

1 -1/2
order accurate scheme having B = 5(1"'3 / ), g, = 2-48, b1 = 3/4, b, = 1/4.

At present there is no proof of convergence for the Rosenbrock methods
in the context discussed here of the KdV equation. Experimentally we have found
that the two Rosenbrock methods implemented in our code were accurate if k/h
remained bounded as k,h —0, and that they then yielded optimal-order L2 error
bounds for max llUn-u( ., tn)" which were O(k2+ h") for the one-stage Rosenbrock
method and O(3+h") for the two-stage Calahan method. In the context of constant-
coefficient linear systems the (1,2) Rosenbrock method is conservative, whilst the
Calahan method is dissipative since they coincide then with the corresponding
DIRK schemes. In the nonlinear situation of our numerical experiments on the

KdV equation it was observed that the (1,2) Rosenbrock scheme induced only

a negligible amount of dissipation.

12



3. COMPUTATIONAL CONSIDERATIONS

Issues are considered here that are connected with the practical implementation
of the various numerical methods presented in the last section. We describe par-
ticular computational algorithms and the associated data structures that are incorpor-
ated into our computer program to efficiently compute approximations to solutions of
the KdV equation. Also presented are reasonably sharp estimates of the number of
arithmetic operations required per time step by each of the suggested numerical
schemes, as a function of the number N of spatial intervals and the order r of the

underlying spline space.

As a matter of notation a circumflex over a variable connotes that
variable to be a vector rather than a scalar. Denote by 8 = 8(x) the N-vector whose
components are the basis functions, ;61, cees ¢N’ introduced in Section 2. Thus
3 = (él, cee ,¢N), and if ¢ GSE, there is a unique z = (Zl’ cees zN) in RN such that
¢(x) = Zzi¢i(X) =2-8.

In matrix representation relative to the chosen basis for Sr, the algorithm

(2.11b) for the DIRK method with one Newton iteration is

[G + nkBM + €kBS - Bky(Ug’ 1)__] 1'31111 =

(3.1) i-1
An An,j kB A.n,i _n,i
cu™ + LGUT L AR R gy,
- ij 1 2 0 0
=1
. An An,i N .. T
for 1<i<q, where U, U1 €eIR are the vectors of the coefficients of the Sh-

) n _n,i . A N . .
functions U, U ’", respectively, f(¢,y) e R is defined by

(3.2) e, 0 = (Cy, p

for €,ye€ SE, and the N XN matrix J(y) has components S(glx)ij defined by

(3.3) 3(‘”)13 = (¢¢j, ¢{),

for ¢ in S;‘. In the same notation, the Rosenbrock method (2. 14a) may be written as

13



(3.9 [G+mkBM + eks - kBIUN] UM = EHy™ L y™h - ki + e9¥™

for 1<ig<q, where

(3.5) Yol = vt E I.a-ijUn’],

I\n’

. An,i n,i
for 1<i<q, and where Y’ ',U !

leRN are the coefficients of Y™ l,U s

N
respectively, relative to the basis {éj}j-l'

These formulae allow a count of arithmetic operations to be initiated for the
proposed methods, In making such counts, account will only be taken of com-
putations (multiplications) that are repeated every time step. Thus set-up costs
such as that of assembling the matrices G, M, S, and the array (ékﬁ ¢ ;6]!), and that
of computing U0 will be ignored. Moreover, the cost of calls to subroutines that
calculate exact solutions, compute errors, and so on,are ignored. With these pro-
visos in force, inspection of (3.1) and (3. 4) reveals that the following operations are

performed in the DIRK-Newton or Rosenbrock scheme.
(i) Given §€RN, evaluate Gy, M$, and Sy.
(ii) Given ¢,ye€ S:;, evaluate the N-vector f(f ,¥) given by (3. 2).
(iii) Given ye€ S:;, evaluate the N xN matrix Hy) given by (3.3).

(iv) Given ye€ S}Il', QGBN, evaluate the elements of the matrix J(y)

and solve the linear system JyY)% = g, where

(3.6) JW) = G+ clkM e kS + c3k5‘(z//),

and cl, 02 and c3 are given constants.

If N> 2r -2, the matrices G, M, and S are cyclic with first rows of the

form

N
(3.7) a = (al,az,...,ar,O,...,O,aN_r+2,...,aN).

We focus temporarily on such matrices. To ease the task of handling component-

indicating indices, they will always be interpreted modulo N. Thus if fr = (yl, oo ,yN),

14



then yO = yN,,\y_1 = yN 1’ yN+1 yl, ;fzdrsg on. Define a mapping * that
associates to VER = the element v’ €R given by
VN —rH if 1gigr-1,
sk - +
(3.9 v Vi1 if r<igN+r-1,

Vi-N-rtl,  ifN+r < ig<N+2r-2,

That is, = (v

v
N-r+2’ " N2 Y v Y )

e I Ve Voot
In terms of the notational provisions just made, we may state the following

result which is relevant to the computational problem (i) above.

LEMMA 3.1 Let C = (c ) be an N XN cychc matrix whose first row € is
of the form indicated in (3.7). Then for any ye]R CY can be computed, using only
(2r -1)N multiplications,from the identities,

(3.9 Zm Z S

for 1 <i<N. Moreover, if C is also supposed to be symmetric or skew-symmetric,

then the number of multiplications needed to compute Cg\r is rN via the identities,

N r-1

3. _ Skosk +
(3.10 Z % T V-t Z._ %] (y+ 2 )
]=1 ]—1
for 1<i <N, where 0 =0 or 1 depending on whether C is symmetric or skew-

symmetric, respectively.

Proof. The relations (3.9) are easily established by induction on i. The
formulae (3. 10) follow immediately since c] = (-1)° c or-j for 1< jgr-1, with
" 0 =0 or 1 depending on whether C is symmetric or skew-symmetric, respectively.

The stated multiplication counts follow instantly from (3. 9) and (3. 10).

When coding the sums on the right-hand side of (3. 9) the nonzero elements

of the first row of C are stored in the order c ceesC

N—1+2’ N?Cpree e c. Moreover,

15



rather than creating the (N+2r -2)-vector /}\;ﬁ from § by using IF statements, the
index vector ﬁ* is created once and stored, where fi=( 1,2,...,n), and y}k is
obtained as ke This convention is followed whenever computations with the

(N+2r-2) —vec{ors y are effected.

