
RANDOMIZED TECHNIQUES FOR MATRIX
DECOMPOSITION AND ESTIMATING THE

APPROXIMATE RANK OF A MATRIX

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

SHASHANKA UBARU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

YOUSEF SAAD AND ARYA MAZUMDAR

NOVEMBER, 2014

c© SHASHANKA UBARU 2014

ALL RIGHTS RESERVED

Acknowledgements

First and foremost, I wish to thank my advisors, Professor Yousef Saad and Professor

Arya Mazumdar, for guiding me throughout the work of this thesis. Without their

inputs and guidance, this thesis work would never have been possible.

I am extremely grateful to Professor Yousef Saad, for funding me throughout the

thesis and I feel extremely fortunate and honoured to be able work and continue working

under him even for my PhD. His energy, dedication, work ethics and immense knowledge

is a great inspiration for me. I am also grateful to Professor Arya Mazumdar, for his

suggestions, guidance and encouragement during this thesis work. I would also like to

thank Professor Jarvis Haupt and Professor Daniel Boley who are part of my thesis

defense committee for their support, guidance and feedback.

My special thanks to my fellow labmates Thanh T Ngo, Vasileios Kalantzis and

Ruipeng Li who have helped me a lot in understanding the subject better, with numerous

discussions and helpful suggestions.

Finally, my deepest gratitude goes to my family: my parents and my brother for

their unconditional love and constant support.

i

Dedication

To those who held me up over the years

ii

Abstract

Finding low dimensional matrix approximations of the data is an essential task in data

analysis and scientific computing. Recently, several randomization schemes have been

demonstrated for performing these low-rank matrix approximations. This thesis, re-

views some of the randomization techniques for matrix decomposition. It also gives a

brief introduction to a similar concept in signal processing called Compressed Sensing.

Estimating the approximate (low) rank of the input data matrix is essential to ap-

ply these randomized techniques to find the low-rank matrix approximations. There are

many other applications in mathematical modeling and rank related problems, where

estimating an approximate rank of a matrix is useful. In this thesis, two novel, efficient

and computationally inexpensive techniques to find the approximate rank of a matrix

are proposed and some applications where these techniques can be used are discussed.

The randomized techniques for matrix decomposition, requires generating and stor-

ing a large number of random numbers which could have practical complications, when

the input matrix is of very large size. Here in this thesis, we demonstrate how matrices

from Error Control Coding can be used in place of the random matrices in randomiza-

tion techniques for matrix decomposition and compressed sensing. These matrices are

very easy to generate and either deterministic or partially random in nature.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Figures vi

1 Introduction 1

2 Randomization Techniques for Matrix Decomposition 3

2.1 Introduction . 3

2.2 Matrix approximation framework . 5

2.2.1 Intuition . 6

2.3 An algorithm based on randomization 7

2.3.1 Cost . 8

2.3.2 Error analysis . 9

2.4 Power method . 11

2.4.1 Error analysis . 12

2.5 Accelerated techniques . 13

2.6 Compressed sensing . 14

2.6.1 Restricted Isometry Property . 16

2.6.2 Signal Recovery . 17

iv

3 Estimating the Approximate Rank of a Matrix 19

3.1 Introduction . 19

3.2 The approximate rank by eigenvalue count method 21

3.2.1 Polynomial expansion . 23

3.2.2 Choosing the threshold ε . 25

3.2.3 Results . 26

3.3 Density of States . 29

3.4 Kernel Polynomial Method . 30

3.4.1 Integration and relation with the eigenvalue count method 32

3.5 Lanczos approximation to the spectral density 33

3.5.1 Results . 36

3.6 Applications . 38

3.6.1 Nuclear Norm Minimzation . 38

4 Matrices From Error Control Coding 40

4.1 Introduction . 40

4.2 Error Control Coding . 41

4.3 Random Generator Matrix . 43

4.4 Dual BCH Code Generator Matrix . 44

4.5 Results . 46

4.5.1 Matrix Decomposition . 46

4.5.2 Compressed Sensing . 48

5 Conclusion and Discussion 52

References 54

v

List of Figures

3.1 (A) The eigenvalue distribution (logplot) of a 3401 × 3401 symmetric

matrix . (B)Approximate rank (Eigenvalue Count) using Chebyshev Ex-

pansion of degree 30. 26

3.2 (A) The eigenvalue distribution of a 1, 961×1, 961 matrix AG-Monien/netz4504.

(B)Approximate rank (Eigenvalue Count) using Chebyshev Expansion of

degree 30. 27

3.3 The eigenvalue distribution (logplot) of a 13681×13681 matrix TKK/cbuckle

(UFL database) and Eigenvalue Counts for different ε. 28

3.4 (A) The eigenvalue distribution of a 3401 × 3401 symmetric matrix .

(B)Approximate DOS with 25 steps of Lanczos method and 20 random

starting vectors. 36

3.5 (A) The eigenvalue distribution of a 1, 961×1, 961 matrix AG-Monien/netz4504.

(B)Approximate DOS with 25 steps of Lanczos method and 20 random

starting vectors. 37

4.1 (A)The singular value distribution of a 4772 × 4772 matrix EPA (UFL

database). (B),(C)and(D) Top 900 singular values computed by random-

ized techniques using Gaussian, dual BCH codeword and linear codeword

matrices, respectively . 46

4.2 (A) The top 200 singular values (B)The last 200 singular values (out of

900) computed using the three matrices as sampling matrix. 47

4.3 Basic compressed sensing example with k-sparse signal of dimension N =

1500 with k = 10. (A) Actual signal on top and Recovered signal using

Bernoulli distributed random Matrix with 90 samples in the bottom (B)

Recovery using linear codeword Matrix with 250 samples 49

vi

4.4 Noisy (σ = 0.25) signal of N = 1500 and 10 nonzero (A) Recovery us-

ing Bernoulli distributed random Matrix with 324 samples (B) Recovery

using linear Code Matrix with 324 samples 50

vii

Chapter 1

Introduction

The thesis is divided into three major parts, constituting the three main chapters of the

thesis. The first part of the thesis is a review of two topics which are highly studied in

the recent years. The probabilistic algorithms for matrix decomposition are reviewed.

Three techniques based on randomization for matrix decomposition are described and

their performance is analyzed. A discussion on the type of matrices (singular value or

spectral distribution) for which, these techniques are well suited is given. The second

topic reviewed in this part, is the concept of Compressed Sensing(CS). A brief overview

of compressed sensing and its framework is given in the last section of the following

chapter.

The second part of the thesis introduces two novel, fast and computationally inex-

pensive techniques to find the approximate rank of a matrix. These techniques are fast

and inexpensive in the sense that, the computational cost is much lower compared to

the size of the matrix, when the matrix is large. This problem is motivated by the

fact that, the randomization techniques reviewed in the first part requires us to know

the approximate rank of input matrices and there are no simple methods in literature

to compute them. Few applications are also discussed, where finding the approximate

rank of a matrix using these techniques could be very useful, particularly in the low

rank aprroximation problems and other related problems.

1

2

The third part of the thesis, introduces some structured matrices from Error Con-

trol Coding and describes their applications in the randomization techniques for matrix

decomposition and in compressed sensing. These matrices replace, random Gaussian

matrix used in randomization techniques and compressed sensing. Performance of these

matrices are compared to performance using Gaussian matrices, for these applications.

There are some obvious advantages of replacing Gaussian matrices by these structured

matrices as disccussed in the chapter.

A brief outline of the thesis is as follows:

• Chapter 2 reviews three techniques that are based on probabilistic algorithms

for matrix decomposition. The framework for matrix approximaton is first intro-

duced. Next the three techniques are described along with their cost and error

analysis. The concept of compressed sensing is introduced in the last section of

the chapter.

• Chapter 3 discusses two novel techniques for finding the approximate rank of a

matrix. The first technique, is based on Eigenvalue count method. And the second

technique is based on the concept of Density of States. The performance of these

techniques are discussed. The last section of the chapter discusses some of the

applications of these techniques.

• Chapter 4 discusses applications of some of the matrices from Error Control Cod-

ing in randomization techniques for matrix decomposition and compressed sensing.

The performance of these matrices are discussed and the results are analyzed.

• Chapter 5 give some important conclusions from the thesis work.

Chapter 2

Randomization Techniques for

Matrix Decomposition

2.1 Introduction

In recent years, especially with the advent of “big data”, we often encounter in many

applications, large matrices that can be well approximated by a low rank basis. A low

rank approximation of such matrices suffices in many of the scientific computations

and data analysis, like: Principal Component Analysis (PCA), partial Singular Value

Decomposition (SVD), Least-squares problem, solving Partial Differential Equations

(PDE), etc., Recently, research focussed on developing techniques using randomization

as a powerful tool for matrix decomposition of such matrices.

In this chapter we look at (review) some of these inexpensive techniques that have

been demonstrated recently, which use randomization and probabilistic algorithms for

matrix decomposition of such large approximately low rank matrices. The goal of this

chapter is to present the framework for developing these inexpensive randomization

techniques for matrix decomposition, analyze their computational cost, theoretical er-

ror performance and describe for what type of matrices these techniques work better.

That is, the type of singular value or eigenvalue (spectral) distribution for which these

methods outperform the traditional techniques.

3

4

Matrices which are low rank, have little information compared to their dimensions.

That is, they have a far fewer degree of freedom. So, we can approximate such matrices

by matrices of lower dimensions. The randomized schemes, find these approximations

by using random sampling to identify a subspace that captures most of the action of

these matrices. And then, compute the decomposition of the matrix, projected onto

this subspace.

A similar concept in signal processing, called Compressed Sensing has attracted a

lot of attention amongst the research community in recent years. In this chapter, we

provide a framework for compressed sensing and show how these two topics are closely

related. Compressed sensing also builds on the fact that we can have a sparse (very few

non zero coefficents) representation for many signals and non linear optimization can be

used to recover such signals with very few measurements. This is similar to the concept

in randomization techniques where we know that approximate low rank matrices can

be represented (action captured) with very few random samples (subspaces).

In the following sections of the chapter, the low rank matrix approximation frame-

work is introduced, the intuition behind using random sampling for capturing the active

subspaces of the matrix is given and then a prototype algorithm based on randomization

schemes is described. Also two more techniques that work on similar lines (randomized

scheme) for matrix decomposition are reviewed and we show how these techniques im-

prove the performance of the prototype alogrithm. We also give the cost analysis and

error analysis for all three techniques. This part of the review is based on the paper by

Halko et al.[1]

In the last section of this chapter, the concept of compressed sensing is reviewed, by

giving the framework for the technique, introducing an important property called the

Restricted Isometric Property which is pivotal for compressed sensing and also discuss

how the original signals can be recovered from the compressed signals using nonlinear

optimization. This part of the review is based on the paper by Davenport et al.[2]

5

2.2 Matrix approximation framework

Given an m× n matrix A, we seek to compute a rank- k approximation of the form[3,

4, 5],

A︸︷︷︸
m×n

≈ U︸︷︷︸
m×k

Σ︸︷︷︸
k×k

V ∗︸︷︷︸
k×n

=
k∑
j=1

σjujv
∗
j (2.1)

where

σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0 are the (approximate) singular values of A

u1, u2, . . . , uk are orthonormal, the (approximate) left singular vectors of A, and

v1, v2, . . . , vk are orthonormal, the (approximate) right singular vectors of A.

Computing this low rank approximation can be split into two computational stages.

The first stage is to find a low-dimensional subspace that captures all the action of the

matrix. The second stage is to project the large matrix onto this subspace and then

compute the standard factorization (SVD) of the projected matrix.

• Stage A: Compute an approximate (orthonormal) basis that spans the range of

the input matrix A. That is, a matrix Q having orthonormal columns and

A ≈ QQ∗A

The basis matrix Q contains as few columns as possible, but it needs to be an accurate

approximation of the input matrix.

