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This note is inspired by the paper of Bialecki, Fairweather, and Bennett [1] which

studies a method for the numerical solution of �u00 = f on an interval, and ��u = f on a

rectangle, with zero boundary data; their scheme calculates that C1 piecewise cubic U for

which �U 00 (or ��U) agrees with f at the two (or four) Gauss quadrature points of each

subdivision of the original domain. They observe that not only does their U approximate

u to order h4 at mesh nodes { h is the linear dimension of the subdivisions { but also U 0

agrees with u0 to order h4 in one dimension, and Ux, Uy, and Uxy agree to order h4 with

ux, uy, and uxy in two dimensions. Agreement of U with u to fourth order is perhaps not

so surprising { Gaussian quadrature of this order is, after all, fourth order accurate and

one could well expect this order of accuracy to be re
ected in a Gauss-inspired di�erential

equation solver. But fourth order agreement also for the derivatives is a surprise, and is

due to the particular nature of the collocation scheme. Indeed, U agrees with u to fourth

order uniformly in 
, but away from the nodal points their derivatives need not be so

close. It is in this sense that the derivatives of U exhibit superconvergence at the nodes.

We refer to the survey article of Fairweather and Meade [3] for a history of the subject

and an extensive bibliography.

This note consists of three sections. The �rst section treats �u00 = f on [0; 1] by

elementary methods, and admits a non-uniform mesh. At the mesh nodes, we show that

u � U and u0 � U 0 are dominated by a quantity on the order of h4(M3 +M4) (h is the

maximum mesh size, Mp is a bound for jf (p)j); this is a very special case of the general

results of deBoor and Swartz [2]. A simple example shows that no derivative of lesser order

than 4 can su�ce to give a general result of fourth order accuracy.

The second section redoes the problem�u00 = f on [0; 1], this time with only a uniform

mesh, by Fourier series and the explicit calculations that are available; f is expressed as

a Fourier sine series, f(x) =
P
c� sin��x, and the necessary control of f (iv) is e�ected

through the hypothesis that
P
jc�j�4 < 1. Although the Fourier method is not well

suited to this problem and the results are weaker than those of section 1, this method does

generalize to give a treatment of the higher dimensional analogues ��u = f , with little

more trouble than the expected computational tedium and cumbersome notation. One

may also carry through a similar treatment using a cosine series, f =
P1

0
c� cos��x, or

the full exponential series f =
P1
�1 c� exp(2�i�x); the treatments and results with these
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are conceptually equivalent but the details substantially more complex, and on balance it

seems best to content ourselves with just the sine series.

Section 3 studies ��u = f on the unit square. With a partition of the square into

congruent rectangles of size h � k, and f given as f(x; y) =
P
c�� sin��x sin ��y withP

jc��j(�4 + �4) = K < 1, we show that at the nodes (i.e., the vertices of the little

rectangles), u � V , ux � Vx, uy � Uy, and uxy � Uxy are all dominated by a multiple of

K(h4+k4). The aspect ratio � = k
h
of the partitioning rectangles does not enter otherwise

into these estimates. We believe these pointwise estimates to be new.

We �nd it both interesting and reassuring to have some idea of the magnitude of various

constants that arise in our estimates, even though such detail is not strictly necessary for

the proofs. In that spirit, we record here the exact error term for two point Gaussian

quadrature on an interval of length a; veri�cation consists simply of a four fold integration

by parts.

Lemma (Gaussian two-point quadrature). Let '(t) be de�ned for jtj � a
2
, with '(iv)

integrable. Then
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This immediately gives a variety of one-panel error bounds such as
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1. An elementary method for �u00 = f on [0; 1]. On the interval [0; 1] we are given

nodes 0 = x0 < x1 < � � � < xN = 1. The interval In is [xn�1; xn], its length hn = xn�xn�1,
and midpoint �n = (xn�1+xn)=2; the points, two in each In, ��n = �n+

hn
2

p
3
will be referred

to as Gauss points. We set h = maxhn, and measure the non-uniformity of the partition

e�ected by these nodes with � = (maxhn)=(minhn).

S is the linear space of C1 functions on [0; 1] which vanish at the endpoints 0 and 1,

and which are cubic polynomials on each In.

Given the problem �u00 = f on [0; 1], u(0) = u(1) = 0, the scheme of Bialecki,

Fairweather, and Bennett takes as approximate solution that element U of S which satis�es

the 2N Gauss collocation conditions �U 00(��n ) = f(��n ), n = 1; . . . ;N ; it is known that

this speci�es U uniquely. To study the error u� U we �nd it useful to also consider that
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element V of S which satis�es the 2N conditions �
R
In

V 00(t)dt =
R
In

f(t)dt, �
R
In

tV 00(t)dt =R
In

tf(t)dt; V is uniquely determined because V 00 is linear on each In and so is determined

by its mean and �rst moment. For simplicity of exposition, we assume that derivatives of

f through order 4 are bounded, kf (p)k1 =Mp <1 (p � 4); even though this assumption

could be weakened slightly { for instance, to f 000 of �nite variation { a simple example will

show that fourth order accuracy cannot be achieved with less smoothness of f .

We may now state the principal theorem of this section.

Theorem. At the nodes xn, n = 0; . . . ;N , we have

V (xn) = u(xn);(1.1)

V 0(xn) = u0(xn);(1.2)

ju(xn)� U(xn)j � C(M3 +M4)h
4;(1.3)

ju0(xn)� U 0(xn)j � C(M3 +M4)h
4:(1.4)

Uniformly on [0; 1], we have

ju(x)� U(x)j � C(M2 +M3 +M4)h
4(1.5)

ju0(x) � U 0(x)j � C�(M2 +M3 +M4)h
3:(1.6)

C is an absolute constant (C about 2 � 10�3 su�ces for (1.3) and (1.4), and C about 1

su�ces for (1.5) and (1.6)).