The just-described data structures are also useful in evaluating the nonlinear
term ?(C ,. The calculation of ,f\(t ,¥) is described here in general, even though
the schemes in view utilize only terms of the form /f(zp, ). There are methods (e.g.,
the theoretically important modifications of the DIRK schemes mentioned in Section 2)
for which terms of the form /f\( €,Y) with ¢ # ¢ are encountered, and it has therefore

seemed useful to keep the discussion unrestricted. Write ¢ = 'z\ﬁ and ¢ = §r\$, so

that
N N
(.10 Re,p, = Gy g = Z z V.8 8. 8) = Z Zmynfimn’
m, n=1 m, n=
where
(3.12) £ =@ 8.8,

for 1<i,m,n<N. Because the ¢i are l-periodic and are related to one another by

translation, it follows that

it
(3.13) fm+£ n{ ~  mn’

for any integer £. Moreover, since the support of the ¢ has a length of r spatial
intervals, the NXN array (fl ) has less than (2r - 1) nonzero elements, for each i.
Actually, it is easily determined from (3. 12) and the properties of the 16 that (’f1 )
has 3r(r-1) nonzero elements. However, it is much easier from a programmmg point
of view to consider (f ) as a (2r-1)x(2r-1) square array. The advantage of the
additional zeroes is thereby sacrificed when multiplying (f1 ) by (2r-1)-vectors,
though this advantage could only be exacted at the cost of heavy use of IF statements.
For similar reasons, we shall use only the obvious symmetry flmn = f:nn’ whil st

recognizing that these arrays possess other symmetries.
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m
value of i (we took i = r) need be computed and stored. Moreover, it is a conse-

In view of (3. 13) only those elements of f1 0 that correspond to some fixed

quence of the chosen ordering of the basis function {;6]}?_ 1 that f:nn = 0 if either

m or n exceeds 2r -1. The following result is directly applicable to the computational

problem (ii) above.

LEMMA 3.2, Let ¢ =2+8, ¢y =98 liein sﬁ. The identity
2r-1
: A I B B
(3.14 &0, = Z L an % -1 -1
m,n=1

which holds for 1< i <N, may be used to evaluate ,f\(f ,U) at a cost of 2r(2r - 1)N
multiplications. Furthermore, ?(x//, Y) may be evaluated with (r+2)(2r - 1)N multi-
plications using the relation

2r-1
(3.15) f((p, w)i = Z fr (y’:< )2 +9 Z £ y>:< s

. N A
£ mm ° mti-1 1<nmg 2r-1 mn’ mti-1"nti-1

for 1<i<KN.

Proof. Since f:n 0= 0 for m,n > 2r, the formula (3. 14) is equivalent to

N
N _ T sk sk
f(g)"’b)i - Z fmnzm+i—1yn+i—1’
m,n=1

and this is easily established, first for i = r, and then inductively for i>r or i <r.
Once (3. 14) is in hand, (3.15) follows and the multiplication counts are obvious

consequences of these two sets of formulae.

Attention is now turned to the computational problem (iii), the evaluation of
the matrix Hy) given by (3.3). If y = ’3\/8 it follows from (3.2) that 3(y) may be
assembled by first computing the array 5(1//) given by

2r-1
g _ r sk
(3.16) Wy = Z fn¥m+i-1°

m=1

1<ig<N, 1<jg<2r-1, and then defining J¢) by
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S(w)i joir if 1igN, i-r+1<jgi+r-1,
(3.17 swij =

0 otherwise.

In (3.17) the indices are interpreted modulo N following the convention in force here.
The matrix Hy) has the same structure of zeros as the cyclic matrices G, M, and
S. Moreover, its (2r-1)N nonzero elements may be evaluated via (3. 16) Witﬁ no
more than (2r-1) 21\1 multiplications. This completes the discussion of the computa-

tional issue (iii).

Consider now the matrix J(y) defined in (3.6). As G, M, and S are computed
but once, J(y) may, for a given Y€ S:l, be assembled using 2r(2r-1)N multipiications.
For both the DIRK-Newton methods (3. 1) and the Rosenbrock methods (3. 4) it is
necessary to solve q linear systems involving matrices of the form J(y) in order
to advance the solution by one time step. As the matrices J(y) change from step to
step for the Rosenbrock methods and even from stage to stage for DIRK-Newton
methods, it is fortunate that their calculation may be accomplished efficiently. More-

over, the linear systems that arise may also be solved efficiently as is now indicated.

Given ye SE, a system of equations of the form
(3.18) Pz = ¢

may be solved in the following way. 1 As mentioned above, J = J(y) has the same
zero structure as the cyclic matrix G, and so it may be written in the form
J= +

jb :Jc where 3
consists only of the upper right and lower left corners of J. To solve (3.18), the

is a diagonally banded matrix with bandwidth 2r -1 and Jc

following steps are effective.

(a) Factor jb (without pivoting) into upper and lower triangular banded
matrices using the standard banded factoring routine. This costs r(r-1)N multi-
plications. (N.B. the matrix J is realandpositive for k and h small enough

(cf. [16]). At no time in our calculations did we perceive any need for pivoting.)

The authors wish to record their thanks to T. Dupont for bringing this implementation
to their attention.
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(b) Solve Dbgb = é This costs (2r -1)N multiplications since Jb has already

been factored.

]

(c) Compute the 2r -2 N-vectors é\, j=1,...,vr=-1,N-r+2,...,N that

satisfy J - 63 , where the ith component of 'e\J

b
This costs (2r-2)(2r-1)N multiplications.

is (Sij’ the Kronecker &-function.

(d) Evaluate the N XN matrix C whose jth column is /éj+Jc€j if
j=1,...,r-1,N-r+2,...,N, and whose jth column is zero otherwise. Note that
only the four (r-1) x(r-1) corners of C are nonzero. The matrix C is compressed
into a (2r-2) x (2r-2) array and factored as a product of upper and lower triangular
matrices. This may be accomplished at a total expenditure of order r3 multiplications.

Being independent of N, this cost is ignored.

(e) The factored form of the compressed matrix C may be used to evaluate
A
- i - = e 0oy ,0,.--,0, P I
the 2r -2 nonze}\ro entries of the N-vector ) (7t1, >Lr-1 )N-r 9 AN)
that satisfies CA = —Jcﬁb. The cost of this determination is of order r2, and so is

ignored.

(f) Finally the solution 2 of (3.18) is computed via the formula

r-1 N
=12+ E A + E 1.6,
=1 ) j=N-r2

This takes (2r-2)N multiplications.