• Stage B: Given a matrix Q that satisfies the above condition, use Q to compute

a standard factorization (QR, SVD, etc.) of A, like the one in equation (2.1).

In the randomization techniques, Stage A is executed by random sampling and in the

following sections of the chapter, we discuss three different methods that uses random

vectors (or columns from structured random matrices) to find the approximate basis.

Stage B can be executed by using well established deterministic methods.

6

The problem formulation is as follows. Suppose we have a matrix A and an error

tolearance of ε, we seek a matrix Q with k orthonormal columns such that,

‖A−QQ∗A‖ ≤ ε (2.2)

where the norm is usually the l2 operator norm. The theoretical minimum that can

be achieve with such approximation, in terms of the singular values is given by the

Eckart-Young theorem[6] which says,

min
rank(X)≤k

‖A−X‖ = σk+1 (2.3)

where X = QQ∗A and the minimizer is where the columns of Q are the k dominant left

singular vaulues of A.

For simplicity, k value is assumed to be known, for a given matrix A. In Chapter 3,

we discuss some inexpensive methods to find the apporixmate rank k of a matrix. For

a known rank k and an oversampling parameter p we try to obtain a matrix Q with

(k + p) orthonormal columns such that,

‖A−QQ∗A‖ ≈ min
rank(X)≤k

‖A−X‖ (2.4)

A small number of additional columns p is chosen to have flexiblity and effectiveness

in the computational methods we adopt.

2.2.1 Intuition

The intuition or the motivation to use randomness for fixed rank problems (in Stage A)

is as follows. Suppose a random vector ω is generated, and form the product y = Aω.

That is, y is random samples from the range of A. And repeat this sampling k times:

y(i) = Aω(i), i = 1, 2, ..., k (2.5)

the set {ω(i) : i = 1, 2, ..., k} of random vectors is likely to be in general linear position.

This means, the random vectors form a linearly independent set and no linear combi-

nation are likely to be in the null space of A.

7

The set {y(i) : i = 1, 2, ..., k} spans the range of A as the set entries are also linearly

independent. Also a larger sample set, {y(i) : i = 1, 2, ..., k + p} is used to improve the

chances of spanning the entire range of A. To produce an orthonormal basis that spans

the range of A,R(A), we just need to orthonormalize these sample vectors.

Suppose, we consider the input matrix A to be of the form, A = B + E where

B is a rank-k matrix containing the information that we are after and E is a small

perturbation. Then we have,

y(i) = Aω(i) = Bω(i) + Eω(i), i = 1, 2, ..., k + p (2.6)

the enriched set {y(i) : i = 1, 2, ..., k+p} of samples has a much better chance of spanning

the required subspace of B. Usually in practice, p = 5 or p = 10 is chosen.

2.3 An algorithm based on randomization

Algorithm 1 Prototype Algorithm

Input: An m× n matrix A, a target rank k. And an oversampling parameter p.

Output: Rank-k factors U,Σ, and V in an approximate SVD A ≈ UΣV ∗.

1. Draw an n× ` Gaussian random matrix Ω. ` = (k + p)

2. Form the m× ` sample matrix Y = AΩ.

3. Form an m× ` orthonormal matrix Q such that Y = QR.

4. Form the `× n matrix B = Q∗A.

5. Compute the SVD of the small matrix B : B = ÛΣV ∗.

6. Form the matrix U = QÛ .

Given the background discussed in the previous sections, a prototype algorithm is de-

veloped [7][8]as given above, that constructs a subspace of lower dimension (dimensions

close to the approximate rank of the matrix). The subspace is expected to capture

most of the action of the matrix (Stage A). For Stage B, the algorithm uses standard

8

svd to find the decomposition of the matrix in this lower dimensional subspace (Stage B).

The prototype algorithm is similar to the first step in the subspace iteration with a

random initial subspace.[9] As the dimension of this initial subspace is slightly higher

than the invariant subspace that we are trying to approximate, usually no further iter-

ations are required to get a high quality approximation.

2.3.1 Cost

An important analysis of the performance of any algorithm is the computational cost.

Stepwise cost of our prototype algorithm is as follows:

• Cost of Step 1: Generating an n× ` random matrix. (`nTrand).

• Cost of steps 2 and 4: Application of A and A∗ to ` vectors. So, its ` matrix-vector

multiplications (`Tmult).

• Cost of steps 3,5,6: Dense operations on matrices of sizes m× ` and `× n

The number of flops (Tbasic), required by the Algorithm is,

Tbasic ∼ `Tmult + `nTrand + `2m (2.7)

Stage A dominates the cost in our matrix approximation framework. Within Stage A,

the computational bottleneck is usually the matrix-matrix product AΩ in Step 2 of the

prototype algorithm. But based on the structure of the input matrix and the computa-

tional archtectures, this matrix multiplication can be evaluated highly efficiently. (See

section 2.5).

The cost of this prototype algorithm is very similar to any standard matrix de-

composition methods. If we consider the standard method, Lanczos (or Arnoldi for

non-symmetric matrices)[10]. The cost TKrylov of these method is approximately given

as, satisfy:

TKrylov ∼ `Tmult +O(`2(m+ n)) (2.8)

9

Cost is dominated by the 2mn` flops required for steps 2 and 4. The O(mn`) flop

count is the same as that of standard methods such as Golub-Businger[11]. However,

the algorithm above requires no random access to the matrix A - the data is retrieved

in two passes.

2.3.2 Error analysis

The second parameter for performance analysis of a given algorithm is the error analysis.

The error for matrix approximation methods is defined in general as,

ek =
∥∥∥A−Acomputedk

∥∥∥ (2.9)

ek is a random variable in our case, whose theoretical minimal value according to the

Eckart-Young-Mirsky theorem[12] is,

σk+1 = min {‖A−Ak‖ : Ak = rank − “k”} (2.10)

It is found that, for the prototype alogirthm, the expectation of ek
σk+1

is large, and

has very large variance. So, a small oversampling is used. If p is a small integer (think

p = 5), then we often can bound ek+p by something close to σk+1.

An extensive error analysis of the prototype algorithm can be found in [1],[7] and

[8]. The Theorem 1.1 in [1] states,

Theorem 2.3.1 Suppose that A is a real m×n matrix. Select a target rank k ≥ 2 and

an oversampling parameter of p ≥ 2, where k + p ≤ min{m,n}. Execute the prototype

algorithm with standard Gaussian test matrix to obtain an m × (k + p) matrix Q with

orthogonal columns. Then

E‖A−QQ∗A‖ ≤
[
1 +

4
√
k + p

p− 1

√
min{m,n}

]
σk+1 (2.11)

where E denotes the expectation with respect to the random test matrix and σk+1 is the

(k + 1)th singular value of A.

10

In [1], they further simplify this equation and give a precise form as follows,

E
∥∥∥A−Acomputedk+p

∥∥∥ ≤ (1 +

√
k

p− 1

)
σk+1 +

√
k + p

p

 n∑
j=k+1

σ2
j

1/2

. (2.12)

Moreover, if we have a strong concentration of measure, this implies =⇒ Variance of∥∥∥A−Acomputedk+p

∥∥∥ is small.

A detailed error analysis, a proof for the above theorem and the derivation of the

above equation from the theorem can be seen in [1]. Given the above error equation,

it is obvious that the performance of randomization techniques are dependent on the

behavior of the singular values of the input matrix, i.e., the type of spectral distribution

the input matrix has. We can consider two different cases of singular value distribution

given below:

Case 1 - the singular values decay rapidly:

If (σj) decays sufficiently rapidly after σk, then we shall have that
(∑n

j=k+1 σ
2
j

)1/2
≈

σk+1 in (2.12), then we are fine. A minimal amount of over-sampling (say p = 5 or

p = 10) drives the error down close to the theoretically minimal value. Thus, the ran-

domization algorithms perform the best when there is a big gap in the spectrum of the

input matrix or the singular values decay rapidly after the first k singular values.

Case 2 - the singular values do not decay rapidly:

In the worst case, we have in (2.12), n∑
j=k+1

σ2
j

1/2

≈
√
n− kσk+1.

In this case, if the size n is very large, and σk+1/σ1 is not that small, then we could lose

all accuracy and the randomization algorithms will fail completely.

So in general we can conclude that, the randomization algorithms work best when

there is a gap in the spectrum (sinuglar value distribution) of our input matrix. The

prototype algorithm performs poorly when the singular values of the input matrix decay

11

slowly. To overcome this behavior and improve the performance of the randomization

algorithms for matrices with slowly decaying singular values, [13] proposes the power

method which is discussed in the next section.

2.4 Power method

The prototype algorithm work well for matrices whose singular values decay rapidly,

but results in poor bases when the input matrices have flat singular spectrum or when

the matrices are very large. Also, the error depends on how quickly the singular values

decay. The faster the singular values decay — the stronger the relative weight of the

dominant modes in the samples. So, an algorithm was proposed by [13] and [14], that

combines the proto-algorithm with the power iteration that improves the performance

of the randomization algorithms.

Idea: The matrix B = (AA∗)qA has the same left singular vectors as A, and its

singular values are

σj(AA
∗)qA = (σj(A))2q+1 (2.13)

Thus, the matrix B has much faster decay in its singluar values than matrix A. So,

we modify the sampling of the matrix or apply the randomized sampling scheme as,

Y = (AA∗)qAΩ (2.14)

instead of Y = AΩ.

This is like giving weights to different singular vectors. So, we reduce the weights

of singular vectors corresponding to smaller singular values compared to the dominant

singular vectros by taking the powers of the matrix to be analyzed. This power method

is also known as Subspace Iteration in Numerical Linear Algebra. Given below is the

algorithm for this power method.

12

Algorithm 2 Power Method

Input: An m × n matrix A, a target rank k, oversampling parameter p and a small

integer q.

Output: Rank-k factors U,Σ, and V in an approximate SVD A ≈ UΣV ∗.

1. Draw an n× ` Gaussian random matrix Ω. ` = (k + p)

2. Form the m× ` sample matrix Y = (AA∗)qAΩ.

3. Form an m× ` orthonormal matrix Q such that Y = QR.

4. Form the `× n matrix B = Q∗A.

5. Compute the SVD of the small matrix B : B = UΣV ∗.

6. Form the matrix U = QÛ .

This algorithm is more suitable for those matrices whoses singluar values decay

slowly. But, it requires 2q+1 times as many matrix-vector multiplications as Algorithm

1. However, the algorithm is more accurate. So, the computational cost increases to,

Tpower = (2q + 2)`Tmult +O)`2(m+ n)) (2.15)

Also, if the basis produced by the prototype algorithm results in an approximate

error of C, then this power scheme must produce an approximate error of C1/2q+1. A

brief discussion of this error analysis is given below.

2.4.1 Error analysis

The expected error for the power method is given by,

E
∥∥A− UΣ(k)V

∗∥∥ ≤ σk+1 +

[
1 + 4

√
2 min{m,n}

k − 1

]1/2q+1

σk+1 (2.16)

E
∥∥∥A−Acomputedk+p

∥∥∥ converges exponentially faster to the optimal value of σk+1 as

q increases. A detailed analysis and the derivation of this error equation can be see

in [1] and [13]. All these error analysis, assumes exact arithmetic. But in real life,

13

we execute these algorithms in floating point arithmetic and some rounding errors and

other complications arise. For example, the top singular values might blow up. These

issues can be handled by careful implementation.

The modified scheme obviously comes at a substantial cost; 2q + 1 passes over the

matrix are required instead of 1. However, q can often be chosen quite small in practice,

q = 2 or q = 3, say.

Next, we discuss another method that reduces the cost of matrix-vector multiplica-

tions (Tmult) by exploiting structured random matrices to find the initial basis.