Proof. That V agrees with u, and V 0 with u0, at the nodes xn follows immediately

from the formulas

 (x) = �(1� x)

xZ
0

t 00(t)dt� x

1Z
x

(1� t) 00(t)dt; and(1.7)

 0(x) =

xZ
0

t 00(t)dt�
1Z

x

(1� t) 00(t)dt;(1.8)

valid when  is C1, piecewise C2 on [0; 1] and vanishes at 0 and 1. In particular, when x

is the node xk and  = u�V ,
xnR
0

=
P

j�n
R
Ij

and
1R

xn

=
P

n<j

R
Ij

; the de�nition of V is such

that
R
Ij

 (t)dt and
R
Ij

t (t)dt all vanish, whence  (xn) = 0,  0(xn) = 0 for all n. This gives

(1.1) and (1.2).

To compare the two elements U and V of S, it is convenient to introduce the norm

(1.9) Q� = max
n

�
1

2
jQ00(�+n ) +Q00(��n )j;

hn

2
p
3
jQ00(�+n ) �Q00(��n )j

�
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for elements Q 2 S. Use of (1.7) and (1.8) yields jQ(xn)j � Q� and jQ0(xn)j � Q�. To see

this,

Z
Ij

tQ00(t)dt = �j

Z
Ij

Q00(t)dt +
Z
Ij

(t� �j)Q
00(t)dt

= �j
hj

2
(Q00(�+j ) +Q00(��j )) +

hj

2

hj

2
p
3
(Q00(�+j )�Q00(��j ))

because tQ00 is a quadratic polynomial on Ij , for which Gaussian quadrature is exact. Thus

�����
Z
Ij

tQ00(t)dt

����� � hj

�
�jQ

� +
hj

2
Q�
�
� hjxjQ

� � hjQ
�:

Similarly,

�����
Z
Ij

(1� t)Q00(t)dt

����� � hj

�
(1� �j)Q

� +
hj

2
Q�
�
� hj(1� xj�1)Q� � hjQ

�

so that

(1.10) jQ(xn)j �
X
j

((1 � xj�1) or xj )hjQ� � Q�

and

(1.11) jQ0(xn)j �
X
j

hjQ
� = Q�:

To apply (1.10) and (1.11) to the di�erence E = V � U , we estimate E�:

1

2
(E(�+n ) +E(��n )) =

1

2
(V 00(�+n ) + V 00(��n )) �

1

2
(U 00(�+n ) +U 00(��n ))

=
1

hn

Z
In

(�f(t))dt � 1

2
(�f(�+n ) � f(��n ))

= � 1

hn

8<
:
Z
In

f(t)dt � hn

2
(f(�+n ) + f(��n ))

9=
;

= � 1

hn

Z
In

r(t)f (iv)(t)dt;
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using the Gaussian quadrature formula (0:1). Thus

�����12(E(�+n ) +E(��n ))

����� � h4n
4320

M4:

In the same way,

1

2
p
3
hn(E(�

+

n )�E(��n ))

= � 2

hn

8<
:
Z
In

(t� �n)f(t)dt �
hn

2
((t � �+n )f(�n) + (t � ��n )f(�

�
n ))

9=
;

= � 2

hn

Z
In

r(t)((t � �n)f(t))
(iv)dt;

so that ����� 1

2
p
3
hn(En(�+) �En(��))

����� � h4n
2160

k4f 000 + (t� �n)f
ivk1

� h4n
540

M3 +
h5n
4230

M4:

Thus E� � C(M3 +M4)h
4, so that (1.1) implies (1.3) and (1.2) implies (1.4).

To obtain the estimates (1.5) and (1.6), we set e = u�V and continue to set E = V �U
so that u � U = e + E. On In, write the cubic polynomial E as a linear combination

of the Lagrange interpolating polynomials: L1, L2, M1, M2 de�ned by the conditions

that both L's and M 's and their derivatives vanish at the endpoints of Fn except for

L1(xn�1) = L2(xn) = M 0
1
(xn�1) = M 0

2
(xn) = 1. Then on In, E(x) = E(xn�1)L1(x) +

E(xn)L2(x)+E
0(xn�1)M1(x)+E

0(xn)M2(x). kL1k1 and kL2k1 are bounded by 1 on In,

while kM1k1 and kM2k1 are bounded by 4

27
hn, so kEk1 � CKh4 follows from (1.1) -

(1.4). Also, on In we have kL0
1
k1 and kL0

2
k1 bounded by 3

8hn
� 3

8
�h�1, while kM 0

1
k1 and

kM 0
2
k1 are bounded by 5

9
; thus kE0k1 � CK�h3. We estimate e by repeated use of the

near value theorem, knowing that e = e0 = 0 at the endpoints of I and e(iv) = �f 00 within
In: e vanishes at xn�1 and xn so e0(�) = 0 for some � interior to In; e

0 vanishes at xn�1,
�, and xn, so e

00(�1) = e00(�2) = 0 for some �1"(xn�1; �) and �2 2 (�; xn); thus e
000(�) = 0

for some � 2 (�1; �2). Integrating back to get e, we have e000(x) =
xR
�

e(iv)(t)dt, e00(x) =

xR
�1

e000(t)dt, e0(x) =
xR

xn�1

e00(t)dt, e(x) =
xR

xn�1

e0(t)dt, which quickly yield the estimates

je(x)j � h4
n

24
kf 00k1, je0(x)j � h3

n

6
kf 00k1.
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As an example to show that some control of f (iv) is needed in order to obtain fourth

order convergence at the nodes, consider the function u = sin2 �Nx on [0; 1], with nodes

xn = n
N
; u and u0 vanish at each node xn. But at the Gauss points, �u00(��n ) =

2(�N)2 cos �p
3
, non zero and independent of the particular Gauss points; thus U(x) =

(�N)2 cos �p
3
x(1 � x). The errors at the nodes of u� U are of order N2 (for xn near 1

2
)

and of u0 � U 0 also of order N2 (for xn near 0 or 1). These errors cannot be of the order

h4kf (p)k1 = N�4ku(p+2)k1 unless p is at least 4.

