Measuring Mathematical Knowledge for Teaching Community College Algebra

Dexter Lim, Irene Duranycz, Bismark Akoto, AI@CC 2.0 VMQI Research Group

Abstract

This poster presents preliminary findings about the dimensionality of our 34-item instrument designed to measure MKT-CCA and the performance of items within our instrument. Our analysis showed that a three-dimensional model structured by function types better fitted the data than a unidimensional model. Our analysis also showed that two- and six-dimensional models, structured by the tasks of teaching or the combination of function types and tasks of teaching, did not converge.

Project Description

The Algebra Instruction at Community Colleges (AI@CC 2.0: VMQI) project (Mesa et al., 2020-2023) seeks to develop and validate an instrument to assess instructors’ Mathematical Knowledge for Teaching Community College Algebra (MKT-CCA) and to revise a video coding protocol. The MKT-CCA instrument sets out to measure the mathematical knowledge for teaching college algebra at community colleges (CCCs) using multiple-choice or testlet items focusing on the following college algebra topics: Linear equations and functions, Exponential equations and functions, Rational equations and functions. We hypothesize that MKT-CCA will also be organized along the following two Task of Teaching:

- Choosing problems
- Understanding student work

Research Question

Are there six distinct dimensions of mathematical knowledge for teaching college algebra at community colleges?

Method

- A 34-item MKT-CCA instrument (27 multiple choice and 7 testlets) + Identified 7347 instructors (900+ responded) + Collected 556 responses from 315 institutions + 2 Parameter Logistic MIRT model using maximum likelihood estimation

Institutional Characteristics (315 Colleges)

- 44 States + Guam
 - 37% western
 - 36% southern
 - 50% represented a majority of non-white students
- Setting
 - 47% urban
 - 26% suburban
 - 14% small towns
 - 12% rural
- Institution size
 - 50% medium/large
 - 26% small/medium
 - 22% large
 - 3% small

Sources

- 34-item MKT-CCA instrument (27 multiple choice and 7 testlets)
- Identified 7347 instructors (900+ responded)
- Collected 556 responses from 315 institutions
- 2 Parameter Logistic MIRT model using maximum likelihood estimation

Next Steps

- Corroboration independence of the three constructs
- Conduct validation interviews
- Analyze data from a sample of people who have the knowledge but no teaching experience mathematical majors with NO tutoring experience
- Identify associations between instructors’ performance on MKT and their characteristics and beliefs.

Preliminary Findings

- Sample size was not enough for modeling six dimensions.
 - +800 complete files would have been necessary to find all dimensions.
 - Difficult to separate the two tasks of teaching at the level of choosing problems or understanding student work used here
 - Ko and Herbst (2020) had a more fine-grained distinction.
 - MKT-CCA instrument provides good coverage of a wide range of latent ability levels.
 - Discrimination: ranged from 0.183 to 2.555
 - Level of difficulty: ranged from –4.914 (very easy) to 2.140 (difficult)
 - The three-dimensional model fit the data significantly better than the one-dimensional model, $\chi^2(3) = 12.37, p < .01$.

References

Acknowledgements

AI@CC 2.0 Research Team: Megan Evely-Goos, Anoka-Ramsey Community College; April Strim, Chandler-Gilbert Community College; Patrick Kimani and Laura Watkins, Glendale Community College; Nicole Lang, North Hennepin Community College; Mary Beisegel, Oregon State University; Judy Sutor, Southstate Community College; Claire Boek, Inah Ko and Vilma Mesa, University of Michigan; Bismark Akoto, Irene Duranycz, Syed Gedi, and Dexter Lim, University of Minnesota.

This work was supported in part by EHR grant #1841426, 2000944, 2000587, 2000569 through the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.