2.5 Accelerated techniques

In this section, we discuss some techniques that can improve the cost of an approximate

`−rank factorization of a general m × n matrix from O(mn`) to roughly O(mn log(`))

by using structured random matrix. These algorithms were introduced in [15] and [16]

Here ` = k + p as used earlier. The most expensive step (bottleneck) in Algorithm 1 is

computing the matrix product AΩ. The key idea is to replaces the standard Gaussian

Matrix by a structured random matrix that requires only O(mn log(`)) flops to compute

this product. So, the accelerated technique is same as the prototype algorithm except

that , we use a structured random matrix instead of Gaussian matrix to sample the

input matrix and form the orthonormal basis.

For instance, use of a subsampled random Fourier Transform (SRFT) is the most

common example of structured random matrices that reduce the product cost. An

SRFT is a n× ` matrix of the form,

Ω =

√
n

l
DFR (2.17)

where,

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a

uniform distribution on the unit circle in C

• F is the discrete Fourier transform, Fjk = 1√
n
e−2π(j−1)(k−1)/n

14

• R is a matrix whose entries are all zeros except for a single, randomly placed 1

in each column. (In other words, the action of R is to draw columns at random

from DF .)

Then the algorithm for finding the range of the input matrix using this (fast) struc-

tured randomized method is given below.

Algorithm 3 Accelerated Randomized Range Finder

Input: An m× n matrix A, small integer `.

Output: Compute an m×` orthonormal matrix Q whose range approximates the range

of A.

1. Draw an n× ` SRFT matrix Ω, as defined in (2.17).

2. Form the m× ` sample matrix Y = AΩ using (subsampled) FFT.

3. Construct an m×` orthonormal matrix Q whose columns form basis for thr range

of Y , such that Y = QR.

For the accelerated randomized technique, the total number Tstruct of flops required

for a rank−` factorization of a matrix is,

Tstruct ∼ mn log(`) + `2n (2.18)

In this case, ` is substantially larger than the numerical rank k of the matrix. It

is usually taken to be of the order ` = 2k. Also orthogonalization can be performed

with O(k`n) flops as the columns are almost linearly dependent. In literature, the DFT

matrix in 2.17 are replaced by other structured matrices like Subsampled Hadamard

transform, Wavelets, Random chains of Given’s rotations and many more have also

been suggested. See [17] and its bibliography and [18].

2.6 Compressed sensing

The concept of compressed sensing and randomized matrix approximations come from

similar intuitions.

15

Compressed sensing looks at signals obtained by transform coding which results in

the basis or frame with sparse or compressible representations of the signals. That is,

a signal of length n, can be represented by k � n nonzero coefficients or the signal is

well approximated by a signal with only k nonzero coefficients. This concept is called

Sparse Approximation and has similar intuition as in the Low-rank Approximations of

matrices described in the previous sections. In compressed sensing, many signals have

implicit sparsity or that they can be approximated by some sparse signal representations

and can be recovered by (a few number of) random sampling the signal in its sparse

representation[19][2]. In low-rank approximations, we can capture most of the action of

these matrices with much smaller subspace and by (a few number of) random sampling

of the columns. The framework for compressed sensing is given, next.

A given signal x, can be represented as a linear combination of some basis vectors.

A set {φi}ni=1 is called a basis in Rn if these vectorsare linearly independent and span

Rn. So, for any x ∈ Rn, we can represent it as,

x =
∑n

i=1
siφi or x = Φs (2.19)

where Φ is the n × n matrix with columns given by φi and s = {si}ni=1 are weighted

coefficients given by si = 〈x, φi〉 or s = ΦTx, if the basis is an orthonormal basis,

satisfying

〈φi, φj〉 =

1, i = j;

0, i 6= j;

Signals are often approximated by fewer number of basis or dictionary. Such an

approximation is called a sparse signal representation. A k-sparse signal has at most k

nonzero entries, i.e,. ‖x‖0 ≤ k. We denote a set of all k-sparse signals by,

Σk = {x : ‖x‖0 ≤ k}

This is similar to representing the set of all matrices with approximate rank of at-

most k. But in practice, the signals themselves might not be sparse, but may admit

a sparse representation in some basis Φ. Such signals are also referred to as being

16

k−sparse, as we can express such signals x as x = Φc with ‖c‖0 ≤ k many transfor-

mations like Fourier transforms, Wavelet transforms[20] etc,. usually lead to k−sparse

representations of signals.[21]

Signals that are not truly sparse but can be well-approximated by a sparse sin-

gal are called compressible or approximately sparse or relatively sparse signals. These

signals are the foundation for Transform Coding [22]. In Transform Coding, the full

n-sample signal is first acquired; i.e., the complete set of transform coefficients is com-

puted c = ΦTx. Then the k largest coefficients are located and n−k smallest coefficents

are discarded. This method is highly inefficient if the initial number of samples n is

very large compared to the number of significant coefficents k. The idea in compressed

sensing is to address this shortcoming of transform coding and directly acquire a com-

pressed signal representation without having to acquire n samples.

In the compressed sensing framework, we consider a linear measurement system with

m measurements which can we represented as,

y = Ax = AΦc (2.20)

where A is a fixed m× n matrix and y ∈ Rm. Here it is a non-adaptive measurement.

Also we are considering x to be of finite length n. It is important that our measurement

matrix A allows proper reconstruction of the original length n signal x with only m < n

measurements.

Reconstruction is only possible if the signal x is k−sparse. Otherwise this problem is

ill-conditioned. The problem is solvable for m ≥ k if the matrix A statisfies a necessary

and sufficient condition known as the Restricted Isometry Property (RIP).

2.6.1 Restricted Isometry Property

The Restricted Isometry Property introduced in [23] and [24] is a strong condition that

needs to be satisfied for recovery guarentees, particularly when there is noise in the

signal or the signal is corrupted by errors such as Quantization etc,.

Definition 2.6.1 A matrix A satifies the Restricted Isometry Property (RIP) of the

17

order k if there exists an εk ∈ (0, 1) such that

(1− εk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + εk)‖x‖22 (2.21)

holds for all x ∈ Σk

This means that, if a matrix A satifies the RIP of order 2k, then the matrix approx-

imately presereves the distance between any pair of k−sparse vectors. It is interesting

that, we can achieve RIP with high probability if we select the measurement matrix A to

be a random matrix. Just as in the randomization techniques discussed in the previous

sections, a standard iid (idependent and identically distributed) Gaussian Matrix with

zero mean and variance 1/n satisfies the RIP with high probability if m ≥ ck log(n/k)

and also has some useful properties. For example, it is incoherent and universal regard-

less of the choice of the basis.

Several other matrices like Vandermode Matrices, Bernoulli distributed matrices,

sub-Gaussian matrices and the structured random matrices discussed in section2.5 have

also been used as measurement matrices. In chapter 4 we show how partially random

matrix from error correction coding can be used as measurement matrix for compressed

sensing.

2.6.2 Signal Recovery

The reconstruction algorithm will have to take in the m measurements vector y, the

measurement matrix A and use the knowledge that the original signal x is sparse or

compressible and reconstruct the length−n signal x or the equivalent sparse coefficients

c.

The `0 norm minimization of the form

x̂ = arg minz‖z‖0 subject to z ∈ B(y) (2.22)

where B(y) means x̂ is consistent with measurements y, seems to be a natural choice to

recover sparse signals and in theory it must recover the k−sparse signal x. But unfor-

tunately, solving (2.22) is NP complete and numerically unstable.

Surprisingly it is shown that, `1 norm minimization of the form

x̂ = arg minz‖z‖1 subject to z ∈ B(y) (2.23)

18

provided B(y) is convex, is feasible and can recover the k−sparse signal x. Infact, we

know that B(y) = z : Az = y, resulting in a problem that can be solved by linear pro-

gramming. The above `1 norm minimization is known as Basis Pursuit [25]. There are

intuitive reasons that show, this `1− minimization indeed results in sparse solutions[2].

It also recovers compressible signals with high probability. Several `1− minimization

algorithms have been proposed to solve the recovery problem in compressed sensing.

Chapter 3

Estimating the Approximate

Rank of a Matrix

3.1 Introduction

In the previous chapter we saw that, the randomized techniques for matrix decompo-

sition assumes that, the rank k of the matrix is known a priori. In many applications,

it is required (or useful) to have an approximate estimate of the rank of a matrix. In

problems like low rank approximations [26], fixed rank and relaxed rank optimization

problems, an estimate of the appproximate rank of input matrix is helpful. There are

lot of literature on the approximate rank problem[3], which is motivated by problems

from various topics in mathematical modeling and optimization. In numerical meth-

ods and applications including the randomization techniques discussed in the previous

chapter, it is required to know an approximate rank of a given matrix prior to applying

the algorithm. We can see similar motivation for find approximate rank of a matrix in

[27] and [28]

In this chapter we discuss two novel techniques to find an approximate rank of

the given input matrix. The first method is based on polynomial expansion of trace

of an eigen-projector to find an eigenvalue count in the given interval, which in turn

can be used to estimate the approximate rank, because rank of a matrix is the count of

number of nonzero eigenvalues. This method is based on the eigenvalue count techniques

19

20

proposed in [29].

The second method is based on the concept called, Density of States (DoS or Spectral

Density). Here, the idea is to integrate the Density of States function to obtain the

approximate rank. Many techniques have been proposed in [30] to find the Spectral

Density for a given matrix. Two of these techiques are used in this chapter to find the

approximate rank.

An important point is that, both these methods for estimating the approximate rank,

require the input matrix A, to be Hermitian. When the matrix is either rectangular or

non-hermitian, (usually the matrices are thin sand tall) we consider the eigenvalue count

of the matrix ATA instead of matrix A. The rank of A and ATA are the same. The

matrix ATA is not formed explicitly as this is very expensive. But instead in both these

methods, we will see that, we just need additional matrix-vector multiplication to form

ATAv instead of Av (where v is some vector). So, replacing A by ATA amounts a small

additional cost for these additional matrix-vector multiplications. But for simplicity,

both the methods are discussed in the following sections, assuming the input matrix is

an n× n Hermitian matrix A.

We develop two different approaches for finding an approximate rank of a matrix in

this Chapter.

1. Finding the approximate rank using Eigenvalue count

2. Finding the approximate rank using the concept of Density of States

In the following sections, we first describe the eigenvalue count method to find the

approximate rank of a matrix. This method is based on stochastic aprroximation of the

trace of the Eigen-projector of the matrix. And we discuss the performace of this method

using various examples. We introduce the concept of Density of States and decribe two

different methods to find the approximate rank of a matrix using the concept of Density

of States. It turns out that one of these methods upon simplification, results in the same

equation for the approximate rank of a matrix as in the case of the eigenvalue count

method. We discuss the performance of this method and also give some applications

where finding the approximate rank of a matrix is required (or useful).

21

3.2 The approximate rank by eigenvalue count method

One of the obvious ways to find the rank of a matrix is to count the number of non zero

eigenvalues (or singular values) of the matrix. A large matrix which is structurely low

rank will have a number of eigenvalues (or singular values) close to zero. So, counting

the number of eigenvalues above a small threshold say ε > 0 should give us an approx-

imate estimate of the rank. (Usually, we find the rank of ATA which is semi-positive

definite).

Some eigensolvers based on divide and conquer methods and certain other applica-

tions require an estimate of the number of eigenvalues in a given interval[31, 32]. [29]

discusses few techniques that give a stochastic estimate of the eigenvalue count in an

interval. In this section we describe a method that uses one of these eigenvalue count

methods to find an approximate rank of a Hermtian matrix. [29] discusses methods to

estimate the eigenvalue count in the interval [a, b] using polynomial and rational approx-

imation filtering combined with stochastic procedure. The idea is that, an approximate

rank of a large sparse matrix A with low rank structure must be equal to the eigenvalue

count in the interval [ε, λmax], where λmax is the maximum eigenvalue of the matrix A

and ε is a small threshold above zero, whose value depends on the application. If the

matrix is not semipositive definite, then we find the eigenvalue count in the interval

[−ε, ε] and subtract it, from the size of the matrix to get an approximate rank.