2. A Fourier series approach to �u00 = f . Given the integer N , we impose a

uniform mesh on [0; 1] with nodes at xn = n
N
, n = 0; . . . ;N ; the interval In = [xn�1; xn]

has length h = 1

N
and midpoint �n =

n� 1

2

N
. The Gauss points are ��n = �n � h

2

p
3
.

We assume that f is expressed as a Fourier sine series, f(x) =
P1

�=1
c� sin ��x for

which K =
P1

v=1
jc�j�4 < 1. The exact solution u and its derivative are given by

u(x) =
P1

�=1

c�
�2�2

sin ��x and u0(x) =
P1

�=1

c�
��

cos��x. Our method is to determine that

U� 2 S for which �U 00� (��n ) = sin����n ; then U =
P1

�=1
c�U� satis�es �U 00(��n ) = f(��n ).

For � small, say � < N , U� contains useful information about u, and for these terms, it is

important how well U�(xn) and U
0
�(xn) approximate sin��xn=(��)

2 and cos��xn=(��).

For large �, U� essentially represents annoying distortion, alias e�ects, and random noise,

so that only a rough qualitative estimate can be useful.

We begin with the formula that determines, for a cubic polynomial Q on the interval

jxj � h
2
, the values of Q00

�
� h

2

p
3

�
from Q

�
�h

2

�
and Q0

�
�h

2

�
; we use the subscripts e and

o for the even and odd parts of a function, so that for example Q0o(x) =
1

2
(Q0(x)�Q0(�x)).

Lemma 2.1. The cubic polynomial Q(x) on jxj � h
2
satis�es

2

h
Q0o

�
h

2

�
= Q00e

�
h

2
p
3

�
(2.1)

� 4

h2
Qo

�
h

2

�
+

2

h
Q0e

�
h

2

�
=

1p
3
Q00o

�
h

2
p
3

�
(2.2)

Proof. Verify (2.1) for Q = 1 and x2, (2.2) for x, and x3.

Lemma 2.1 allows us to determine that function U� 2 S for which �U 00� (��n ) = sin����n .

Lemma 2.2. For � not a multiple of 2N , set

A� =

 
��h
2

sin ��h
2

!2�
cos

��h

2
cos

��h

2
p
3
+

1p
3
sin

��h

2
sin

��h

2
p
3

�
(2.3)

B� =
��h
2

sin ��h
2

cos
��h

2
p
3

(2.4)
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Then the element U� 2 S that at the nodes satis�es

U�(xn) = A�

sin ��xn

(��)2
;(2.5)

U 0�(xn) = B�

cos��xn

��
;(2.6)

at the Gauss points satis�es

�U 00� (��n ) = sin����n :

In the exceptional cases � = 2pN , the function U� 2 S for which �U 00� (��n ) = sin����n
satis�es

(2.7) U�(xn) = 0; U 0�(xn) = (�1)p+1
h

2
p
3
sin

��h

2
p
3
:

Proof. For � 6= 2pN , one veri�es that

U�e = A�

1

(��)2
sin ���n cos

��h

2
; U 0�o = �Bk

1

��
sin���n sin

��h

2
;

and

�U 00�e = sin���n cos
��h

2
p
3

satisfy 2

h
U 0�o = U 00�e (cf. 2.1) for all n; the common factor sin ���n is the sole dependence

on n. Also,

U�o = A�

1

(��)2
cos���n sin

��h

2
; U 0�e = B�

1

��
cos���n cos

��h

2
;

and

�U 00�o cos���n sin
��h

2
p
3

satisfy � 4

h2
U�o+

2

h
U 00�e =

1p
3
U 00�o (cf. 2.2) for all n; the sole dependence on n is the common

factor cos���n.

For � = 2pN , h is a period of sin ��x, sin��x is odd about each �n and thus on

In the piecewise linear U 00� must also be odd about �n. U 0� is the integral of the h-

periodic U 00� , U
00
� has mean 0, so U 0� is h-periodic. The continuity of U 0� together with

0 = U�(1)�U�(0) =
1R
0

U 0�(t)dt shows that U
0
� has mean value zero; periodicity of U 0� givesR

In

U 0� = 0 for all n so U�(xn) = 0. (2.2) then gives U 0�(xn)

= � h

2

p
3
cos
�
� � 2pN

�
n� 1

2

�
h
�
sin ��h

2

p
3
= (�1)p+1 h

2

p
3
sin ��h

2

p
3
.

For small �, we wish to know how close to 1 are the quantities A� and B� of (2.3) and

(2.4). For large �, we wish simply wish to estimate the magnitude of a� = A�=(��)
2 and

b� = B�=(��).
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Lemma 2.3. There exist universal constants CA, CB, Ca, Cb such that

jA� � 1j � CA(�h)
4 (� < N);(2.8)

jB� � 1j � CB(�h)
4 (� < N);(2.9)

ja� j � Ca (all �);(2.10)

jb� j � Cb (all �);(2.11)

Proof. To show (2.8) and (2.9), consider the functions A(t) =
�

t
sin t

�2 �
cos t cos tp

3

+ 1p
3
sin t sin tp

3

�
and B(t) =

�
t

sin t

�
cos tp

3
. A(t) and B(t) are analytic for jtj < � , their

�rst three derivatives vanish at t = 0, so A(t) = 1 + t4q1(t) and B(t) = 1 + t4q2(t) for t

small; the analyticity of A and B for jtj < � yields boundedness of q1 and q2 uniformly

on jtj � �
2
. When t = ��h

2
, A� = A(t) and B� = B(t), j�j � N corresponding to jtj � �

2
,

which shows (2.8) and (2.9).

For large �, but not an even multiple of N , we have b� = 1

��
B� =

h

2

sin
��h

2

cos tp
3
.

Bound cos tp
3
by 1, but use sin ��h

2
6= 0 to see that j sin ��h

2
j � sin �h

2
, the worst case being

when � � �1 (mod 2N). Then jb� j �
h

2

sin
�h

2

� 1

2
for all � not of the form 2pN . For the

exceptional cases � = 2pN , (2.7) gives jU 0�(xn)j � 1 directly.

