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Many-Body Localization

Aleiner et al (2006,2010)

If the model has bounded spectrum, one can attempt 
to drive the transition at inifinite temperature
Oganesyan and Huse (2007), Pal and Huse (2010)



Disordered Spin Chains

Poisson r=0.39

GOE r=0.53

= interacting fermions:

Ratio of adjacent energy gaps from 
exact diagonalization of 16 sites:
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Thermalization and dynamics of entanglement entropy

clean system localized system (?)
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Ssaturation ~ ξlocalization

Bounded entanglement 
allows efficient numerics
(using DMRG).
Approach transition 
from the localized side?
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Von-Neuman entropy generated in the dynamics:



Entanglement dynamics: numerics

log(t) increase seen in the 
interacting disordered model.

Bardarson et. al. arXiv:1202.5532
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See also earlier numerical studies:
De Chiara et. al. J. Stat. Mech (2006);
Znidaric et. al. PRB (2008)  



Outline

• Real space RG for quantum time evolution in strong disorder.
Basic idea and scheme 

• Application: random spin chain quenched from AFM state.
Flow to Infinite randomness fixed point

• Evolution of entanglement entropy and number fluctuations. 
Non-thermalization and asymptotic GGE

• Basin of attraction of the infinite randomness fixed point.
Criterion for the Many-body localization transition?



Real space RG for the dynamics, general scheme

Model:

Basic idea:

large local separation of scales (disorder)

solve the local fast time evolution exactly 

Compute effect on rest of chain perturbatively

Related to but somewhat different philosophy than RSRG that targets 
the ground state (Dasgupta & Ma 1980, D. Fisher 1994, …)



Real space RG for the dynamics, general scheme

Or remain stuck if  initially parallel

1. Choose pairs of spins coupled by the largest J=Ω. 

These pairs perform rapid oscillations 
(frequency Ω) if initially anti-aligned.  

That is all we have at time scale 

all other spins are essentially frozen!
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Real space RG for the dynamics, general scheme

2. Compute effective dynamics at times t>>Ω −1

(eliminating frequencies of order Ω)
H0HL HR

Heff depends both on H and on initial state !

2nd order expansion of U in 
the interaction picture w.r.t  H0

Average over 
rapid oscillations

Example: result in simplest case (∆=0):



Perturbation expansion of the 
evolution operator:

H0HL HR



Real space RG for dynamics, general scheme

To compute the evolution up to 
time             , successively 
eliminate all pairs precessing
at frequencies Ω0 down to Ω.



The RG decimation steps for our model

Simplest case ∆=0 (non-interacting):

Take z-antiferromagnetic initial state
(Then we never have strong bonds with aligned spins)

∆i << 1



The RG decimation step for ∆>0

Need to keep track of  a new spin on the strong bond

The new spin initially points along x or –x therefore the evolution is a superposition of 
the dynamics given an up-spin on the bond and the dynamics with a down-spin:

This generates entanglement between 
decimated bond and the nearby spins after a time 

But no effect on subsequent 
renormalization of coupling constants!

,



Flow of distributions for initial Neel state

RG rules:

Scaling variables:

Flow equations for distributions:



Solution of the flow equations

Flow to an infinite randomness fixed point!

Like the “Random singlet” phase of spin chains
(Dasgupta & Ma 80, Bhatt & Lee 82, Fisher 94)
Here oscillating pairs play the role of singlets

Or in the original variables:
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Relation between frequency (or time) scale and length scale:

(Distance between remaining spins at that scale)



Evolution of the entanglement entropy

Compute entanglement entropy by counting the number of decimated 
bonds that cut the interface.
Each decimated bond crossing the interface contributes ~log2. 
(As in the ground state of random singlet phase – Refael & Moore PRL 2004)

Simplest case ∆=0 (“non interacting”): Only intra-pair entanglement 



Evolution of the entanglement entropy (∆>0)

A bond eliminated at t1 builds entanglement 
with neighbors only at a later time t=t1+tent.

The interaction generates entanglement only 
after a delay time from the start of time evolution

How much entanglement  is generated?



Evolution of the entanglement entropy (∆>0)

Remaining spins at t1 are separated by 
decimated clusters of length L(t1)

L(t1)

Entanglement measured at time t originates 
from pairs eliminated at earlier time t1

By the time t=t1+tent that these spins 
become entangled the decimated clusters 
between them must also be entangled

and the solutions of the flow equations, we have:

Using the relation between t1 and t :



Evolution of the entanglement entropy (∆>0)

After initial delay: 

Crossover from log growth:

to:

>>1

Bardarson et. al. arXiv:1202.5532



Saturation of entanglement entropy in a finite system

Entropy saturates to an extensive value:   S(L) ~ L

L

Saturation time:

Saturation value is not the expected thermalized value S(L)= L ln2. Why?

In agreement with the 
numerical results:

Bardarson et. al. arXiv:1202.5532



Emergent conservation laws

L

In every decimated pair of spins the states         and
are never populated therefore S(L)<(L/2)ln2 

More generally are approximate constants of motion
(asymptotically exact for long distance pairs) 

Many-body localization (non thermalization)  =  emergent GGE
?



Evolution of particle number fluctuations

Since the        and        states of decimated pairs are not populated, 
only pairs that intersect the interface contribute to 

Much slower than entanglement growth 
and independent of interaction!

Saturates to a non-extensive value 
in a finite system:

Bardarson et. al. 



Phase diagram - Extent of the localized state

A criterion for initial conditions that lead to the localized fixed point 
can be found from the RG rule:

In order to flow to increasing randomness the typical J must 
decrease in the process. Therefore demand:

Disorder

Interaction

RG uncontrolled
(delocalized state ??)



Generalize to random initial state

RG rule for a strong bond connecting parallel spins: 

Keep track of a new spin:

Generates slow switching between the          and          states.

But the and         states of the pair are not populated.

The operators          of decimated pairs are asymptotic 

constants of motion if the system still flows to infinite randomness. 

But the flow is complicated by the switching term (last term) and the 
generated interaction between the new spin and its neighbors.



RG flow for random initial state and random Zeeman 
fields neglecting resonances

Solved by the Ansatz: Gradual 
condensation

Flow to infinite rand. in J (peaked at small J) and large Local Zeeman fields



Summary

• Formulated RG for dynamics 
of random spin chains

• Many-body localized state found 
for xxz chain with initial Neel state.
identified as infinite randomness fixed point

• Entanglement growth:

• Particle number fluctuations:

• CDW (Neel) order parameter: 

• Non thermal steady state can be understood as Generalized Gibbs 
ensemble with the asymptotic conserved quantities:



Outlook / questions

• Nature of the steady state for generic initial conditions 
and generic disorder (allow local Zeeman fields)

• Critical point controling the many-body localization 
transition?