This section introduces a method that estimates the eigenvalue count η[a,b] over the

interval [a, b], in a relatively inexpensive way. The method seeks an approximation to

the trace of the eigen- projector or a spectral projector P associated with the eigenvalues

inside the interval [a, b]. The spectral projector is expanded as a polynomial function of

A and the trace is computed using stochastic trace estimators [33, 34]. The polynomial

function can be treated as a filtering technique based on the Chebyshev polynomials.

This problem of eigenvalue count is closely related to the concept of estimating

“Density of States” described in the following sections. The eigenvalue count η[a,b] is

integral of the spectral distribution or spectral density over the interval [a, b]. It can

22

be noted that the Kernel Polynomial method described in the section 3.4, that used

Chebyshev polynomials to compute the DoS and the trace projector method described

in this section bear a lot of similarities. In fact, we show that, both these methods result

in the same equation for the approximate rank of a matrix.

For a given n × n Hermitian matrix A, we compute an estimate of the eigenvalue

count in the interval [a, b], (in our case [ε, λmax]) by finding an approximation to the

trace of the eigen-projector:

P =
∑

λi∈[a,b]

uiu
T
i (3.1)

The trace of P is equal to the number of terms in the sum (3.1), as the eigenvalues

of a projector are either ones or zeros. So, the trace of P should yield the number of

eigenvalues in [a, b]. Therefore the eigenvalue count η[a,b] is related to the projector P

as,

η[a,b] = Tr(P). (3.2)

The projector P is not available in practice but can be approximated inexpensively in

the form of a polynomial of the matrix A. The projector can be interpreted as a step

function of A and can be approximated by a polynomial of the form,

P = ψ(A) where ψ(t) =

1, if t ∈ [a, b]

0, otherwise
(3.3)

The idea is to expand ψ(t) as a sum of Chebyshev polynomials . In this form, it is

possible to estimate the trace of P using the stochastic estimators [33, 34].

A stochastic estimator known as Hutchinson’s unbiased estimator that uses matrix-

vector products to approximate the trace of any generic matrix A can be used. This

method estimates the trace Tr(A) using randomly generated vectors vl, l = 1, . . . , nvec

with entries ±1 with equal probablity and then take the average over the sample vTl Avl,

Tr(A) ≈ n

nvec

nvec∑
l=1

vTl Avl (3.4)

23

If we approximate the projector (or the step function) with the chebyshev polynomials,

P ≈ ψ(A). Then, using the stochastic estimator for trace makes sense because, forming

the product ψ(A)vl is inexpensive than forming the polynomial themselves.

The approximate rank of a matrix A can be estimated as,

r ≈ η[ε,λmax] =
n

nvec

nvec∑
l=1

(
(vl)

Tψ(A)vl
)

3.2.1 Polynomial expansion

As discussed earlier, the step function ψ(t) can be expanded as a M degree Chebyshev

polynomial series:

ψ(t) =

M∑
k=0

γkTk(t) (3.5)

where Tk are the k-degree Chebyshev polynomials of the first kind, and the coefficients

γk are the expansion coefficients for the step function over a general interval [a, b], which

is given by,

γk =


1
π (cos−1(a)− cos−1(b)) : k = 0,

2
π

(
sin(k cos−1(a))−sin(k cos−1(b))

k

)
: k > 0

So, the polynomial expansion of the projector P in terms of the matrices Tk(A) is,

P ≈ ψp(A) =

M∑
k=0

γkTk(A) (3.6)

We have to make sure that the eigenvalues of A (or ATA if non-hermitian) lie in the

interval [−1, 1] by using a linear transformation discussed later(See eq: (3.10)). Many

times when we expand step functions using Chebyshev polynomials, we encounter bad

oscillations near the boundary called Gibbs Oscillations. To suppress this behavior,

damping multipliers like Jackson coefficients are used. So, we can replace (3.5) by,

P ≈ ψp(A) =

M∑
k=0

gMk γkTk(A) (3.7)

24

The Jackson coefficients gMk are given by the formula (developed in [35]),

gMk =

(
1− k

M+2

)
sin(αM) cos(kαM) + 1

M+2 cos(αM) sin(kαM)

sin(αM)

where αM = π
M+2 . There is also a shorter form to write these coefficients given by,

gMk =
sin(k + 1)αM

(M + 2) sin(αM)
+

(
1− k + 1

M + 2

)
cos(kαM)

Thus, the approximate rank of a matrix A using the Eigenvalue Count method is given

by,

r ≈ η[ε,λmax] =
n

nvec

nvec∑
l=1

[
M∑
k=0

γk(vl)
TTk(A)vl

]
(3.8)

From the above equation we can see that, this approach need only matrix-vector mul-

tiplications of the form wk = Tk(A)v for a given initial vector v, to compute the

rank. We have the three term recurrence relation for the Chebyshev polynomials

Tk+1(t) = 2tTk(t)− Tk−1(t) which results in the iteration,

wk+1 = 2Awk − wk−1 (3.9)

The Chebyshev polynomials in general are defined in terms of cosines only over the

interval [−1, 1]. So, the eigenvalues of matrix A needs to be restricted to this interval.

For a general matrix A whose eigenvalues are not in the interval [−1, 1], a linear

transformation mapping needs to be applied to A, to restrict the eigenvalues of the

matrix within the interval. We apply the following transformation to the matrix,

B =
A− cI
d

(3.10)

where

c =
λmin + λmax

2
, d =

λmax − λmin

2

The maximum and the minimum eigenvalues are obtained by Ritz values from a stan-

dard Lanczos iteration. Also, as Chebyshev polynomials are defined only in the interval

[−1, 1], while computing γk, we need to transform the interval [ε, λmax] to [ε̂, 1], where

25

ε̂ is the linear transformation of ε using (3.10).

To find the rank of a rectangular (or non hermtian) matrix in general, we find the

rank of ATA. For which, we just need additional matrix-vector multiplication to apply

AT to the vector Awk, in the first term of the recurrence equation (3.9).

The main advantage of this method is that, the polynomial expansion does not

require any factorization of A. This makes the method inexpensive when the matrix A

is large. It is also seen that, any sequence of random vectors vk of unit 2-norm will do

as long as the mean of their entries is zero [36].

3.2.2 Choosing the threshold ε

The approximate rank estimated by the above technique, depends upon the threshold

ε chosen. The choice of ε is application dependent. It depends on the accuracy of the

approximation needed and also, some applications might have a range in which the rank

r must lie.

It can be seen that, choosing different ε and finding the corresponding rank for each

ε is almost free of cost beacuse, it’s only the γks that vary for different choice of ε and

the product (expensive) term (vl)
TTk(A)vl remains the same. Thus, we can use a range

of ε and find the corresponding ranks and choose the one, that best fits the application.

We saw in the previous chapter that the theoretical minimum of the error for a rank-

k approximation (by Eckart-Young theorem) given in (2.3) is σk+1. (k + 1st singular

value of the matrix). This is the largest singular value whose corresponding singular

vectors were not used to approximate the matrix. So, if we choose to approximate a

matrix (say using the techniques defined in the chapter 2) based on the approximate

rank found using the above technique, we are approximating the matrix using the sin-

gular values (and the corresponding singular vectors) above ε. Then, the error must be

interms of the largest singular value of the matrix that is less than ε. That is, the error

will be in terms of max(σi) ≤ ε. (Or we can say the error will in terms of ε).

So, if r is the approximate rank estimated for a matrix A using some threshold ε,

26

then the theoretical minimum error for a rank-r approximation of A is,

min
rank(X)≤r

‖A−X‖ = σr+1 ≤ ε (3.11)

Thus, we can choose ε based upon the error tolerence desired for the given application.

3.2.3 Results

In the first example to illustrate the eigenvalue count method to find an approximate

rank, we generate a 3401 × 3401 symmetric matrix with the eigenvalue distribution

shown in Fig. 3.1 (A). This matrix is approximately low rank. That is, there is a

gap in the eigenvalue distribution between the top 401 eigenvalues and the remaining

3000 eigenvalues, in the sense that, the top 401 eigenvalues (linearly decreasing from

150 to 50) are numerically much higher than the remaining 3000 eigenvalues (values

are in 10−1). So, even though this matrix is a full rank symmetric matrix, it can be

well approximated by just the top 401 eigenvalues and the corresponding eigenvectors.

Thus, the approximate rank of this matrix is 401.

0 500 1000 1500 2000 2500 3000 3500
−7

−6

−5

−4

−3

−2

−1

0

1

2

3
Eigenvalue distribution of the test Matrix

i

E
ig

en
va

lu
es

(lo
g1

0(
λ i))

0 5 10 15 20 25 30
340

360

380

400

420

440

460

480

Sample vectors

E
ig
en
va
lu
e
C
ou

nt

Chebyshev exp. deg. 30− With Jackson smoothing

RQ samples
Mean

(A) (B)

Figure 3.1: (A) The eigenvalue distribution (logplot) of a 3401×3401 symmetric matrix
. (B)Approximate rank (Eigenvalue Count) using Chebyshev Expansion of degree 30.

Figure 3.1(B) shows the estimated approximate rank (Eigenvalue Count) using

Chebyshev Expansion of degree 30. 30 sample vectors were used and the interval

27

[ε, λmax] for eigenvalue count was set to [10, 150], that is, λmax = 150 and ε = 10.

In the figure, the blue circles indicate the rank value estimated with the kth sample

vector and the black line is the running average of these estimated rank values.(Red

dotted line is the actual aprroximate rank). The computed average was r = 404.83.

This experiment shows that, the eigenvalue count method is pretty accurate. In this

case, Jackson-Chebyshev (with damping) gives better results than Chebyshev (without

damping) because, there is gap in the eigenvalues and overfitting does not matter, in

this case.

In the second experiment, we illustrate finding an approximate rank using the eigen-

value count method, with matrix from AG-Monien group called netz4504. The matrix

comes from a 2D finite element problem and is available in The University of Florida

Sparse Matrix Collection [37]. The matrix is of size 1, 961×1, 961 with nnz = 5, 156, the

nonzeros entries. The structural rank of the matrix is 1, 344. (Which is the approximate

rank of this matrix). The eigenvalue distribution of the matrix is given fig.3.2(A).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10
Eigen value distribution of the netz4504 Matrix

i

E
ig

en
va

lu
es

(λ
i)

0 5 10 15 20 25 30
1260

1280

1300

1320

1340

1360

1380

1400

1420

1440

Sample vectors

E
ig
en
va
lu
e
C
ou

nt

Chebyshev exp. deg. 30− No Jackson smoothing

RQ samples
Mean

(A) (B)

Figure 3.2: (A) The eigenvalue distribution of a 1, 961 × 1, 961 matrix AG-
Monien/netz4504. (B)Approximate rank (Eigenvalue Count) using Chebyshev Expan-
sion of degree 30.

28

Figure 3.2(B) shows the estimate of the approximate rank (Eigenvalue Count) us-

ing Chebyshev Expansion of degree 30. 30 sample vectors were used and the inter-

val [ε, λmax] for eigenvalue count was set to [0.01, 9.828], that is, λmax = 9.828 and

ε = 0.001. The computed average was r = 1340.7. This experiment shows that, the

eigenvalue count method is pretty accurate. In this case, Chebyshev (without damping)

gives better results than Jackson-Chebyshev (with damping) because, Jackson damping

tends to overfit and in this case, we do not have any gap in the eigenvalue distribution.