Briefly summarized, steps (a), (c), and (d) are calculations that do not
involve the right-hand side Q of (3.18). Ignoring calculations whose cost depends
only on r, the total number of multiplications involved in carrying out these steps
is (5r2—7r+2)N. Steps (b), (e), and (f) involve g and cost (4r-3)N multiplications

in total. This completes the analysis of the implementation of (iv).

It is now a straightforward task to count the total number of multiplications
needed to advance the numerical approximation to the solution of (1. 1) by one time

step using a q-stage DIRK-Newton or Rosenbrock method. In the case of the DIRK-
n,i

Newton method our scheme requires the calculation of the starting values UO

for
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the Newton iteration by (2.11a), evaluation of q matrices of the form (3.6), assemblage
of the right-hand sides of the q linear systems (3. 1) and the determination of their
solutions, and finally the computation of Un+1 by (2.11c). The total number of mul-
tiplications needed for these steps is (q2+q[1 1r2—r+ IJ)N. For the Rosenbrock
methods the matrix on the left-hand side of (3. 4) is evaluated and factored once, the
right-hand sides of the q linear systems (3. 4) are formed and their solutions deter-
mined, and Un+1 is then computed via (2. 14b). The total number of multiplications

2 2
for these steps is ([9r -9r+1]+ q[2r™+8r -2))N. The multiplication counts for the

two classes of methods are shown for some practically interesting values of q and r

in Table 1.
r | q | DIRK-Newton | Rosenbrock
1 98 95
31 2 198 135
3 300
1 174 171
4| 2 350 233
3 528
1 392 389
6 | 2 786 507
3 1182

TABLE 1. Number of operations per time step
per spatial mesh interval for the DIRK -
Newton and Rosenbrock methods.
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4. ACCURACY AND EFFICIENCY

This section is devoted to reporting the results of computations performed
using the schemes introduced in Section 2 and analyzed in Section 3. The stability
and convergence rates of the various methods were verified, both as a check on the
analysis and to insure that the schemes were correctly coded. The efficiency of
the numerical schemes as regards accuracy achieved versus computational effort
expended, was also determined. These properties of the schemes were obtained

by comparison with the exact solitary-wave solutions of (1.1).

For any value of n and nonzero value of € equation {(1,1a) possesses a one-
parameter family of travelling-wave solutions called solitary waves. Taking n =1

and € > 0, these special solutions have the form

(4.1 u(x,f) = A sech’ [K<x- %) - m},

where A>0, K = %(A/Be)liz, and w = K(1+ -;,—A), In the experiments reported
here we took € = ,2058 x10 ~ and A = .22755, values that correspond to the
evolution of water waves in a channel in a regime to which the Korteweg -de Vries
equation should apply (cf. [9], [10], and [11]). This choice of parameters corre-
sponds to a solitary wave centered at x = 1/2 at t = 0 whose height decreases to
about 5 percent of its maximum excursion from the undisturbed level at a distance

S = .072 from its peak.

All the numerical experiments reported here were performed in double
precision using the FORTRAN Q compiler on an IBM 4341 computer at the University
of Tennessee, Knoxville. The smallest number N of spatial intervals used in these
calculations was 96, which was easily adequate to resolve the aforementioned soli-
tary wave with either quadratic or cubic splines without spurious oscillations. The
error at time t, denoted by E(t), is the normalized L_-error of the fully discrete

2
approximation at the time level t, that is

E() = “Un-ui',t)u
[ T
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if t =nk. If t is not an integral multiple of k, E(t) is defined by linear interpolation
of the values of E at nk and (n+1)k, where n =[t/k] All the integrals occurring

in the determination of the spatial L_-norm of functions as well as integrals arising

2
in L2—inner products were computed by Gaussian quadrature with 16 nodes on
every interval [xj, x]. +1]. In all cases, U0 was taken as the L2—projection of uO(x)

on S;. The normalizing factor " u0" was about 0,0477,

First the rates of convergence in both space and time of the various schemes
were investigated and the regimes in which the existing theoretical results apply were
delimited. To verify the order of accuracy of the spatial discretization, the temporal
error was effectively set to zero by the choice k = 10-5 and use of the third-order
Calahan method, and then h = N_1 was varied. The errors E(T) at T = 10_3 that

are observed using quadratic and cubic splines are tabulated in Table 2, along with

1 Quadratic Splines Cubic Splines
h
E(T) rate E(T) rate
96 0. 8210(-3) . 0. 1687(-3) _
144 0. 2140(-3) g ?g 0.2495(-4) : ;;
192 0. 8626(~-4) 3‘ 09 0. 7090(-5) 4' 39
256 0. 3546(-4) : 0. 2107(-5) :

TABLE 2. The errors E(T) and rates of convergence
induced in integrating a solitary wave using the
Calahan method with k = 107 and T = 1073,

the implied convergence rates. As usual, the observed rate of convergence deter-

mined by two computations with errors E1 and E 9 corresponding to discretizations
h, and h,, respectively, is defined as log(El/ E2) /log(hl/hz). Similar behavior of
the spatial errors was found when the temporal integration of the solitary wave was

instead effected using the 1-stage Rosenbrock or the 1- or 2-stage DIRK-Newton

schemes with k = 10_5, T = 10-3, and quadratic or cubic splines.

As a test of the accuracy of the temporal integration techniques the solitary
wave was numerically integrated holding h fixed at 1/192 for various values of k.

A representative sample of the outcome of this test is presented in Table 3, wherein

the value in the rate column between adjacent errors E1 and E 9 is
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log(E 1/ E2) [1logl(k 1/k2)' Reported here are computations using the 1-stage Rosenbrock

method with quadratic splines and the Calahan method with quadratic and cubic splines.