Similarly,

a� =
1

(��)2
A� =

 
h
2

sin ��h
2

!2�
cos t cos

tp
3
+

1p
3
sin t sin

tp
3

�

the second factor is of the form v �Dw where v = (cos t; sin t) and w =
�
cos tp

3
; sin tp

3

�
are unit vectors, D = diag

�
1; 1p

3

�
, and so is bounded by 1. As with b,

�
h

2

sin � �h

2

�2
��

h

2

sin
�h

2

�2
� 1

4
when � 6� 0 (mod 2N), so ja� j � 1

4
. When � = 2pN , we have U�(xk) = 0

from (2.7).

More elaborate calculations show that�
t

sin t

�2�
cos t cos

tp
3
+

1p
3
sin t sin

tp
3

�
= 1 + q1(t)t

4

where q1(0) =
1

90
, and q1 increases monotonically to about :02 at t = �

2
, so that CA about

:13 su�ces. Also,
t

sin t
cos

tp
3
= 1 + q2(t)t

4

where q2(0) = � 1

270
and q2 decreases monotonically to about �:005 at t = �

2
, so that

CB about :03 su�ces. We suspect that all terms in the Taylor series for q1 and �q2 are

non-negative.

The fourth order accuracy of U follows immediately from Lemma 2.3:
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Theorem 2.4. Let f(x) =
P1

�=1
c� sin ��x be given on [0; 1], with

P1
�=1

jc� j�4 =

K < 1. Let U be that element of S for which �U 00(��n ) = f(��n ), and let u(x) =P1
�=1

c�(��)
�2 sin��x. Then at the nodes xn = n

N
, we have

ju(xn)� U(xn)j � Kh4

and

ju0(xn)� U 0(xn)j � Kh4

Proof. U(x) =
P1

�=1
c�U�(x), so u� U may be written as

u(x) �U(x) =

N�1X
�=1

c�
�
(��)�2 sin��x � U�(x)

�

+

1X
�=N

c�(��)
�2 sin��x �

1X
�=N

c�U�(x):

At x = xn, the �rst sum is
PN�1

�=1
c�(��)

�2 sin��xn(1�A�), with absolute value at mostPN�1
�=1

jc�j(��)�2 � CA(�h)
4 � CAh

4
PN�1

�=1
jc�j(�=�)2; the second sum is at most

1X
�=N

jc�j(��)�2 � N�4
1X

�=N

jc� jN4(��)�2 � h4
1X

�=N

jc�j�4(�N)�2:

The last sum contributes the principal error term with

�����
1X

�=N

c�U�(xn)

����� �
1X

�=N

jc�j ja� j � CaN
�4

1X
�=N

jc�j�4:

Thus ju(xn)�U(xn)j is dominated by a quantity of the form CKh4; chasing the constants

shows that 1

4
Kh4 su�ces.

The derivative estimate is much the same:

u0(x) �U 0(x) =
N�1X
�=1

c�((��)
�1 cos��x � U 0�(x))

+

1X
�=N

c�(��)
�1 cos��x �

1X
�=N

c�U
0
�(x):

At x = xn, the �rst sum is
PN�1

�=1
c�(��)

�1 cos��xn(1�B�), bounded byCBh
4
PN�1

�=1
jc�j�3=�;

the second sum is bounded by N�4P1
�=N jc�j�4(�N)�1; and the last sum is bounded by

CbN
�4P1

�=N jc� j�4. Together, these three terms give at most 1

2
Kh4.
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3. ��u = f on the unit square. We follow the treatment of section 2 closely.

The unit square 
 = [0; 1] � [0; 1] is partitioned into MN rectangles of size h = 1

M

by k = 1

N
, with vertices at the nodes f(mh;nk) : m = 0; . . . ;M; n = 0; . . .Ng. The ratio

k=h is denoted by �. The Gauss points are the 4MN points
n
(�; �) =

��
m� 1

2

�
h� h

2

p
3
;�

n� 1

2

�
k � k

2

p
3

�
: m = 1; . . . ;M; n = 1 . . .N

o
. For the partitioning rectangles R, the

Gaussian quadrature formula
R R
R

'(x; y)dxdy = jRj
�P

(�;�)2R'(�; �)
�
is exact when ' is

a polynomial of degree at most 3 in x and y separately; as in section 2, an analysis of

the residual for general ' is not needed, its place taken instead by consideration of the

individual terms of the Fourier series of '.

We take f as given by a Fourier series f(x; y) =
P

��1;��1 c�� sin ��x sin ��y, withP
jc��j(�4 + �4) = K < 1. The exact solution u to ��u = f in 
, u = 0 on @
, is

u(x; y) =
P
c��(�

2�2+�2�2)�1 sin ��x sin ��y, with �rst and second derivatives available

through the obvious termwise di�erentiation.

The space S is the set of functions U which are C1 on the unit square 
, vanish

identically on the boundary of 
, and which are cubic polynomials within each partitioning

rectangle. It is known that f has dimension 4MN and that an element U 2 S is uniquely

determined by specifying the values of �U at the 4MN Gauss points. A basis for S,

which we will not use further, but which serves well to introduce notation, is formed by

the Lagrange interpolating polynomials. We �rst note that speci�cation of the sixteen

pieces of data U , P = Ux, Q = Uy, and S = Uxy at each of the vertices of a rectangle

speci�es the cubic polynomial U uniquely: U and P at the vertices determine U along the

horizontal edges, while Q and S = Qx at the vertices determine Q along the horizontal

edges; then along any vertical line, U and Q at the endpoints determine U within the

rectangle. The requirement that U vanish on the boundary means that also P vanishes

on the horizontal sides of the rectangle and Q on the vertical sides, so that all told there

are (M � 1)(N � 1) degrees of freedom for U at interior nodes, (M + 1)(N � 1) for P ,

(M � 1)(N + 1) for Q, and (M + 1)(N + 1) for S. An explicit basis may be formed with

the one-variable Lagrange interpolating polynomials (cf. the proof of 1.5 and 1.6) L and

M that respectively have value 1 and derivative 1 at a point, and have all other data zero:

L(x)L(y) gives a value of U , M(x)L(y), M(x)M(y), and M(x)M(y) give P , Q, and S.