0 2000 4000 6000 8000 10000 12000 14000
−3

−2

−1

0

1

2

3

4

5
Eigenvalue distribution of the test Matrix

i

E
ig

en
va

lu
es

lo
gp

lo
t(λ

i)

0 5 10 15 20 25 30
2100

2150

2200

2250

2300

2350

2400

Sample vectors

E
ig
en
va
lu
e
C
ou
nt

Chebyshev exp. deg. 60− No Jackson smoothing

RQ samples
Mean

(A) (B)

0 5 10 15 20 25 30
6500

6550

6600

6650

6700

6750

6800

6850

6900

6950

7000

Sample vectors

E
ig

en
va

lu
e

C
ou

nt

Chebyshev exp. deg. 60− No Jackson smoothing

RQ samples
Mean

0 5 10 15 20 25 30
1.106

1.108

1.11

1.112

1.114

1.116

1.118

1.12

1.122

1.124

1.126
x 104

Sample vectors

E
ig
en
va
lu
e
C
ou

nt

Chebyshev exp. deg. 60− No Jackson smoothing

RQ samples
Mean

(C) (D)

Figure 3.3: The eigenvalue distribution (logplot) of a 13681×13681 matrix TKK/cbuckle
(UFL database) and Eigenvalue Counts for different ε.

Figure 3.3 illustrates how different choice of ε results in different approximate ranks.

29

The matrix (TKK/cbuckle) is from the UFL database[37] and is from Compressed

cylindrical shell buckling. Size 13, 681×13, 681, and nnz = 676, 515. It is structurely full

rank but has three gaps (corresponding to eigenvalues 2000, 150 and 10) in the eigenvalue

spectrum. Figures 3.3(B,C,D) show the running average of the rank estimated using

ε = 2000, 150 and 10. The computed averages were 2250.5, 6754 and 11156 for the

respective ε. The actual counts were 2251, 6810 and 11143. Because the spectrum is

wide (Eigenvalues vary from 105 to 10−3), a higher degree polynomial (M = 60) had to

be used. Also Jackson damping overfits for this spectrum.

3.3 Density of States

The concept of Density of States (DoS) also known as the spectral density of Hermitian

matrices are widely used in physics[30]. Density of States is a sort of probability density

distribution that gives us a likelihood of finding the eigenvalues of a matrix near some

points on the real line.

Given an n× n Hermitian matrix A, the Density of States (DoS), or spectral density is

formally defined as

φ(t) =
1

n

n∑
j=1

δ(t− λj) (3.12)

where δ is the Dirac -function or Dirac distribution, and the λj are the eigenvalues of A,

assumed here to be labeled increasingly. There are efficient algorithms for computing

the DoS developed for many applications [38, 39]. The number of eigenvalues in an

interval [a, b] can be expressed as

η[a,b] =

∫ b

a

∑
j

δ(t− λj)dt ≡
∫ b

a
nφ(t)dt (3.13)

We can view φ(t) as a probability distribution function which gives the probability of

finding eigenvalues of A in a given infinitesimal interval near t.

Thus, we can find an approximate rank of a matrix A by integrating the spectral density

function φ(t) over the interval [ε, λmax], as discussed in the previous section. That is,

r ≈ η[ε,λmax] = n

∫ λmax

ε
φ(t)dt (3.14)

30

The matrix A is assumed to be a large matrix with structurely low rank. This means

there are several eigenvalues of A that are almost equal to zero. So, the idea is to choose

ε to be a small number greater than zero, such that integration take into count only

those eigenvalues which are large and contribute to the rank of the matrix. The Dirac

δ−function is not a proper function. It is more like a discretized version of a continous

function and is difficult to approximate. So, it is replaced by smooth function of the

form,

φσ(t) =
1

n

n∑
j=1

hσ(t− λj) (3.15)

where hσ(t) is any infinitely differentiable function which intergrates in (−∞,∞) to one,

and is zero or infinitesimally small outside a narrow interval [−Cσ, Cσ] A good example

is the Gaussian function:

hσ(t) =
1√

2πσ2
e−

t2

2σ2

The idea is to find a smooth approximation to the spectral density function φ. This is

in a sense, “blurring” the discrete function, or considering a continuous version of the

distribution φ.

3.4 Kernel Polynomial Method

The Kernel Polynomial Method (KPM) was proposed by [40, 38] to find the DoS of a

matrix. This method determines the exact DoS of a matrix as a sum of Dirac δ-functions

by using the expansion in Chebyshev polynomials. The idea is to approximate the DoS

function φ(t) by a finite expansion in the Chebyshev polynomials basis of the first kind,

which are orthogonal polynomials. We consider the weighted function of the form,

φ̂(t) =
1√

1− t2

M∑
k=0

µkTk(t) (3.16)

where the expansion coefficients µk are

µk =
2− δk0

nπ

n∑
j=1

Tk(λj) (3.17)

31

Here, δij is the Kronecker δ so that 2−δk0 is equal to 1 when k = 0 and 2 otherwise. The

coefficients µk is the trace of Tk(A) with the scaling factor (2− δk0)/(nπ). And usually

the problem of trace estimation, Tr(Tk(A)) is solved using the stochastic argument

(Hutchinson’s unbiased estimator[33]) as we saw in equation (3.4). So, the trace of

Tk(A) is estimated as,

Tr(Tk(A)) =
n

nvec

nvec∑
l=1

(vl)
TTk(A)vl (3.18)

This method uses a large number of random vectors v1, v2, . . . , vnvec . obtained from a

normal distribution with mean zero and unit variance. Also these vectors are normalized

such that, ‖vl‖ = 1, l = 1, . . . , nvec. Then we have the coefficients of the polynomial to

be,

µk ≈
2− δk0

πnvec

nvec∑
l=1

(vl)
TTk(A)vl (3.19)

We saw in the subsection 3.2.1, that Chebyshev polynomials have the three term re-

currence as given in (3.9) and also these polynomials are defined in the interval [−1, 1].

So, for a general matrix, we need to use the linear transformation mapping given in the

equation (3.10).

The approximate rank of a matrix A is estimated by integrating the DoS function

φ̂(t) over the interval [ε, λmax]. As the linear mapping of the matrix, restrict the eigen-

values to be in the interval [−1, 1], we need to find the linear mapping for [ε, λmax] as

[ε̂, 1]. Here ε̂ is slightly greater than −1 given by,

ε̂ =
ε− c
d

where c and d are same as in the equation3.10. So, we find the rank by intergrating

φ̂(t) over this interval.

The approximate rank of a matrix using Kernel Polynomial Method is given by,

r ≈ n
(∫ 1

ε̂
φ̂(t)dt

)
= n

M∑
k=0

µk

(∫ 1

ε̂

Tk(t)√
1− t2

dt

)
(3.20)

32

3.4.1 Integration and relation with the eigenvalue count method

Let us consider the integration term in the rank equation (3.20). This intergral is a

function of the summation variable k. Lets call it, γ̂k and for a general eigenvalue

count, consider the limits of intergration over a general interval [a, b]. By the defination

of Chebyshev polynomials, we have

γ̂k =

∫ b

a

Tk(t)√
1− t2

dt =

∫ b

a

cos(k cos−1(t))√
1− t2

dt

Let t = cos θ ⇒ dt = sin θdθ. Then the integral becomes,

γ̂k =

∫ b′

a′

cos kθ

sin θ
sin θdθ

=

∫ b′

a′
cos kθdθ

where a′ = cos−1(a) and b′ = cos−1(b).

Case k = 0: We have cos kθ = 1 and the integral is equal to,

γ̂0 = cos−1(a)− cos−1(b)

Case k > 0: We have
∫

cos kθ = sin kθ
k . So, the integral is equal to,

γ̂k =
sin(k cos−1(a))− sin(k cos−1(b))

k

The equation (3.20) for the approximate rank using γ̂k and expansion of the coefficients

µk becomes,

r ≈ n
M∑
k=0

γ̂kµk =
n

nvec

M∑
k=0

γ̂k
(2− δk0)

π

[
nvec∑
l=1

(vl)
TTk(A)vl

]
(3.21)

So, if we set γk = γ̂k
(2−δk0)

π , the approximate rank of a matrix using Kernel Polynomial

Method becomes,

r ≈ n

nvec

nvec∑
l=1

[
M∑
k=0

γk(vl)
TTk(A)vl

]
(3.22)

where the coefficients γk for an integration over the interval [a, b] are given by,

γk =


1
π (cos−1(a)− cos−1(b)) : k = 0,

2
π

(
sin(k cos−1(a))−sin(k cos−1(b))

k

)
: k > 0

33

The above equation (3.21), is exactly the same equation that we obtained for the

approximate rank of a matrix using the eigenvalue count method (eq:(3.8)) and the

coefficients γk are same as the coefficients for the expansion of a step function in the

interval [a, b].

This is an interesting result because here in the KPM, we are integrating an approx-

imation of the spectral density function and in the Eigenvalue Count method, we are

evaluating the trace of the approximated Eigen projector and both methods result in

the same equation.

This is because in the Eigenvalue count method, we treat the Eigen projector P

as a step function and use Chebyshev polynomial approximation of the step function.

And in KPM, we are approximating the Density of States function using Chebyshev

polynomials which is a summation of delta functions. As we know, intergration of delta

functions over an interval [a, b] is equal to a step function over the interval. Thus,

intergrating the Chebyshev polynomials that approximates the delta functions results

in the same equation as approximating a step function using Chebyshev polynomials.

Thus, we have two method which seem to be unrelated to each other, result in the same

equation for the aproximate rank of a matrix.

The next section, decribes a second method that uses Lanczos Approximation to

find the Spectral Density of a matrix and explain how this method can be used to find

an approximate rank of the matrix.

3.5 Lanczos approximation to the spectral density

Since Lanczos algorithm gives good approximation for the extreme eigenvalues, we can

use it find the count of extreme eigenvalues below the threshold ε. Then, the approxi-

mate rank will be n (the size of the matrix) minus this count. It is found that, Lanczos

algorithm is a good candidate for computing local spectral densities, particularly at the

end of the spectrum. [30] describes a method that combines Lanczos algorithm with

multiple randomly generated starting vectors to get a good approximation to the DoS of

a matrix. In this section, we use this method of Lanczos approximations to the spectral

density to compute the count of extreme eigenvalues below the threshold ε.

34

The M-step Lanczos procedure for a real symmetric matrix A is given by the fol-

lowing equations [10],

AVM = VMTM + feTM+1 (3.23)

V T
MVM = IM , V T

Mf = 0, VMe1 = v0 (3.24)

where TM is an (M + 1)× (M + 1) tridiagonal matrix, VM is an n× (M + 1) orthogonal

matrix and IM is an (M + 1)× (M + 1) identity matrix.

The k-th column of VM can be expressed as

VMek = pk−1(A)v0, k = 1, . . . ,M + 1

where pk(t), k = 0, 1, 2, . . . ,M is a set of orthogonal polynomials with respect to the

weighted spectral distribution φv0(t) given by,

φv0(t) =
n∑
j=1

β2
j δ(t− λj) (3.25)

where v0 is expanded in the basis of the eigenvectors of A. [41] shows that these or-

thogonal polynomials can be generated by a three term recurrence whose coefficients

are defined by the matrix entries of TM .

Idea is to define the distribution function in terms of eigenpairs of the tridiagonal

matrix TM , obtained by Lanczos procedure. If (θk, yk), k = 0, 1, 2, ...,M are eigenpairs

of the tridiagonal matrix TM , and τk is the first entry of yk, then the distribution is,

φ̃(t) =

M∑
k=0

τ2
k δ(t− θk) (3.26)

This serves as an approximation to the weighted spectral density function φv0(t), in the

sense,
n∑
j=1

β2
j pq(λj) =

M∑
k=0

τ2
kpq(θj) (3.27)

for all polynomials of degree 0 ≤ q ≤ M + 1. This equation is known as the moment

matching property[42].