1-stage Rosenbrock, r = 3 Calahan, r =3 Calahan, r = 4

k/h E(T) Rate E(T) Rate E(T) Rate

3 0.6990 0. 4225 0. 4255

2 0. 4389 0.2445 0.2445
3/2 0.2852 0.1423 0.1424

1 0.1414 0.5422(-1) 0.5425(-1)

1.91 2.85 2.84

1/2 0.3775(~1) 1 98 0.7519(~2) 503 | © 7568(-2) 3. 00
1/3 0. 1694(-1) 0.2198(-2) 0. 2244(-2)
1/4 | 0.9537(-2) g‘gg 0.9011(-3) g’ég 0.9413(-3) 2‘83
1/6° 0. 4207(-2) 5 05 0. 2584(-3) ’ 0.3107(-3) | ° 03
1/8 0.2334(-2) 9 10 0. 1378(-3) 0.1158(-3) 5. 99
1/12 0.9957(-3) ’ 0. 1196(-3) 0.3441(-49) )
1/16 0.5300(-3) 0.1231(-3)
1/20 0.3186(-3) 0.1251(-3)

TABLE 3. The errors E(T) and rates of convergence induced in
integrating a solitary wave using three methods, with T = 1.0
and N = h~1 = 192, *Note that 1/6 was actually 1/5.77 in
the last column (Calahan with r = 4),

As set forth in Section 3, the expected temporal orders of accuracy for these methods
are 2, 3, and 3, respectively. If k is not too small, the error induced by the spatial
discretization is negligible in comparison with that generated by the temporal dis-
cretizatidn. For quadratic splines the exact magnitude of the spatial error may be
discerned in the last few entries in column one or column two, whereas for the cubic
splines the spatial error was apparently never significant. (Note that the errors in

in columns two and three are nearly identical for k/h >1 /3 where the order k3 temporal
error dominates, but that below this value the Calahan method with quadratic splines
has errors that are limited by the fixed spatial discretization whilst the use of cubic
splines obviates this problem in the presented range of values of k.) As k was
decreased below the fixed value of h the expected rates of convergence were indeed
evident until the errors were dominated by the spatial discretization. Results similar
to those in Table 3 were obtained for different values of h, as well as for the 1- and
2-stage DIRK methods with one Newton iteration per stage. For the latter two tem-

poral discretizations the expected orders of accuracy, 2 and 3, respectively, were
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observed. We also verified the temporal order of accuracy by holding k/h fixed
suitably and decreasing h and k simultaneously. For example, using the Calahan
method with k = h4/ 3, it was found that for h = 1/96 the error E | attime T =1
induced when approximating the evolution of a solitary wave was 0.5013(-2), whilst

for h = 1/192 the error E_ at time T = 1 was 0.3107(-3). The resulting rate,

2
log(E 1/ Ez) / log(hl/ h2) was 4.012, corresponding very closely to the expected cubic
power of k in the asymptotic error estimate. Similar experiments were performed

using the other temporal discretizations discussed heretofore.

Another issue that was investigated concerned comparisons regarding
accuracy and stability of the DIRK methods with their Rosenbrock counterparts. As
mentioned in Section 2 there are no theoretical results regarding stability and con-
vergence of time-stepping via Rosenbrock methods of order greater than two in the
context of the KdV equation (or any other nonlinear partial differential equation as
far as we know). Moreover, there are conjectures motivated by the theory of approx-
imation of first-order systems of ordinary differential equations that the DIRK
methods used here enjoy better stability properties in the context of nonlinear prob-
lems than do the Rosenbrock methods. (The latter methods are not B-stable in
general —see [12].) In Table 4 are recorded an illuminating set of comparative cal-
culations, namely the error E(T) at time T = 1 induced by integrating a solitary
wave using 1- and 2-stage Rosenbrock and DIRK methods. The DIRK schemes
featured both one or two Newton iterations per stage. The errors in the first group
of three columns were obtained with one-stage methods and quadratic splines, so
methods having an accuracy of order k2+ h3. The second group of three columns
were obtained using two-stage methods with quadratic splines whilst the third group
of three columns were computed with two-stage methods and cubic splines. In each
group of three columns, the resulting errors are recorded for the appropriate Rosen-
brock and DIRK schemes, the latter with one Newton iteration (DIRK 1N) and two
Newton iterations (DIRK 2N) per stage. Observe that within each group of three
columns the values of the errors are quite similar for the same value of k/h. This
phenomenon persists for smaller values of k/h, not shown in Table 4, but for such

values the spatial component of the error figures strongly. In the last row of Table 4
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are recorded the average CPU times in seconds per time step for each column of
runs. As expected, the DIRK methods are more expensive (consult Table 1) than
their Rosenbrock counterparts. On the basis of Tables 3 and 4, it is concluded that
as far as accuracy is concerned, at least for relatively small T in the problem at
hand, the two-stage, third-order Calahan method holds a clear advantage over the
corresponding DIRK methods, whilst there is not much to choose between the second-

order Rosenbrock method and its DIRK 1IN counterpart.

Another interesting conclusion may be drawn from the data presented in
Tables 3 and 4, concerning the variation in the error generated by the fully discrete
schemes under consideration as k/h varies. Recall from the discussion in Section 2
that for certain of the schemes used here there is available a rigorous convergence
proof. The relevant theorems featured restrictions on the relative size of k and h.
Two aspects of our numerical experiments indicate that no stronger restriction than
one of the form k/h < constant should be required to obtain optimal order convergence
rates for any of the schemes considered herein. First, in all our calculations it
transpires that taking k/h < 1/2 was adequate to guarantee that for small h the
observed errors were dominated by the temporal asymptotic rate. On the other hand,
no catastrophic instability was ever observed for calculations made with large values

of k/h.

The work estimates developed in Section 3 were also subjected to comparison
with the results of actual computational experience. Table 5 provides comparison of
the ratio of actual CPU time in miliiseconds used per time step by the various schemes
to the number N of spatial intervals with the numbers in Table 1 which express the
approximate number of multiplications per time step per spatial interval for the same
schemes. The actual timings were determined by runs in which T = 1.0, h = 1/96,
and with various time steps. The CPU-seconds per time step were determined as

the averages of the timings for all these runs; the result was then divided by N.

The efficacy of the estimates obtained in Section 3 is seen in the relative

constaney of the ratios of the number of multiplications with the actual CPU seconds
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o One-stage, r =3 Two-stage, r =3 Two-stage, r = 4
(]
% | Rosen-| DIRK DIRK DIRK
S | brock IN |RatiofCalahan IN |Ratio| Calahan IN |Ratio
CPU
secs 2,115 2.229 [.949| 2.771 4.448 | .623 4,104 6.813 |.602
x10°
Cq 95 98 |.969| 135 198 | .682 233 350 |.665
Ratio | 44.92 [43.97 48,72 44,51 56.77 51.37
TABLE 5. CPU seconds per time step per spatial interval determined by

integrating a solitary wave to T = 1.0 with N = 96 versus the estimated

number C, of multiplications per time step per spatial interval as pre-
sented in Table 1.

per step per interval (the row labelled "ratio'"). The discrepancies owe at least to

the facts that 03

culations performed on each spatial interval during each time step. Consideration

measures only multiplications, and then only those relating to cal-

of the relative times per step per interval for the various schemes shows the predic-
tions of Table 1 to be within about 10 percent of the computationally obtained ratios
(the columns labelled ""ratio). The general picture that emerged from Table 1 is

borne out by the computationally obtained information presented in Table 5.