As in section 2, we �nd it convenient to work with the even and odd parts of a function,

with respect to the center of a rectangle. The subscripts e and o denote the even and odd

parts with respect to x and y, of the indicated function; as an example on a rectangle

centered at (0; 0), Qoe(x; y) = 1

4
[Q(x; y) �Q(�x; y) +Q(x;�y) �Q(x;�y)] is that part

of Uy which is odd in x and even in y.

Our �rst lemma gives the relationship between data at vertices and Laplacian at Gauss

points that holds for a cubic polynomial.
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Lemma 3.1. On the rectangle jxj � h
2
, jyj � k

2
, the values of U , P , Q, S at the vertices

and the values of �U at the Gauss points
�
� h

2

p
3
;� k

2

p
3

�
satisfy

(3:1) � 2

h
Poe � 2

k
Qeo +

1

3

�
h

k
+
k

h

�
Soo = ��Uee

(3:2)
12

h2
Uoe � 6

h
Pee �

�
8

3k
+

2k

h2

�
Qoo +

�
h

k
+

1

3

k

h

�
Seo = �

p
3�Uoe

(3:3)
12

k2
Ueo �

�
8

3h
+

2h

k2

�
Poo �

6

k
Qee +

�
k

h
+

1

3

h

k

�
Soe = �

p
3�Ueo

(3:4) 16

�
1

h2
+

1

k2

�
Uoo �

�
8

h
+

2h

k2

�
Peo �

�
8

k
+

2k

h2

�
Qoe +

�
k

h
+
h

k

�
See = �3�Uoo

(The even and odd parts of U , P , Q, S are to be evaluated at
�
h
2
; k
2

�
, and those of �U

at
�

h

2

p
3
; k

2

p
3

�
).

Proof. Direct veri�cation: (3.1) is satis�ed when U is 1; x2, y2, or x2y2, (3.2) by

x; x3; xy2; x3y2, (3.3) by y; x2y; y3; x2y3, and (3.4) by xy; x3y; xy3; x3y3.

We are now ready to identify that element U�� of S for which��U��(�; �) = sin ��� sin ���

at all Gauss points (�; �).

Lemma 3.2. There exist numbers a; b; c; d, depending on �; �; h, and k but independent

of the partitioning rectangle [(m � 1)h;mh] � [(n � 1)k; nk], with the property that the

cubic polynomial U�� de�ned through the sixteen conditions

U��(x; y) = a sin ��x sin ��y(3.5)

P��(x; y) = b cos��x sin ��y(3.6)

Q��(x; y) = c sin ��x cos��y(3.7)

S��(x; y) = d cos��x cos ��y(3.8)

for each of the four vertices (x; y) of the partitioning rectangle, satis�es

(3.9) ��U��(�; �) = sin��� sin���

at the four Gauss points of the rectangle.

Proof. To make the formulas more manageable, we use the abbreviations � = sin ��h

2
,


 = cos ��h
2
, �0 = sin ��k

2
, 
0 = cos ��k

2
.

Translate lemma 3.1 to the center (x0; y0) of the partitioning rectangle, and substi-

tute expressions (3.5) through (3.9), into (3.1){(3.4). After removing common factors of

sin��x0 sin��y0, cos��x0 sin ��y0, sin ��x0 cos��y0, and cos��x0 cos��y0 respectively

11



from the four equations, we see that it is su�cient that a; b; c; d satisfy four simultaneous

linear equations with augmented coe�cient matrix

(3.10)0
BBB@

0 2

h
�
0 2

k

�0 1

3

�
h
k
+ k

h

�
��0 cos ��h

2

p
3
cos ��k

2

p
3

12

h2
�
0 � 6

h


0

�
8

3k
+ 2k

h2

�
��0 �

�
h
k
+ 1

3

k
h

�

�0

p
3 sin ��h

2

p
3
cos ��k

2

p
3

12

k2

�0

�
8

3h
+ 2h

k2

�
��0 � 6

k


0 �

�
k
h
+ 1

3

h
k

�
�
0

p
3 cos ��h

2

p
3
sin ��k

2

p
3

16
�
1

h2
+ 1

k2

�
��0 �

�
8

h
+ 2h

k2

�

�0 �

�
8

k
+ 2k

h2

�
�
0

�
k
h
+ h

k

�


0 3 sin ��h

2

p
3
sin ��h

2

p
3

1
CCCA

The determinant of the coe�cient matrix is non-zero except when � and � are both even

multiples of M and N . This fact about the coe�cient matrix, and more, will be shown in

the next lemma, and therewith the quantities a; b; c; d determined.

The exceptional case � = 2pM , � = 2qN will be disposed of here: ��U is (h; k)

translation invariant and odd in both x and y about the center (x0; y0) of the partitioning

rectangle, so U , P , Q and S are (h; k) translation invariant, and thus U must vanish along

the edges of every partitioning rectangle, giving

(3.11) a = 0; b = 0; c = 0 ((�; �) = (2pM; 2qN)) ;

(3.4) then gives

(3.12) d = 3
hk

h2 + k2
(�1)p+q cos ��h

2
p
3
cos

��k

2
p
3

((�; �) = (2pM; 2qN)) :

To complete the proof of Lemma 3.2 we yet need to show that the coe�cient matrix of

(3.10) is non-zero in the non-exceptional cases. But we will eventually need more, namely,

the boundedness of a; b; c; d uniformly in �; �; h, and k. The next lemmas do this, without

art. We simply calculate the determinant of the coe�cient matrix, and all its 3�3 minors,

to show that the inverse of the coe�cient matrix has entries bounded uniformly in �; �; h,

and k; since the right-hand side of (3.10) is bounded, this will show that a; b; c; d are

likewise bounded uniformly.