35

Since we are interested in finding the spectral density defined in (3.12), we choose

inital vector v0 such that β2
j = 1/n. But this not possible without knowing the eigenvec-

tors uj of A in advance. So, if we repeat the Lanczos process with multiple randomly

genrated starting vectors v
(l)
0 , l = 1, 2, . . . , nvec. Then if we consider the average, it

indeed is a good approximation to the standard spectral density φ(t). Taking average

over l, we have

φ̃(t) =
1

nvec

nvec∑
l=1

(
1

n

M∑
k=0

(τ
(l)
k)2δ(t− θ(l)

k)

)
(3.28)

should yield a good approximation to the standard spectral density. Because we have,

1

nvec

nvec∑
l=1

(β
(l)
j)2 ≈ 1/n

A refined method is to approximate cumulative spectral density or cumulative density

of states (CDoS). Given by,

ψ̃(t) =

∫ ∞
−∞

H(t− s)φ̃(s)ds =
M∑
k=0

η2
kδ(t− θk) (3.29)

where η2
k =

∑k
i=1 τ

2
i and θk and τk are the eigenvalues and the first components of the

eigenvectors of the tridiagonal matrix TM defined in (3.28). The idea for finding the

rank is as follows. The cumulative spectral density is a cumulative sum of the probabil-

ity distribution of the eigenvalues. This is equivalent to the cumulative density function

which is the integration of a probablity density function and we know that, the rank of

a matrix is integration of the spectral density. The coefficients η2
k is sum of τ2

i ’s upto

the eigenvalue θk. And from eq:(3.28) we see that τ2
i s are the weights of the spectral

density. Thus, for a matrix A, summing up η2
ks corresponding to the θks that lie in a

given interval should give us the count of eigenvalues in that interval.

Thus, the approximate rank of a matrix, estimated using Lanczos Approximation method

is,

r = n− n

nvec

nvec∑
l=1

(∑
k

(η
(l)
k)2

)
∀k : λmin ≤ θk < ε (3.30)

36

As discussed earlier, Lanczos yields good approximation for extreme eigenvalues. So,

it makes sense to count the eigenvalues between [λmin, ε] and then subtract it from the

size n. Also, the η2
ks cummulatively sum up from λmin to θks. We can also consider η2

ks

∀k : ε ≤ θk ≤ λmax. This should also yield the same rank.

To find the rank of a rectangular (or non hermtian) matrix in general, we find the

rank of ATA. For which, we need additional matrix-vector multiplication to apply AT

to the vector Av0, in the Lanczos steps.

3.5.1 Results

To evaluate the performance of the Lanczos approximation technique, we use the same

three matrices used in the Eigenvalue Count method.

0 500 1000 1500 2000 2500 3000 3500
−7

−6

−5

−4

−3

−2

−1

0

1

2

3
Eigenvalue distribution of the test Matrix

i

E
ig

en
va

lu
es

(lo
g1

0(
λ i))

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

Lanczos w. $σ$ = 0.25, deg = 25

$λ$

$φ
(λ

)$

Hist
Lanczos

(A) (B)

Figure 3.4: (A) The eigenvalue distribution of a 3401 × 3401 symmetric matrix .
(B)Approximate DOS with 25 steps of Lanczos method and 20 random starting vectors.

In the first experiment, we used the same 3401 × 3401 symmetric matrix with the

eigenvalue distribution shown in Fig. 3.4(A). The approximate rank is r = 401. Figure

3.4(B) shows the approximate DoS (in blue) obtained from 25 steps of Lanczos proce-

dure. The red curve is the exact DoS. The 25 step Lanczos was repeat for 20 (nvec = 20)

random starting vectors and average over them was taken.

The predicted rank was r = 400.0754 for ε = 10.That is, size minus the average of

37

sum of all η2
ks between [0, 10].

In the second example, we use the 1, 961 × 1, 961 matrix from AG-Monien group

called netz4504, from the University of Florida matrix collection[37]. (The eigenvalue

distribution in Fig3.4(A)). The approximate rank is r = 1344. Figure 3.4(B) shows the

approximate DoS (in blue) obtained from 25 steps of Lanczos procedure with 20 random

starting vectors. The estimated rank was r = 1.3384e+ 03 for ε = 0.01.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10
Eigen value distribution of the netz4504 Matrix

i

E
ig

en
va

lu
es

(λ
i)

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

Lanczos w. $σ$ = 0.25, deg = 25

$λ$

$φ
(λ

)$

Hist
Lanczos

(A) (B)

Figure 3.5: (A) The eigenvalue distribution of a 1, 961 × 1, 961 matrix AG-
Monien/netz4504. (B)Approximate DOS with 25 steps of Lanczos method and 20
random starting vectors.

To illustrates how different choice of ε results in different approximate ranks, we use

the 13, 681 × 13, 681 matrix (TKK/cbuckle) is from the UFL databas.e and is from It

is structurely full rank but has three gaps (corresponding to eigenvalues 2000, 150 and

10) in the eigenvalue spectrum 3.3(A). The actual counts for ε = 2000, 150 and 10 are

2, 251, 6, 810 and 11143, repectively.

The ranks estimated by 40 steps Lanczos approximations are r = 2.2460e + 03 for

ε = 2000, r = 6.8323e+ 03 for ε = 150. and r = 1.0112e+ 04 for ε = 10.

We can see that, in all three examples, Lanczos Approximation method estimates

the rank more accurately than Eigenvalue Count method. And also with fewer number

of steps (equivalent to the degree of Chebyshev polynomial).

38

3.6 Applications

In this section, we discuss some potential applications where these approximate rank

finding techniques could be useful. Some of the applications are as follows.

• In image processing and data compression, approximate rank of the data helps in

reduction of the amount of data to be stored.

• In developing Fast Multipliers to multiply two matrices, an estimate of the ap-

proximate rank of matrices will help in faster multiplications.

• In many machine learning applications, knowing the rank of the matrix is impor-

tant. Most of the fixed rank and relaxed rank optimization problem requires rank

to be known in advance.

There are many algorithms that solve the rank minimization problem and a convex

relaxation called, nuclear norm minimization problem that require an appproximate

estimate of rank. There are many applications for the low rank approximations decribed

in Chapter 2. These techniques require knowledge of the rank of a matrix.

3.6.1 Nuclear Norm Minimzation

One of the potential application for these techniques could be in nuclear norm minimza-

tion problem.

The nuclear norm minimization is defined as follows,

minimize f(X) + ‖X‖∗ (3.31)

Where f(X) is a twice differentiable convex function of the unknown matrix X,

λ > 0 is a regularization parameter and ‖X‖∗ =
∑m

i=0 σi(X), is the nuclear norm.

For example, for Matrix Completion problem: Given a partially observed low rank

matrix A with observed entries in Ω, we recover A solving,

f(X) =
1

2
‖ΠΩ(X)−ΠΩ(A)‖2F

where (ΠΩ(X))ij = Xij for all (i, j) ∈ Ω and 0 otherwise.

39

For Multivariate Regression: Given a data matrix A and label matrix B, we compute

a model X as,

f(X) =
1

2
‖A(X)−B‖2F

It is know that, to solve these nuclear norm minimization problem, one can use an

iteration of the form given below, which converges to the global minimum, if certain

conditions are met by f(X) [43].

Xk+1 = Sλ(Xk − αk∇f(Xk))

where Sλ(X̂) = U(Σ − λI)+V
T , a+ = max{0, a}, for any X̂ = UΣV T is the shrinkage

operator and αk is some step function.

Most algorithms that solve nuclear norm minimization problem [43, 44] find SVD (a

large number of singular values) of the matrix, in each iteration and use the shrinkage

operator to shrink the spectrum.

The idea is, we can use the approximate rank finding techniques to estimate the

approximate number of singular values (say rk) that lie above the threshold λ (by

using ε = λ) after certain number of iterations. Then instead of evaluating a large

number of singular values (and their corresponding singular vectors) and then shrinking

the spectrum (throwing away), we have to evaluate only the rk + p most significant

singular values (and their corresponding singular vectors) at each iteration. Here p is

a small oversampling. This could improve the computational cost of these algorithms,

significantly.

Chapter 4

Matrices From Error Control

Coding

4.1 Introduction

In the randomization technique for matrix decomposition which was reviewed in Chap-

ter 2, we compute the matrix product Y = AΩ, where Ω is an n × ` random matrix.

And compute an aproximate basis that spans the input matrix A[1], using Y . We saw

in section 2.5 that, some of the structured random matrices like subsampled random

Fourier Transform matrices, subsampled Hadamard transform matrices and others [17]

can also be used in place a random Gaussian matrix.

Similarly in compressed sensing, we use a random Gaussian matrix as a measurement

matrix to get the basis for sparse representation of the signals. x = Φs. It has been

shown that, DFT matrix, random matrices with bernoulli distributions and some struc-

tured matrices like toeplitz structured [45] also perform very well and these matrices do

satisfy the Restricted Isometric Property (RIP).

In both these techniques, the input signal (in case of compressed sensing) or the

input matrix (in case of matrix decomposition) generally have very large dimensions

(in 104 − 106). This means the sampling Gaussian matrix, requires generating a large

number of (n × ` ≈ 106 − 109) random numbers which is a serious practical issue. (In

terms of time complexity and storage).

40

41

In digital communications, we have plethora of codewords which are independent

of each other[46]. If we stack up these codewords into a matrix, they will have near

orthonormal columns, because each codewords have fixed minimum distance (Hamming

Distance) between each other. A good idea would be to use these matrices formed from

the codewords as sampling (measurement) matrix to find an approximate basis of the

input matrix., or sample the input signal in compressed sensing.

In this chapter, we discuss the use of some of these matrices from Information

theory and Error Correcting Codes for matrix decomposition and compressed sensing.

Codewords generated using generator matrix (more in the next section) from linear codes

(random generator matrices) and dual BCH codes are used in place of random Gaussian

matrices. In the following sections we will see that, these matrices from Error Correction

codes require generation of far fewer number of random numbers than Gaussian matrices

or other structured random matrices. Interestingly, performance of these matrices in

both matrix decomposition schemes and compressed sensing, is comparable to that of

the random Gaussian matrix .

4.2 Error Control Coding

In communication systems, data are transmitted from a source (transmitter) to a des-

tination (receiver) through physical channels, which are usually noisy. Thus, errors are

bound to occur time to time. So, in order to facilitate the receiver the ability to detect

and correct these errors, error control coding methods are used [47]. Error control cod-

ing aims at developing methods for coding to check the correctness of the bit stream

transmitted. The bit stream representation of a symbol is called the codeword of that

symbol.

There are different types of error control coding mechanisms like (linear) block codes,

cyclic codes, convolution codes etc. A code is linear if two codes are added using modulo-

2 arithmetic produces a third codeword in the code. Usually it is represented as a (`, k)

linear block code. Here, ` represents the codeword length, k is the number of message

bit and ` − k bits are error control bits or parity check bits generated from message

42

using an appropriate rule. We may therefore represent the codeword as

ci =

bi, i = 0, 1, . . . , `− k − 1

mi+k−`, i = `− k, `− k + 1, . . . , `− 1
(4.1)

The (`− k) parity bits bis are linear sums of the k message bits mis.

bi = p0im0 + p1im1 + · · ·+ pk−1,imk−1 (4.2)

where the coefficients are

pij =

1, if bi depends on mj

0, otherwise
(4.3)

If we represent these in vector form, we have 1×k message vector m = [m0,m1, . . . ,mk−1],

1×(`−k) parity vector b = [b0, b1, . . . , b`−k−1] and 1×` code vector c = [c0, c1, . . . , cn−1].

We may thus write simultaneous equations in matrix equation form as

b = mP (4.4)

where P is a k × (`− k) matrix defined by,

P =


p00 p01 p02 · · · p0,`−k−1

p10 p11 p12 · · · p1,`−k−1

...
...

...
. . .