With these preliminary but important considerations in hand, we turn now to
comparing the computational efficiency of the various schemes. Distinguished below
are comparisons made by integrating a solitary wave over a relatively short time

interval, from T = 0.0 to T = 1.0, and integrations over longer time scales.

For the approximation of solitary-wave solutions of the KdV equation over a
relatively short time interval, it is evident from the results reported in Tables 1, 4
and 5 that the 1-stage Rosenbrock method is always as efficient as its DIRK-1N
counterpart and that the Calahan method is more efficient than the two-stage DIRK-1N
method. Hence it seemed appropriate to compare only the two Rosenbrock methods.
Also, because the one-stage method coupled with cubic splines requires very small

time steps in order that the spatial and temporal accuracy be balanced, it was not
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considered in the detailed comparisons, so leaving three fully discrete schemes, the
one-stage Rosenbrock with quadratic splines and the Calahan method with quadratic

and cubic spines.

A standard way to compare the relative efficiency of various numerical
techniques for one-dimensional evolution equations is the following (cf. f27:]). First
a suitable measure of the error is fixed; in our context this is the function E(T) given
at the beginning of the section. Then an approximate expression for E(T) as a
function of k and h is needed. Our tests assure that for k and h small enough the
error can be expressed to excellent approximation as
K,

(4.2) E(T) % Clhr+ c,

where C 1 and 02 depend on the particular scheme used, on T, on the solution of
(4. 1) that is being approximated, and on k and h. It will be taken as valid that C1
depends only on the degree of splines used and not on the time-stepping method, and
that 02 depends on the time-stepping scheme and not on the degree of splines. used
in the spatial approximation. This presumption was checked in practice and found
to hold to a high degree of approximation. By computing the errors at T = 1 for
various values of k and h and suitably extrapolating over several experiments, the

following values of C1 and 02 were determined.

C1 = 1010 if r = 3, C1 = 16,947 if r = 4;

C2 5467 if p =2, 02 = 424,073 if p = 3.

These values proved to be quite robust for small values of k and h. A second
ingredient needed to compare the efficiency of various schemes is a measure W of
the work required to achieve the error E(T). For this we took the number of multi-
plications that are required to obtain the given error E(T), which to a good approxi-
NJ, where J = T/k as before and C

mation is given by C is a constant that depends

3 3
on the particular scheme under consideration, and whose values are provided in

Table 1. In the special case where T = 1.0, the work estimate is

(4.3) W = C,/kh.
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If the error E(T) is held at a fixed level, then it is a simple calculus problem to

determine the values of k and h that minimize the value of W as defined in (4. 3).

These optimal values, k

(4.9

and h
opt

_E(Dr_ /p
C (r+p)

opt’

say, are given by

E(T)p 1/r
C (r+p) :

The optimal values of k and h, when substituted into (4.3), determine a minimal

value W
min

the given error level.

for the work level required by each method of approximation to obtain

The various numerical schemes may be compared at each

error level on the basis of the associated optimal work estimate W _ .

min

The three,fully discrete schemes were tested using the criteria, just explained,

of computing the optimal work estimates.

The results for six different levels of

error are presented in Table 6. The outcome is not surprising and may be summarized

Method
One-stage Rosenbrock Calahan with Calahan with
Error with quadratic splines quadratic splines cubic splines
level E(T)
1 0.3409(-1) 0.3313(-2) | 0.3672(-1) 0.4904(-2) | 0.3988(-1) 0.5127(-2)
10 8.4x10° 7.5 x10° 1.14 x10°
10-2 0.1582(-1) 0.61048(-2) 0.1704(-1) o0, 2276(-2) 0.2243(-1) o. 26380(-2)
5.7x10 3.4 x10 4.4 x10
10—3 0. 7344(-2) 0.73313(-3) 0.7911(-2) 0. ;056(—2) 0.1261(-1) 0. ]:7105(-2)
3.9x10 1.62 x10 1.67x10
— N—
10-4 0.3409(-2) 0.1048(-3) | 0.3672(-2) 0.4904(-3) | 0.7091(-2) 0.5127(-3)
2.Tx 108 7.5)(107 6.4)(107
10-5 0.1582(-2) 0.5313(-4) 0.1704(-2) oO. 2276(-3) 0.3988(-2) 0. 2380(-3)
1.8x10 3.5x10 2.5 x10
10—6 0. 7344(-3) 0;11(?48(-4) 0.7911(-3) 0. 51)056(-3) 0.2243(-2) 0. 18105(-3)
1.2x10 1.6x 10 9.4x10
TABLE 6. The valuesof h __, k and W__ . , respectively, for three fully

discrete schemes for six gi%en levels oi’nerror E(T) where T = 1.0 and
the error is that generated by using the scheme to approximate the
solitary-wave solution (4. 1) of the KdV equation.
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as follows.
(i) The second-order, one-stage Rosenbrock method with quadratic splines

is competitive only at low levels of accuracy.

(ii) At accuracies between 10-'1 and 10“3 the Calahan method with quadratic
splines appears to be the most efficient combination.

(iii) For higher accuracies the Calahan method with cubic splines holds the
advantage.

(iv) The values of hopt and kopt in Table 6 all gave quite acceptable ratios of
k/ h. In the first column, kopt/ hopt ranged from 0.1 to 0.14, in the second column

it was always 0.13, whilst in the third column it ranged from 0.13 to 0.05.

Considering the concatenation of approximations that underlies Table 6, it
seemed appropriate to devise independent checks of its validity. We used the values

of ko and hopt determined in Table 6 to actually compute an approximation to the

pt
solitary wave from T = 0.0 to T = 1.0 and recorded the error. The values of kopt

¢ were then systematically perturbed whilst holding their product constant,

so that the associated value of W was fixed, and the solitary wave again approximated

and h
op

up to T = 1.0 using the perturbed values of the parameters k and h. In all the cases
tested, the error associated to the perturbed values was larger than that obtained
using the theoretically determined optimal values. A typical example is recounted in
Table 7, which was constructed using the Calahan method with quadratic splines and
E(T) = 10-3. The last column reports the actual number of CPU seconds that the

run required using the stated values of k and h.