Lemma 3.3. The determinant D of the coe�cient matrix of (3.10) is given by

(3.13)

27

16
h2k2D = �2
2
04(243 + 243�2) + �02
02
4(243 + 243��2)

+ �4
04(324 + 189�2 + 27�4) + �2�02
2
02(702 + 513�2 + 513��2)

+ �04
4(324 + 189��2 + 27��4)

+ �4�02
02(579 + 399�2 + 72�4 + 252��2)

+ �04�2
2(579 + 399��2 + 72��4 + 252�2)

+ �4�04(296 + 196�2 + 48�4 + 196��2 + 48��4);
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so that

(3.14)
27

16
h2k2D � 148(�2 + �02) + 189(�2�2 + ��2�02) + 27(�4�4 + ��4�04)

Proof. (3.13) is simply a brute force calculation; recall that � = k=h. To obtain (3.14),

use �2 + 
2 = 1 = �02 + 
02 to obtain the expansions

(3:15) �2 + �02 = (�2
2
04 + �02
02
4) + (�4
04 + 4�2�02
2
02 + �04
4)

+ 3(�4�02
02 + �04�2
2) + 2�4�04;

�2 = �2
2
04 + �4
04 + 2�2�02
2
02 + 2�4�02
02 + �2
04
2 + �4�04;(3.16)

�02 = �02
02
4 + 2�2�02
2
02 + �04
4 + �4�02
02 + 2�2�04
02 + �4�04;(3.17)

�4 = �4
04 + 2�4�02
02 + �4�04;(3.18)

�04 = �04
4 + 2�2�04
2 + �4�04;(3.19)

Next, collect like powers of � in (3.13). The coe�cients of �o is

243(�2
2
04 + �02
02
4) + (324�4
04 + 702�2�02
2
02 + 324�04
4)

+ 579(�4�02
02 + �04�2
2) + 296�4�04

which, by (3.15), exceeds min
�
243; 324; 702

4
; 579

3
; 296

2

�
(�2 + �02) = 148(�2 + �02). The

coe�cients of �2 and ��2 in (3.13) similarly exceed min
�
243; 189; 513

2
; 399

2
; 252; 196

�
�2 =

189�2 and 189�02 by (3.16) and (3.17) respectively, while the coe�cients of �4 and ��4

exceed min
�
27; 72

2
; 48
�
�2 = 27�2 and 27�02 by (3.18) and (3.19).

We thus see from (3.14) that D 6= 0 unless � = �0 = 0. But this is just the exceptional

case in Lemma 3.2, for 0 = � = sin ��h

2
, h = 1

M
, happens only when � is an even multiple

of M , and �0 = 0 only when � is an even multiple of N . The proof of Lemma 3.2 is thus

complete.

We now calculate the 3� 3 minors of the coe�cient matrix of (3.10) and bound them

by the determinant D.

Lemma 3.4. There are absolute constants Cij(i; j = 1; . . . ; 4) such that the minors

Mij of the coe�cient matrix of (3.10) satisfy jMij j � CijD for (�; �) 6= (2pM; 2qN).

Proof. Note that the interchange (�; 
; h; �)$ (�0; 
0; k; ��1) leaves D unchanged, but

interchanges the pairs of minors (M12;M13); (M31;M21); (M22;M33); (M23;M32); (M24;M34),

and (M42;M43), so it su�ces to consider only one of each of these pairs.

For some of the minors we use elementary estimates such as

j�hj � (�2 + h2)=2; j�0kj � (�02 + k2)=2(3.20)

j��kj � (�2�2 + k2)=2; j��1�0hj � (��2�02 + h2)=2;(3.21)

j���0j � (�2�2 + �02)=2; j��1��0j � (�2 + ��2�02)=2;(3.22)

��2 � (�2�2 + �2)=2; ��1�02 � (��2�02 + �02)=2;(3.23)

j�3�3j � (�2�2 + �4�4)=2; j��3�03j � (��2�02 + ��4�04)=2;(3.24)

13



when � 6= 2pM or � 6= 2qN , we also have respectively

h2 =
1

M2
� sin2

��h

2
= �2 and k2 = �2h2 � �2�2; or

k2 � �02 and h2 = ��2k2 � ��2�02

so in either case

(3.25) h2 + k2 � (�2 + �02) + (�2�2 + ��2�02);

�nally, super
uous occurrences of �; �0; 
; 
0; h, and k are simply dominanted by 1; no

attempt is made to combine terms to obtain better bounds. We now record each of the

minors and indicate how they are dominated by the determinant D, with (3.14) as an

intermediate step.

M11 :
9

4
h2k2M11 = h2(81
3
03 + 108�2

03 + 63�03
3
0 + 79�2�02

0)

+ k2(81
3
03 + 63�2

03 + 108�02

03 + 79�2�02

0)

+ �2�2(9k2

03 + 12k2�2

0)

+ ��2�
0
2(9h2
3
0 + 12h2�2

0); so

9

4
h2k2jM11j � 331((�2 + �02) + (�2�2 + ��2�02)) + 21(�2�2 + ��2�02) (by 3.25)

� 3 � 27
16
h2k2D (by 3.14);

jM11j �
9

4
D:

M21(and M31) : �
9

4
h2k2M21 = h2(27�

03 + 36�3
03 + 27��02
2
0 + 31�3�02
0)

+ k2(27�
2
03 + 21�3
03 + 36��02

0 + 23�3�02
0)

+ �2�2(3k2�
03 + 4k2��02
0)

+ ��2�02(9k2�
2
0 + 12h2�3
0); so
9

4
h2k2jM21j � 121((�2 + �02) + (�2�2 + ��2�02)) + 21(�2�2 + ��2��2) (by 3.25)

� 27

16
h2k2D (by 3.14);

jM21j �
3

4
D; jM31j �

3

4
D:
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M41 : �
27

4
h2k2M41 = h2(27��0
2
02 + 36�3�0
02 + 39��03
2)

+ k2(27��0
2
02 + 39�3�0
02 + 36��03
2)

+ �2�2(9k2��0
02 + 12k2��03)