...

pk−1,0 pk−1,1 pk−1,2 · · · pk−1,`−k−1

 (4.5)

The codevector c, can be expressed as a partitioned row vector in terms of the vectors

m and b as follows

c = [b : m] = m[P : Ik]

where Ik is a k × k identity matrix. Now if we define a k × ` generator matrix G as,

G = [P : Ik] =⇒ c = mG

For different types of error control codes, we have different generator matrices with

different properties. We are considering finite field arithmetic, so we use binary mul-

tiplication. For certain kind of error control codes, we can generate codes for any

43

combinations of (`, k) while some error control codes are restricted.

For a chosen k bits, we can have 2k unique messages. This means we should have 2k

unique codewords. Thus, we can form a sampling matrix of the size 2k × ` by stacking

up all possible combination of codevectors from a generator matrix of any linear coding

scheme. This matrix will have ` near orthonormal columns.

C︸︷︷︸
2k×`

= M︸︷︷︸
2k×k

G︸︷︷︸
k×`

(4.6)

And use this matrix of codewords as the sampling matrix (random subspace) in the

randomization techniques for matrix decomposition and in compressed sensing.

In a given application, if the dimension n < 2k, we simply have to throw away 2k−n
rows. That is, we use only n out of 2k possible codewords. Columns will remain near

orthonormal as long as 2k−1 < n ≤ 2k because every codeword is independent of each

other and will still maintain a minimum hamming distance between each other.

In the following sections, we describe two coding techniques that can be used to form

the codeword matrix C using two different type of generator matrix G and show, how

these codeword matrices can be used for matrix decomposition and compressed sensing

problem and discuss their performance.

4.3 Random Generator Matrix

In coding theory, a linear code is an error-correcting code for which any linear com-

bination of codewords is also a codeword. Here we use a random generator matrix to

generate linear codes. That is, use a k × ` random matrix with random 1s and 0s with

independent columns as the generator matrix G in the equation (4.6). All 2k combi-

nations of the message vectors are generated (That is, 2k × k message matrix M) and

multiplied, by the random generator matrix G, using binary multiplication to get 2k

codewords of length ` (That is, 2k × ` codeword matrix C).

The codeword matrix C has entries 1s and 0s. We need to transform this to a near

orthonormal matrix. We do that, by first mapping 1s to -1s and 0s to 1s. This is a

44

very common practice, when digital signals are needed to be transmitted over analog

channels. And then scale the matrix (each entry) by 1/
√
`, such that the matrix has

unit energy. Now, this matrix whose rows are the codewords from this linear coding

technique is used as the random matrix for sampling the given input matrix and use

it to find the active subspaces of the matrix , in the randomized techniques for matrix

decomposition. This linear code matrix (ie,. the partial random matrix) can also be

used for compressed sensing.

The advantage of using this codeword matrix is that, we are reducing randomness

from n× ` to log2(n)× `. Thus, exponentially reducing the number of random number

to be generated. Also, because entries of the codeword matrix C are only 1 and −1, we

can treat the codeword matrix as a bernoulli distributed matrix and the corresponding

theory for performance analysis, can we applied.

4.4 Dual BCH Code Generator Matrix

In coding theory, the BCH codes form a class of cyclic error-correcting codes that are

constructed using finite fields, developed by Bose, Chaudhuri and Hocquenghem[48].

For cyclic codes, any cyclic shift of a codeword in the code is also a codeword. BCH

codes are cyclic codes over GF (q) (the channel alphabet) that are defined by a (d−1)×`
check matrix over GF (qp), where GF stands for the Galois Field or Finite Field, ` is

the length of the code or blocklength, p is the number of parity bits, and d is an integer

with 2 ≤ d ≤ `.

A primitive BCH code is a BCH code defined using a primitive element α. If α is a

primitive element of GF (qp), then the blocklength is ` = qp − 1 This is the maximum

possible blocklength for decoder alphabet GF (qp). The parity-check matrix for a t-

error-correcting primitive BCH code is of the form,
1 α α2 · · · α(`−1)

1 α2 α4 · · · α2(`−1)

...
...

...
. . .

...

1 α2t α4t · · · α2t(`−1)



45

where ` = qp − 1, t must be ` − k and α is an `-th root of unity in GF (qp). The

generator matrix formed using this parity check matrix as discussed in section 4.2 and

the codewords are generated.

The dual of a BCH code is a code [49] with same blocklength `, but the codes are

generated using the parity check matrix (defined in section 4.2) of the BCH code as the

generator matrix. So, for any blocklength ` and t number of errors to be corrected, we

can generate 2t dual BCH codewords of length ` using the generator matrix of the dual

BCH code. So, we choose t to be k.

The idea is similar to the linear code technique. We use a k× ` dual BCH generator

matrix G. Generate all 2k combinations of the message vectors(That is, 2k× k message

matrix M) and multiply, by the dual BCH generator matrix G, using binary multipli-

cation to form 2k dual BCH codewords of length ` (That is, 2k × ` codeword matrix

C). Then ,this C matrix whose rows are the codewords of dual BCH code is used as

the random matrix for sampling the given input matrix to find the active subspaces of

the matrix.

An important point now is, this dual BCH code matrix is a deterministic matrix. So,

we cannot apply the probabilistic arguments used in randomized algorithms to analyze

the performance. So, these matrices are not interesting from the theoretical point of

view. But, things get interesting if the input matrix A can be treated as random. For

example in recommender systems, the people’s ratings can be treated as random. Then,

we can apply the similar probabilistic arguments (discussed in Chapter 2) to analyze the

performance of dual BCH code matrices for the decomposition of these random input

matrices.

In the next section, we discuss the performance of these codeword matrices, when

used in randomization techniques for matrix decomposition and compressed sensing.

46

4.5 Results

4.5.1 Matrix Decomposition

To illustrate the performance of the codeword matrices as sampling matrices in random-

ized algorithm for matrix decomposition, we use a 4772×4772 matrix named EPA from

Pajek network (Matrix is from a directed graph’s matrix representation), available in

the UFL Sparse Matrix Collection[37]. nnz = 8, 965 and the structure rank is r = 951.

There is a nice gap in the singular values where the value falls from 0.76 to 2.113×e−14.

Figure 4.1(A) gives the singular value distribution of this matrix.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14

16

18
Singular value distribution of the Matrix

i

S
in

gu
la

rv
al

ue
(σ

i))

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14

16

18

si
ng

ul
ar

va
lu

es

by svds
by gaussian

(A) (B)

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14

16

18

si
ng

ul
ar

va
lu

es

by svds
by BCH

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14

16

18

si
ng

ul
ar

va
lu

es

by svds
by LC

(C) (D)

Figure 4.1: (A)The singular value distribution of a 4772 × 4772 matrix EPA (UFL
database). (B),(C)and(D) Top 900 singular values computed by randomized techniques
using Gaussian, dual BCH codeword and linear codeword matrices, respectively

47

The proto-type algorithm (Algorithm 1) described in chapter 2, was used to find the

top 900 singular values. k = 900 and oversampling p = 20. Figure 4.1(B),(C)and(D)

show top 900 singular values computed by randomized techniques using Gaussian, dual

BCH codeword and linear codeword matrices, respectively. The singular values com-

puted (in red) using each of these matrices are compared against the actual singular

value (in blue) computed by using “svds” function in matlab. (These singular values

are made available in the UFL database). We can see that, the performance of the

codeword matrices is similar to that of Gaussian matrix.

0 20 40 60 80 100 120 140 160 180 200
2

4

6

8

10

12

14

16

18

si
ng

ul
ar

va
lu

es

by svds
by gaussian
by BCH
by LC

700 720 740 760 780 800 820 840 860 880 900
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

si
ng

ul
ar

va
lu

es

by svds
by gaussian
by BCH
by LC

(A) (B)

Figure 4.2: (A) The top 200 singular values (B)The last 200 singular values (out of 900)
computed using the three matrices as sampling matrix.

To further analyze the performance, lets look at the top 200 and bottom 200 singular

values computed. Figure 4.2(A) shows the top 200 singular values computed using the

three sampling matrices, namely Gaussian, dual BCH codeword and linear codeword

matrices along wth the actual singular values. All three matrices perform very well.

This comes as no surprise because, the top singular values converge much faster than

the bottom ones, as k is increase.

Figure 4.2(B) shows the bottom 200 singular values (from 701 to 900) computed

using the three sampling matrices along with the actual singular values. Here we see

that, the singular values computed using Gaussian and dual BCH codeword matrices

48

have almost converged to the actual values with just 20 oversamplings. But we see that,

last few singular values computed using the linear code matrices are quite away from

(the actual values) convergence. If we increase the oversampling to say p = 50, these

converge too. This is due to the fact that, we are using a random generator matrix and

this might not result in all columns of the codeword matrix to be linearly independent of

each other. Nevertheless, the performance is comparable to a random Gaussian matrix.

The mean squared error in singular values obtained using Gaussian matrix was,

e` = 0.0129, using dual BCH codeword matrix e` = 0.0147 and using linear codeword

matrix e` = 0.0384. So, the errors for all three matrices are comparable.

4.5.2 Compressed Sensing

The codeword matrices were used as measurement matrix in compressed sensing to sam-

ple the input signal. These codeword matrices are expected to satisfy the Restricted

Isometric Property because the collumns of the matrix are near orthonormal, so the

coherence of the matrix must be low. The signal was recovered using `1-norm mini-

mization as given in eq:2.23.

Noiseless Signal:

In the first experiment, for a basic compressed sensing example, we try recover a

noise free k-sparse signal of dimension N = 1500 with k = 10. We compare the per-

formance of the codeword matrices against a Bernoulli distributed random matrix as

measurement matrix for compressed sampling of the signal. Since the codeword ma-

trices have only 1s and -1s, it’s only fair to compare its performance against Bernoulli

distributed random matrix with entries 1s and -1s.

Figure 4.3(A) shows the input signal (on top) and the recovered signal (bottom)

using a Bernoulli distributed random Matrix with m = 90 samples. That is, using a 90×
1500 Bernoulli random matrix. The signal was recovered using `1-norm minimization.

We can see that, the signal recovery is almost exact using just 90 samples.

The Mean Squared Error (MSE) of the recovered signal using this Bernoulli dis-

tributed matrix, with m = 90 samples was em = 2 × e−10. Interestingly, this is better

49

than the MSE we got while using a Gaussian random matrix. The MSE for Gaussian

random matrix, with m = 90 samples was em = 4.5× e−4.

0 0.5 1 1.5 2 2.5 3 3.5
x 10−8

−1

−0.5

0

0.5

1

Time

A
m
pl
itu
de

Original Signal, UWB Pulse RF freq=4 GHz

0 0.5 1 1.5 2 2.5 3 3.5
x 10−8

−400

−200

0

200

400

600

Time

A
m
pl
itu
de

Recovered UWB Pulse Signal with 90 random samples

0 0.5 1 1.5 2 2.5 3 3.5
x 10−8

−1

−0.5

0

0.5

1

Time

A
m
pl
itu
de

Original Signal, UWB Pulse RF freq=4 GHz

0 0.5 1 1.5 2 2.5 3 3.5
x 10−8

−40

−20

0

20

40

Time

A
m
pl
itu
de

Recovered UWB Pulse Signal with LC matrix of length 250

(A) (B)

Figure 4.3: Basic compressed sensing example with k-sparse signal of dimension N =
1500 with k = 10. (A) Actual signal on top and Recovered signal using Bernoulli
distributed random Matrix with 90 samples in the bottom (B) Recovery using linear
codeword Matrix with 250 samples

Figure 4.3(B) shows the input signal (on top) and the recovered signal (bottom)

using a linear codeword Matrix with m = 250 samples. That is, using a 250 × 1500

linear codeword matrix. The signal was recovered using `1-norm minimization. We

can see that, the signal recovery is not good even with 250 samples, while the random

matrices recovered the signal exactly with just 90 samples. Obviously, as we increase

the number of samples, the recovery is better. But compared to a completely random

matrices, the performance of codeword matrices was poor.