N = 1/h =1/k E(T) | CPU secs
126 (opt) | 948 (opt) | 0.5798(-3) 345
150 796 0.7731(-3) 340
100 1194 0.1161(-2) 333

Table 7. A check of an entry in Table 6. The error
associated with several values of k and h using
the Calahan method with quadratic splines to
integrate the solitary wave. Here T = 1,0 and
E(T) = 1075,
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Experiments using the solitary-wave initial data were also performed over
longer time intervals from T = 0.0 to T =5.0. The computed approximate solutions
were compared in several ways with the exact solution given in (4.1). In addition to
the normalized L 2-error E(T), we kepttrack of amplitude, phase,and shape errors
(cf. [11]). The shape error E" is defined for each time step n =0,1,...,J as

follows. Fix n and consider the quantity
1 n, (12
g [u(x,n -U (x)_] dx

0
1 E
S u2(x, 0)dx

0

(4.5) £%(n) =

where u(x,7) is given in (4.1) and U" is the computed solution at the time step n.
2
Let 7" denote the value of 7 near nk where ¢7(m takes its minimum value. If vt

resembles a solitary wave in shape, it follows that 7-* is well defined. Then
E" = 62( 7*) measures by how far the computed solution differs from the original

solitary wave as regards its shape, as measured by the normalized L_ norm. The

2
phase error p" at any time step n, 0 <n <J, is defined to be nk -7, It measures

the error in the position at which the wave is located. The amplitude error An is

defined to be (A -U" )/A where A is as in (4.1) and u" is the maximum value
max max

of Un(x) .

In our computer program the shape, phase, and amplitude errors were
2
determined as follows. The quantity ¢ (7) was minimized by finding a zero of its

derivative using Newton's method. Taking 7. = nk, a sequence {Tj}IF is generated

0 j=0
by
d .2
E&('r.)
(4. 6) T =T -———]—, j=0,1,... .

G2,
—3 €7(7)
dr ]

Of course, up to a multiplicative constant,

1

o £y =2\ [ux, ™) - U"(x) u,(x, 7)dx,
0
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and this quantity is actually calculated using a Riemann sum with 1024 equidistant
2
points on [0,1]. A similar remark applies to d2$ (n/ d'rz. The iteration (4.6) is

-10 %
terminated when ['rj +1 -'r]_l <10 and T, . is then declared to be 7 . The shape

j+l
error E" is then computed using the same subroutine that approximates the normal -
ized L2—error E(T). Once 7" has been approximately determined as 'r]. 1 then

n
P is given as nk -’Tj +1° The quantity Ulllnax is simply taken to be the maximum of

Un, a number that is easily determined.

The two Rosenbrock methods and their DIRK-1N counterparts were compared
first. The normalized L2—errors and the shape errors for the one-stage versions
of these methods with quadratic splines are plotted versus time in Figure 1 (curves
1 and 2). The plotted data was obtained taking N = 128 and J = 15,200, corre-
sponding therefore to h = 0.781 x 10-2 and k = 0,329 x 10-3, values that are very
close to optimal for these methods to achieve E(1) = 10—3. The shape errors for both
methods are practically identical and remain sensibly constant in time, whereas the
total L_-error appears to increase linearly with time. The DIRK-1N method has

2
the smaller L_-error of the two, with the difference between the two errors being

some 11 perceit at T =5.0. In Figure 2 the phase errors for both methods are
plotted for the same run. Both techniques display linearly growing phase errors,
and again the DIRK-1N method holds a small advantage with the difference in the two
errors reaching about 14 percent at T = 5.0. The relative amplitude errors were
not plotted as they were essentially identical for both methods and remained very
small, fluctuating in sign with a maximum value of about 0.8 X10—3. The DIRK-1IN
method was slightly more expensive, requiring 0.285 CPU seconds per time step
compared with 0,270 CPU seconds for the one-stage Rosenbrock method. (The one-
stage DIRK-2N was also tried on the same time interval with results nearly identical
to those obtained with the one-stage DIRK-1IN, but at a cost of 0.354 CPU seconds

per time step.)

The results for the two one-stage methods point to the interesting possibility
that these schemes may possess numerical solitary waves. That is, the numerical

schemes themselves may have exact discrete solutions that are travelling waves with
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0.0 2.5 T

FIGURE 1, The L2—error E(t) (curves 1, 2, and 3) and the shape error

En (curve 1', 2', and 3" resulting from the approximation over the
time interval from T =0,0 to T = 5,0 of a solitary-wave solution,
as specified in (4.1), of the KdV equation. Curves 1 and 1' were
obtained using the DIRK-IN scheme with quadratic splines and

N = 128, J = 15,200; curves 2 and 2' were obtained using the

(1, 2)-Rosenbrock scheme with quadratic splines and N = 128,

J = 15,200; and curves 3 and 3' were obtained using the Calahan
method with cubic splines and N = 192, J = 7,250,

5.0
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FIGURE 2. The phase error p" resulting from the approximation over the
time interval from T = 0.0 to T = 5,0 of a solitary-wave solution,
as specified in (4, 1), of the KdV equation. Curve 1 was obtained
using the DIRK-1IN scheme with quadratic splines and N = 128,

J =15,200; curve 2 was obtained using the (1, 2)-Rosenbrock scheme
with quadratic splines and N = 128, J = 15, 200; and curve 3 was
obtained using the Calahan method with cubic splines and N = 192,

J =17,250.
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a shape and a phase speed very near to that of the solitary-wave solution of the KdV
equation. This interpretation is consistent with the constancy of the shape error.

In this light, the linear growth of the relative L2-error is attributable almost
entirely to the small difference between the discrete and the continuous phase speeds.
Further support for this view is gleaned from the observation that the difference in
the L2—errors between the one-stage DIRK-1N and Rosenbrock methods corresponds
very closely to the difference in their approximation to the phase speed of the

solitary wave.