+ ��2�02(9h2��0
2 + 12h2�3�0); so
27

4
h2k2jM41j � 102((�2 + �02) + (�2�2 + �02�02)) + 21(�2�2 + ��2�02) (by 3.25)

� 27

16
h2k2D (by 3.14);

jM41j �
1

4
D:

M12(and M13) : �
9

8
h2k2M12 = h�(81
2
03 + 108�2
03 + 90�02
2
0 + 100�2�02
)

+ ��k(81
2
03 + 63�2
03 + 108�02
2
0 + 64�2�02
)

+ �3�3(9
03 + 12k�02
)

+ ��2�02(36h�
2
0 + 48h�3
0); so
9

8
h2k2jM12j � jh�j � 371 + j��kj � 316 + 21�3�3 + 84��2�02

� 186(h2 + �2) (by 3.20)

+ 158(k2 + �2�2) (by 3.21)

+ 11(�2�2 + �4�4) (by 3.24)

+ 84��2�02

� 186((�2 + �02) + (�2�2 + ��2�02)) + 186�2

+ 169(�2�2 + ��2�02) + 11�4�4 (by 3.25)

� 3 � 27
16
h2k2D (by 3.14);

jM12j �
9

2
D; jM13j �

9

2
D:

M22(and M33) : �
3

8
h2k2M22 = �02(9h
3
0 + 7h�2

0)

+ ��2�02(9h
3
0 + 12h�2

0)

+ ��2(�5k�02

0); so
3

8
h2k2jM22j � 16�02 + 21��2�02 + 5��2

� 1

9
� 27
16
h2k2D (by 3.23 and 3.25);

jM22j �
1

2
D; jM33j �

1

2
D:
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M32(and M23) : �
9

8
h2k2M32 = h�(27�0
2
0 + 48�03
2 + 80�2�03)

+ ��k(27�0
2
0 + 9�2�0
02 + 36�03
2 + 76�2�03)

+ �3�3(9k�0
02 + 12k�03)

+ ��2�02(12h��0
2 + 16h�3�0); so
9

8
h2k2jM32j � 73(h2 + �2) (by 3.20)

+ 74(k2 + �2�2) (by 3.21)

+ 11(�2�2 + �4�4) (by 3.24)

+ 28��2�02

� 74((�2 + �02) + (�2�2 + ��2�02)) + 73�2

+ 85(�2�2 + ��2�02) + 11�4�4 (by 3.25)

� 27

16
h2k2D (by 3.14);

jM32j � D; jM23j � D:

M42(and M43) : �
3

8
h2k2M42 = ��2(6k�0

02 + 3k�03
)

+ �02(9h�0
3 + 7h�2�0
)

+ ��2�02(3h�0
3 + 4h�2�0
); so
3

8
h2k2jM42j � 5(�2 + �2�2) + 16�02 + 7��2�02 (by 3.22)

� 1

9
� 27
16
h2k2D (by 3.25);

jM42j �
1

2
D; jM43j �

1

2
D:

M14 : �
9

16
h2k2M14 = ���0(81
2
02 + 171�2
02 + 108�02
2 + 148�2�02)

+ ��1��0(81
2
02 + 108�2
02 + 171�02
2 + 148�2�02)

+ �3�3(36�0
02 + 48�03)

+ ��3�03(36�
2 + 48�3); so

9

16
h2k2jM14j � 508���0 + 508��1��0 + 84�3�3 + 84��3�03

� 259(�02 + �2�2) + 259(�2 + ��2�02) (by 3.22)

+ 42(�2�2 + �4�4) + 42(��2�02 + ��4�04) (by 3.24)

� 2 � 27
16
h2k2D (by 3.25);

jM14j � 6D:
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M24(and M34) : �
3

16
h2k2M24 = ��2(27�0

02 + 16�03
)

+ ��1�02(36�0
3 + 28�2�0
)

+ ��3�03(9
3 + 12�2
); so

3

16
h2k2jM24j � 22(�2 + �2�2) (by 3.23)

+ 32(�02 + ��2�02) (by 3.23)

+ 11(��2�02 + ��4�04) (by 3.24)

� 1

2
� 27
16
h2k2D (by 3.25);

jM24j � 5D; jM34j � 5D:

M44 : �
1

16
h2k2M44 = ��2(9

03 + 7�02

0) + ��1�02(9
3
0 + 7�2

0); so

1

16
h2k2jM44j � 8(�2 + �2�2) + 8(�02 + ��2�02) (by 3.23)

� 1

18
� 27
16
h2k2D (by 3.25);

jM44j �
3

2
D

One principal step in our analysis of U�� , the boundedness uniform over all �; � of the

values at the nodes, is complete. The other step, showing that U�� is a good approximant

when both � < M and � < N , will be done now. We set A = a 1

�2(�2+�2)
, B = b ��

�2(�2+�2)
,

C = c ��
�2(�2+�2)

, D = d �2��

�2(�2+�2)
, where a; b; c; d are the quantities de�ned in (3.5) { (3.8)

of Lemma 3.2.

Lemma 3.5. There exist absolute constants CA, CB, CC , CD such that the quantities

A, B, C, D de�ned above satisfy, when both � < N and � < N ,

j1�Aj � CA((�h)
4 + (�k)4)

j1�Bj � CB((�h)
4 + (�k)4)

j1� Cj � CC((�h)
4 + (�k)4)

j1�Dj � CD((�h)
4 + (�k)4):

Proof. The quantities A, B, C, D satisfy four simultaneous equations with augmented

coe�cient matrix similar to (3.10). If we set s = ��h

2
, t = ��k

2
, the set of equations which

A, B, C, D satisfy has coe�cient matrix
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(3.26)2
664

0 �2�t
0 �2s
�0 1

3
(�2t2 + �2s2)��0

3�2�t�0 �3�2s
t2
0 (�2t2 + 4

3
�1s2)��0 �(�2t2 + 1

3
�2s2)s
�0

3�2s��0
�
4

3
�2t2 + �2s2

�
��0 �3�2s2
t2
0 �

�
1

3
�2t2 + �2s2

�
�t
0

4(�2t2 + �2s2)��0 �(4�2t2 + �2s2)s
�0 �(�2t2 + 4�2s2)�t
0 (�2t2 + �2s2)s
t
0

3
775

and right-hand side

(3.27) (�2 + �2)

2
6664

s cos sp
3

t cos tp
3p

3s2 sin sp
3

t cos tp
3p

3s cos sp
3

t2 sin tp
3

3s2 sin sp
3

t2 sin tp
3

3
7775 :

(In addition to adjusting the columns of (3.10) to re
ect the fact that A, B, C, D are

the unknowns rather than a, b, c, d, we have, essentially for our own personal preference,

multiplied through everything by �2+ �2, and further, multiplied the individual equations

by st, s2t, st2, s2t2 respectively so that all entries are analytic functions of s and t.