The Mean Squared Error (MSE) of the recovered signal using the linear codeword

matrix, with m = 250 samples was em = 0.045. The MSE of the recovered signal using

the dual BCH codeword matrix, with the same m = 250 samples was em = 0.0367.

Noisy Signal:

We saw in the previous experiment that, the codeword matrices perform poorly in

50

recovering a noise free input signal. In the second experiment, we try to recover a noisy

input signal by compressed sampling. The input signal is same as in the first experiment,

a sparse signal with dimension N = 1500 and k = 10. A small amount of noise is added

to this input signal (Gaussian noise with σ = 0.25). The original signal is recovered by

sampling this noisy signal using Bernoulli distributed matrix and codeword matrices.

(A) (B)

Figure 4.4: Noisy (σ = 0.25) signal of N = 1500 and 10 nonzero (A) Recovery using
Bernoulli distributed random Matrix with 324 samples (B) Recovery using linear Code
Matrix with 324 samples

Figure 4.4(A) shows the input signal plus Gaussian noise with σ = 0.25 (on top)

and the recovered signal (bottom) using a Bernoulli distributed random Matrix with

m = 324 samples. That is, using a 324 × 1500 Bernoulli random matrix. The signal

was recovered using `1-norm minimization. The Mean Squared Error (MSE) of the re-

covered signal (from a noisy input signal) using this Bernoulli distributed matrix, with

m = 324 samples was em = 0.013.

Figure 4.4(B) shows the input noisy signal (on top) and the recovered signal (bottom)

using a linear codeword Matrix with m = 324 samples. The signal was recovered using

`1-norm minimization. The Mean Squared Error (MSE) of the recovered signal using the

linear codeword matrix, with m = 324 samples was em = 0.0490. We can see that, while

recovering the noisy signal, the performance of the codeword matrices is comparable to

51

that of completely random matrix. Also for the codeword matrices, the error rates for

the recovered signals are similar for both noiseless and noisy signals. But in both cases,

a completely random matrix outperform the codeword matrices in recovering signals

using compressed sampling.

Chapter 5

Conclusion and Discussion

In Chapter 2, we reviewed some of the randomization algorithms for matrix decom-

position and the concept of Compressed Sensing. An important take away with the

review is that, the randomization algorithms generally work well, if there is a gap in

the singular values spectrum and the singular values decay rapidly beyond the chosen

rank k. If the singular values have slow decay, and the size is very large, the methods

lose all the accuracy. There are a few post processing techniques suggested in [1] to

help improve the performance. Also, one needs to know the value of the rank k a priori.

This was handled in Chapter 3, where we proposed two inexpensive techniques to find

an approximate rank of the matrix.

The techniques to find the approximate rank of a matrix disccussed in Chapter 3

are fairly accurate and computationally inpexpensive. Since these methods are based

on approximating some function of a spectral projector or Density of States, these are

indirect estimate of the spectrum of A. The approximation are based on stochastic

sampling and averaging. So, the methods could be biased if the aprroximations are

not accurate. An important point is that, the performance is totally dependent on the

choice of the threshold ε and the degree of approximation M . Higher the degree we

use, better is the approximation but more expensive, is the method. And the bias gets

exacerbated if there are clusters near the choice of ε, as the inaccuracies of the approx-

imation is large near the boundaries.

52

53

The Lanczos approximation, is a direct estimate of the spectrum. Stochastic sam-

pling of the starting vector improves the approximation significantly. However, if the

number of Lanczos steps used is sufficiently large, even one starting vector may be suf-

ficient to fairly estimate the rank for a given choice of ε.

In Chapter 4, we discussed application of matrices from error control coding, in

randomized algorithms for matrix decomposition and compressed sensing. The per-

formance of these matrices were similar to that of random Gaussian matrix or other

structured random matrices for matrix decomposition. But, the performance as mea-

surement matrix in compressed sensing was not as good. One of the clear advantages of

using these matrices is that, we can generate these matrices for any arbitarily large size,

inexpensively. Also, these matrices reduce the randomness (number of random num-

berd to be generated) significantly. But theoretical analysis of their performance (error

bounds) for matrix decomposition and proof that they satisfy, the restricted isometric

property are still open.

References

[1] N. Halko, P. Martinsson, and J. Tropp. Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–

288, 2011, http://dx.doi.org/10.1137/090771806.

[2] Mark A. Davenport, Marco F. Duarte, YC Eldar, and G Kutyniok. Introduction to com-

pressed sensing. In Compressed Sensing: Theory and Applications. Cambridge University

Press, 2011.

[3] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.

Psychometrika, 1(3):211–218, 1936.

[4] Jieping Ye. Generalized low rank approximations of matrices. Machine Learning, 61(1-

3):167–191, 2005.

[5] Dimitris Achlioptas and Frank Mcsherry. Fast computation of low-rank matrix approxima-

tions. Journal of the ACM (JACM), 54(2):9, 2007.

[6] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.

Psychometrika, 1(3):211–218, 1936.

[7] Per-Gunnar Martinsson, Vladimir Rockhlin, and Mark Tygert. A randomized algorithm

for the approximation of matrices. Technical report, DTIC Document, 2006.

[8] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert.

Randomized algorithms for the low-rank approximation of matrices. Proceedings of the

National Academy of Sciences, 104(51):20167–20172, 2007.

[9] Gene H. Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[10] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.

[11] Peter Businger and Gene H. Golub. Linear least squares solutions by householder trans-

formations. Numerische Mathematik, 7(3):269–276, 1965.

54

55

[12] Leon Mirsky. Symmetric gauge functions and unitarily invariant norms. The quarterly

journal of mathematics, 11(1):50–59, 1960.

[13] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm for principal

component analysis. SIAM Journal on Matrix Analysis and Applications, 31(3):1100–1124,

2009.

[14] Per-Gunnar Martinsson, Arthur Szlam, and Mark Tygert. Normalized power iterations for

the computation of SVD. Manuscript., Nov, 2010.

[15] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. A fast randomized algo-

rithm for the approximation of matrices. Applied and Computational Harmonic Analysis,

25(3):335–366, 2008.

[16] Nir Ailon and Bernard Chazelle. Faster dimension reduction. Communications of the ACM,

53(2):97–104, 2010.

[17] Edo Liberty. Accelerated Dense Random Projections. PhD thesis, Yale University, 2009.

[18] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear

least-squares regression. Proceedings of the National Academy of Sciences, 105(36):13212–

13217, 2008.

[19] Emmanuel J Candès. Compressive sampling. In Proceedings oh the International Congress

of Mathematicians: Madrid, August 22-30, 2006: invited lectures, pages 1433–1452, 2006.

[20] Stéphane Mallat. A wavelet tour of signal processing. Academic press, 1999.

[21] David L Donoho and Michael Elad. Optimally sparse representation in general (nonorthog-

onal) dictionaries via l-1 minimization. Proceedings of the National Academy of Sciences,

100(5):2197–2202, 2003.

[22] Richard G. Baraniuk. Compressive sensing. 2007.

[23] Emmanuel J Candes and Terence Tao. Decoding by linear programming. Information

Theory, IEEE Transactions on, 51(12):4203–4215, 2005.

[24] Emmanuel J Candes. The restricted isometry property and its implications for compressed

sensing. Comptes Rendus Mathematique, 346(9):589–592, 2008.

[25] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition

by basis pursuit. SIAM review, 43(1):129–159, 2001.

[26] Ivan Markovsky. Structured low-rank approximation and its applications. Automatica,

44(4):891–909, 2008.

56

[27] Troy Lee and Adi Shraibman. An approximation algorithm for approximation rank. In

Computational Complexity, 2009. CCC’09. 24th Annual IEEE Conference on, pages 351–

357. IEEE, 2009.

[28] Noga Alon, Troy Lee, Adi Shraibman, and Santosh Vempala. The approximate rank of a

matrix and its algorithmic applications: approximate rank. In Proceedings of the forty-fifth

annual ACM symposium on Theory of computing, pages 675–684. ACM, 2013.

[29] Edoardo Di Napoli, Eric Polizzi, and Yousef Saad. Efficient estimation of eigenvalue counts

in an interval. arXiv preprint arXiv:1308.4275, 2013.

[30] Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large matrices.

arXiv preprint arXiv:1308.5467, 2013.

[31] Eric Polizzi. Density-matrix-based algorithm for solving eigenvalue problems. Physical

Review B, 79(11):115112, 2009.

[32] Grady Schofield, James R Chelikowsky, and Yousef Saad. A spectrum slicing method for

the Kohn–Sham problem. Computer Physics Communications, 183(3):497–505, 2012.

[33] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for

Laplacian smoothing splines. Communications in Statistics-Simulation and Computation,

19(2):433–450, 1990.

[34] Jok M Tang and Yousef Saad. A probing method for computing the diagonal of a matrix

inverse. Numerical Linear Algebra with Applications, 19(3):485–501, 2012.

[35] Laurent O Jay, Hanchul Kim, Yousef Saad, and James R Chelikowsky. Electronic structure

calculations for plane-wave codes without diagonalization.

[36] C Bekas, E Kokiopoulou, and Yousef Saad. An estimator for the diagonal of a matrix.

Applied numerical mathematics, 57(11):1214–1229, 2007.

[37] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM

Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[38] Lin-Wang Wang. Calculating the density of states and optical-absorption spectra of large

quantum systems by the plane-wave moments method. Physical Review B, 49(15):10154,

1994.

[39] Chen Huang, Arthur F Voter, and Danny Perez. Scalable kernel polynomial method for

calculating transition rates. Physical Review B, 87(21):214106, 2013.

[40] RN Silver and H Röder. Densities of states of mega-dimensional Hamiltonian matrices.

International Journal of Modern Physics C, 5(04):735–753, 1994.

57

[41] Walter Gautschi. Computational aspects of three-term recurrence relations. SIAM review,

9(1):24–82, 1967.

[42] Walter Gautschi. A survey of Gauss-Christoffel quadrature formulae. In EB Christoffel,

pages 72–147. Springer, 1981.

[43] Cho-Jui Hsieh and Peder Olsen. Nuclear norm minimization via active subspace selection.

In Proceedings of The 31st International Conference on Machine Learning, pages 575–583,

2014.

[44] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms

for learning large incomplete matrices. The Journal of Machine Learning Research, 11:2287–

2322, 2010.

[45] Waheed U Bajwa, Jarvis D Haupt, Gil M Raz, Stephen J Wright, and Robert D Nowak.

Toeplitz-structured compressed sensing matrices. In Statistical Signal Processing, 2007.

SSP’07. IEEE/SP 14th Workshop on, pages 294–298. IEEE, 2007.

[46] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons,

2012.

[47] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-

correcting codes, volume 16. Elsevier, 1977.

[48] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error correcting binary

group codes. Information and control, 3(1):68–79, 1960.

[49] José Felipe Voloch. On the duals of binary BCH codes.

	Acknowledgements
	Dedication
	Abstract
	List of Figures
	Introduction
	Randomization Techniques for Matrix Decomposition
	Introduction
	Matrix approximation framework
	Intuition

	An algorithm based on randomization
	Cost
	Error analysis

	Power method
	Error analysis

	Accelerated techniques
	Compressed sensing
	Restricted Isometry Property
	Signal Recovery

	Estimating the Approximate Rank of a Matrix
	Introduction
	The approximate rank by eigenvalue count method
	Polynomial expansion
	Choosing the threshold
	Results

	Density of States
	Kernel Polynomial Method
	Integration and relation with the eigenvalue count method

	Lanczos approximation to the spectral density
	Results

	Applications
	 Nuclear Norm Minimzation

	Matrices From Error Control Coding
	Introduction
	Error Control Coding
	Random Generator Matrix
	Dual BCH Code Generator Matrix
	Results
	Matrix Decomposition
	Compressed Sensing

	Conclusion and Discussion
	References