Turning to the two-stage, third-order time-stepping techniques with cubic
splines, the Calahan method was compared with its two-stage DIRK-1IN counterpart
in a run with N = 128 and J = 4700. With T = 5.0, this corresponds to k = 1.06 ><10—3
while h = 0,781 x 10-2 as before. Unlike the situation that arose with one-stage
methods, there was no practical difference in the various errors generated by the two
methods. For example, at T = 5.0 the difference between the normalized L2-errors
was about 0.1 percent, the difference between the shape errors was about 0.06 per-
cent, the difference in the phase errors was about. 0.07 percent, and the relative
amplitude errors were identical. For the present problem, the cost of the Calahan
method was some 0.366 CPU seconds per step as compared with 0.427 CPU seconds
per step for the two-stage, DIRK-1IN method, and in consequence the latter method

was excluded from further consideration in longer-time experiments.

The stage was now set for a confrontation between the Calahan method with
the one-stage techniques. The Calahan method was run on our standard solitary wave
to T=5.0 with N =192 and J = 7250, so h £ 0. 521)(10-'2 and k = 0.69)(10—3.

The ratio k/h for this experiment wasabout 0,13, so approximately optimal at

T = 1.0 for a normalized L2-error level between 10_3 and 10-4. These particular
values of k and h were chosen so that the total processing time for this experiment,
some 4.21x 103 CPU seconds, was about the same as the total processing time,

4,10 x103 CPU seconds, for the one-stage Rosenbrock method in the run described
earlier and reported on in Figures 1 and 2. The errors associated with the run using

the Calahan method are also recorded in Figures 1 and 2 (curves 3). The relative
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L2-error increases gearly linearly for T < 1.0, but then shows a superlinear growth,
reaching 2.191x10 ~ at T = 5.0, about twice the value generated by the one-stage
Rosenbrock method. The shape error showed a slow but definite linear growth
throughout the time interval, overtaking the constant shape error of the second-order
methods at about T = 4.0. The phase error is shown in Figure 2. It is initially
negative, but by time 5.0 is positive and about double that of the one-stage Rosenbrock
scheme. The relative amplitude error was small, but positive, reflecting the dis-
sipativity of the third-order scheme. It did not increase appreciably on this time

interval, and its maximum observed value was 1.2 X 10_3.

These comparisons afford several conclusions. First, the third—ordef schemes
surely do not passess numerical solitary waves, as the shape errors continue to grow.
Secondly, while the third-order Calahan method was superior to all other sche‘mes
tested over shorter time intervals, the second-order schemes appear to be more
efficient over longer intervals due to the linear increase in their phase errors and
their constant shape error. In some sense, the second-order methods seem to capture
important qualitative features of the overlying differential equation not shared by the
higher-order schemes, and in long runs this may be more important than higher-

order convergence rates.

This last remark may be amplified a little by consideration of how the first
few integral invariants of the KdV equation respond to the various numerical schemes.

Considered here are

1 1 1

2 2
I, = u(x, t)dx, I u (x,t)dx, and 13 = [ug(x, 1) -3€ux(x, t):[ dx.

0 0 0

It is straightforward to verify that for smooth solutions of the KdV equation which
are periodic of period 1, Il’ 12, and 13 are independent of time (cf. [8:]). It is

also easy to see that all the schemes considered herein preserve I. up to round-off

1

error. Hence attention is restricted to the variation of 12 and 13. The schemes

represented in Figures 1 and 2 were used to approximate the solitary-wave solution

(4.1) of the KdV equation and the values of I, and I, corresponding to this

2 3
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approximation were computed and recorded at various times. A typical sample of
the outcome of this experiment is provided in Table 8 where the values to six digits

of 12 and I

3 are recorded at T=0.0, T =1.0, and T = 5.0. The values of 12
and I3 at T = 0.0 are obtained from ug = Pu0 rather than from u0 itself.
I2 I3

(1, 2) methods Calahan (1, 2) methods Calahan

t=0| .227440(-2) . 227440(~2) .310516(-3) .310523(-3)
t=11| .227440(-2) . 227405(-2) .310516(-3) .310444(-3)
t=5| .227440(-2) . 227266(-2) .310516(-3) .310128(-3)

TABLE 8. The variation with time of the functionals I, and 13
for the (1,2) DIRK and Rosenbrock methods and the Calahan
method for the integrations reported in Figures 1 and 2.

The results obtained from these experiments are revealing. The two second-
order schemes were indistinguishable, and so are reported as a group. Both of the

second-order methods appeared to conserve 12 and I_, whereas these functionals

suffered a small but steady decrease when the third—o3rder Calahan time-stepping

was used (with either quadratic or cubic splines). The existence and stability theory
for solitary waves in a broad class of continuous systems like the KdV equation relies
upon a pair of conserved quantities analogous to 12 and 13 (cf. [6]). Thus the results
in Table 8 may be interpreted as further evidence that the second-order numerical
schemes considered here possess travelling-wave solutions analogous to solitary
waves, and that the more accurate Calahan method has long-term effects which are
not reflections of aspects of the partial differential equation, but instead reflect the

numerical modeling.

We digress for a moment to discuss in more detail the work of Taha and
Ablowitz [28:]. They have provided a careful, comparative view of a wide range of
techniques for approximating solutions of the KdV equation. In one set of experiments,

they took the equation in the form,
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(4. 4a) u, + 6uu +u =0,
t X XXX
with solitary-wave initial data,
(4, 4b) u(x,0) = A sechz(kx),
where A = 2k2. The solution of (4. 4) is written explicitly as
(4.5) uS(x, t) = A sechz(kx - wt)

where w = 4k3. For several values of A the solution of the initial-value problem

(4. 4) was approximated over the time interval [0,1] by eight different, uniform mesh,
fully discrete schemes (see [28, Tables I, I, and ]I[]). The accuracy achieved was
measured by the quantity,

- j
e(t) = miax {Ius(xi, t) - Ui |},

where j = t/ & and Ui denotes the relevant discrete approximation to uS at the point
(x,1t) = (iAx, jAt). The error, e(1l), was in each case specified to be at most a given
value and At and Ax were adjusted to yield about the smallest CPU time a particular
scheme needed to achieve this level of error. All the methods examined in [28] were
coded in PL1 and run on an IBM 4341 computer using the optimizing compiler.* The
best performances were obtained using a local scheme proposed by Taha and Ablowitz,
though the pseudo-spectral scheme of Fornberg and Whitham [17] was also quite
competitive (see, again, [28).