� = sin ��h

2
becomes � = sin s, and 
 = cos s, �0 = sin t, 
0 = cos t.)

Now solve these equations for A, B, C, D by Cramer's rule, and expand the determi-

nants in power series in s and t about (0; 0). The determinant of the coe�cient matrix

(3.26) is

(3.28)

9s4t4�2�2(�2 + �2)(�2s2 + �2t2)

+s4t4(�2 + �2)(�6s4 � 5�2�2(�2 + �2)s2t2 + �6t4)

+O(s10t4 + s4t10):

When we evaluate the four determinants that form the numerators forA, B, C,D we obtain

in each case the same expressions as (3.28); the only di�erences are in the O(s10t4+ s4t10)

terms. Thus when we form the quotients which are A, B, C, D, these are all of the form

(3.29) 1 +O

�
s6 + t6

�2s2 + �2t2

�
= 1 +O(s4 + t4):

The extent to which this estimate is valid is given by (3.14): apart from s = 0, t = 0,

the determinant of (3.28) di�ers from the D of (3.14) only by non-zero factors, and so

the determinant of (3.28) is non-zero unless both � = sin s = 0 and �0 = sin t = 0. The

expressions for A, B, C, D are therefore analytic in the polydisc (jsj < �)� (jtj < �), and

the estimates (3.29) are uniform in the compact sub-polydisc
�
jsj � �

2

�
�
�
jtj � �

2

�
which

corresponds to � �M , � � N .
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To get an idea of the magnitude of these quantities, we give the �rst non-constant

term:

A = 1 + s4
�

1

90

�2

�2 + �2
+

1

54

�2

�2 + �2

�
+ t4

�
1

54

�2

�2 + �2
+

1

90

�2

�2 + �2

�
+ � � �

B = 1 + s4
�

1

270

��2 + �2

�2 + �2

�
+ t4

�
1

54

�2

�2 + �2
+

1

90

�2

�2 + �2

�
+ � � �

C = 1 + s4
�

1

90

�2

�2 + �2
+

1

54

�2

�2 + �2

�
+ t4

�
1

270

�2 � �2

�2 + �2

�
+ � � �

D = 1 + s4
�

1

270

��2 + �2

�2 + �2

�
+ t4

�
1

270

�2 � �2

�2 + �2

�
+ � � �

The coe�cients of higher order terms follow a pattern which, to us, is neither simple nor

illuminating.

The conclusion that our Gauss collocation solution U to ��u = f is fourth order

accurate at the nodes, as also are Ux, Uy, and Uxy, now follows immediately:

Theorem 3.6. Let f be given on the unit square 
 by the Fourier series f(x; y) =P
�;� c�� sin��x sin ��y with

P
jc��j(�4+�4) = K <1. Let u be the solution to ��u =

f on 
, u = 0 on @
, and let U 2 S be the C1 piecewise cubic for which ��U = f at

the Gauss points. Then there are absolute constants C, independent of the partition, such

that u�U , ux � Ux, uy � Uy, and uxy � Uxy are all bounded by CK(h4 + k4).

Proof. Break the Fourier series indices into two sets

I = f(�; �) : � < M; � < Ng and J = f(�; �) : � �M or � � Ng :

The di�erence u� U is then, at a node (x; y),

(u� U) =
X
I

c�� :
sin��x sin ��y

�2(�2 + �2)
(1�A��)

+
X
J

c��
sin�ux sin ��y

�2(�2 + �2)

�
X
J

c�� sin��x sin ��y � a��

The �rst sum is dominated by
P

I jc�� jCA
�4h4+�4k4

�2(�2+�2)
(lemma 3.5) and so by

C
�P

I jc��j(�2 + �2)
�
(h4 + k4). The second sum is dominated by

P
J jc��j ��P

J jc��j(�4 + �4)
�
(h4 + k4). The third sum is dominated by

P
J jc��ja�� � C

P
J jc��j,

the uniform estimate a�� � C being provided by lemma 3.4 for most �; � and by (3.11)

for the exceptional cases (�; �) = (2pM; 2qN); the third sum is thus dominated by
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C
�P

J jc��j(�4 + �4)
�
(h4 + k4). Together, these terms provide the estimate for u � U

at the nodes. The estimates for the derivatives are the same.

Estimates of u�U and its derivatives may also be extended throughout 
 by examining

how the Lagrange interpolating polynomials extend U from data at the nodes to the whole

of the partitioning rectangles. Continuing the assumptions of theorem 3.6, we state without

proof

Corollary 3.7.

(a) ju� U j � CK(h4 + k4) throughout 


(b) jux � Uxj � CK
�
h3 + k4

h

�
throughout 
, although jux � Uxj � CK(h4 + k4) on

the vertical sides of the partitioning rectangles

(c) juy � Uyj � CK
�
h4

k
+ k3

�
throughout 
, although juy � Uyj � CK(h4 + k4) on

the horizontal sides of the partitioning rectangles

(d) juxy�Uxyj � CK
�
h3

k
+ k3

h

�
throughout 
, although juxy�Uxyj � CK

�
h4

k
+ k3

�
on the vertical sides of the partitioning rectangles and juxy�Uxyj � CK

�
h3 + k4

h

�
on the horizontal sides.
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