In comparing our schemes' performances to those investigated in [28], account
must be taken of the differing computers that were utilized in the two investigations.
As both are standard IBM mainframe computers, a pretty accurate constant of pro-
portionality is known to relate the speeds of execution on the two machines of the

sort of numerically intense codes that are being discussed here. For the IBM 4341

sk

The authors thank Professors Taha and Ablowitz for this information, and for
several helpful discussions regarding their work.
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used by Taha and Ablowitz versus the IBM 3081 used in the present study, this

constant is about six.

Three cases are considered, namely, A = 1.0, A =2,0, and A = 4,0 in
(4, 4b). We used the Calahan method with quadratic splines to approximate (4.5) by
integrating the initial-value problem (4.4). Considering the relatively large errors
that Taha and Ablowitz specified, this choice seemed to be dictated by the results
reported in Table 6. The outcome of our runs were compared with the best results
obtained in [28]. For A = 1.0 the best performance computed on the IBM 4341 and
reported in [28] was an error of 0,00173 at t = 1,0 in 7 CPU seconds. Using
N = 96 and J = 25, we obtained an error of 0.00178 on the IBM 3081 in 1,02 CPU
seconds, a time that corresponds to about 6 CPU seconds on the IBM 4341, For
A =2.0 the best performance given in [28) was an error of 0,00332 at t = 1.0 which
was obtained in 23 CPU seconds, Taking N = 144 and J = 45, an error of 0,00288
was obtained on the IBM 3081 in 2,81 CPU seconds, a time that corresponds to about
17 CPU seconds on the IBM 4341. Finally, for A = 4.0 the error level e(1)
achieved in [28] was 0,01747 in 140 CPU seconds on the IBM 4341, We took N = 172
and J = 140 and found an error e(1) of 0.0171 at t = 1,0 in 10.2 CPU seconds, so
corresponding to some 61 CPU seconds on an IBM 4341.

Thus it seems that even for relatively coarse calculations on comparatively
small solutions such as those reported in [28], the best of the schemes proposed here
are competitive with others in the literature. For larger amplitudes, or for smaller
values of specified accuracy the trend appears to favor our techniques, though the

data available are too sparse to justify any categorical conclusion in this direction.
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5. DISCUSSION

A range of fully discrete, numerical techniques for the approximation of
solutions of the KdV equation has been implemented and tested, especially as regards
stability, accuracy, and efficiency. Because solutions of the KdV equation that are
relevant to wave phenomena are smooth, it was appropriate to consider Galerkin-type
spatial approximations based on smooth splines. The temporal discretizations used
were diagonally-implicit Runge-Kutta methods and Rosenbrock methods, mostly of
second and third order. When these spatial and temporal discretizations were com-
bined, there resulted schemes that are stable and accurate even with relatively large
time steps. In addition to verifying these general attributes for each of the competing
schemes, optimal values of k and h required to achieve given error bounds were
determined. This latter information made it possible to give an accurate assessment
of the efficiency of the various schemes. In what follows in this Section, we summar-
ize the substantive conclusions derived from this study and present an interesting

sample computation that relies on the methods introduced heretofore.

If the aim is to approximate solutions of the initial-value problem (1.1) over a
relatively short period of time, our recommendation depends on the accuracy desired.
If relatively low accuracy suffices, then the Calahan method (a third-order Rosenbrock
method) with quadratic splines seems to be most efficient. If higher accuracy is
desired, however, it is warranted to shift to cubic splines whilst keeping the third-
order Calahan time-stepping technique. The success of the Calahan method is
especially useful as regards the prospect of comparing the model's predictions with
data collected in the laboratory or field, where the use of comparatively large time

steps is very convenient (cf. [7] and [10)).

For longer time spans our experiments indicate that the second-order accurate
Rosenbrock and Runge-Kutta methods, both of which may be thought of as nonlinear
versions of the classical Crank-Nicolson scheme, are preferable to the higher-order
techniques, both as far as accuracy is concerned, and as regards capturing the
general structure of solutions of the KdV equation. The latter point is especially
potent when investigations into the asymptotic structure of solutions for large time
is in question.
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If interest is centered on some delicate, detailed aspect of a solution,
whether or not it manifests itself in a relatively short time, then the Calahan method
with cubic splines is again the superior choice among those considered herein. An

example illustrating this remark will be presented presently.
In a subsequent paper, issues of all the above types will be examined for the
KdV equation in the context of the general class of equations of the form,

(5.1) u+uPu -vu +u =0,
t X XX XXX

where v> 0 and p is a positive integer. It is worth note, therefore, that the con-
clusions of the present study go over intact for the initial-value problem for equation

(5.1), so providing a basis for this forthcoming work.

In closing, the presentation of an example is perhaps merited in which a
detailed study such as that given here is useful. An issue that is mathematically
rather interesting arises for equation (5.1) with ¥ =0 and p> 4. The standard
theory for the initial-value problem of (5. 1) insures that there exists a unique smooth
solution u corresponding to given, smooth initial data uO, at least over some time
interval (0, T™), where T = T*(uo) >0 (cf. Kato [21] ). If p<4, then T* may be
taken to be + 0, because of certain a priori bounds that are available in this case.
However, the question of whether or not T™ can be taken to be + in case p>4is
open, save for the case in which u0 is sufficiently small in L 2-norm (see Strauss
[26]). In the particular case p = 4, Weinstein [33] has characterized the singularity
that must form if the solution does indeed lose smoothness at some finite time.
Deciding whether or not a solution blows up in finite time is a rather delicate issue,
both analytically and numerically, and so following our own advice, this point was
studied using the Calahan method with cubic splines. In Figure 3 we present the out-
come of an example numerical experiment performed on (5.1) with p =4, v =0, and
smooth initial data. The singularity that apparently forms at about t = 0, 326 required
the higher accuracy scheme in order thatit be properly resolved. In addition, as the

spatial gradients grew, we found it necessary to refine k in order not to simply step
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over the singularity. In the elucidation of this phenomenon, the preliminary study
of the numerical scheme as reported here was invaluable, both technically and as

a means of generating confidence in the outcome of the simulation. Other numerical
evidence points in the same direction as that displayed in Figure 3, and thereby it

is tentatively concluded that solutions of the initial-value problem (5. 1) do not neces-

sarily remain smooth for all time.
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FIGURE 3. The evolution under equation (5.1) with p=4 and v=0 of a
sine-wave initial profile as seen via the Calahan method with cubic

splines and N = 1,024. The time step was adaptively determined.
(a) t=0.0, (b) t=0.3, (c) t=0,31908, (d) t = 0.32511,

(e) t =0,32594, () t=0.32604,
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