Project funding provided by customers of Xcel Energy

through a grant from the Renewable Development Fund. Optimizing Energy Production and Use for a **NET-ZERO ENERGY DAIRY**

Eric Buchanan MFEC 2017

NET-ZERO: What is it?

How do we get there?

STEP 4: Renewable Energy

STEP 3: Convert Thermal Loads

STEP 2: Energy Efficiency

STEP 1: Understand Energy Usage

Milking cows is energy and water intensive

Where is energy used? The 4 C's:

- Current project focuses on the WCROC Milking Parlor
 - Extensive energy monitoring began in late 2013
 - 20 individual electric load sensors, 11 water flow & temp sensors

Looking at energy per unit of production

WCROC Milking Parlor Energy Usage					
	2013 - 2016				
	Annual		Ave./cwt	\$/cwt	
Energy Usage	Ave.	Ave./cow	milk	milk	
Natural Gas (therm)	4,767	23.6	0.2	\$	0.12
Electricity (kWh)	111,708	553.0	3.9	\$	0.39
Total Energy (MJ)	936,314	4635	32.9	\$	0.52
Total Water (gal)	478,362	2368	16.8		

Energy costs per cwt of milk are not large, but total annual energy costs are about \$14,700

A deeper dive: parlor total energy usage (natural gas & electricity)

70% more total energy is consumed in the winter compared to summer due to parlor heating.

Parlor heating is the largest single load followed by water heating.

STEP 2: ENERGY EFFICIENCY

- Reducing energy usage is an important step that will reduce the size of any needed renewable energy (RE) system
 - There is no unit of energy cheaper than one you don't use!
 - Energy efficiency upgrades often pay back in under 10 years
 - MN project HCCC average payback estimates:
 - LED lights 3.3 yrs, Electric water heaters 6.2 yrs
 - ❖ VFD's 6 to 14 yrs, RHR 7.8 yrs, Plate Cooler 9.5 yrs
 - A smaller RE system enhances payback times

STEP 2: ENERGY EFFICIENCY

Lessons learned from WCROC energy monitoring

Vacuum motor = 10 hp (7.5 kW), Cost = \$3,400 Savings = 38 kWh/day (\$3.80/day) Pay back = 2.5 years VFD failed after 3 years and was replaced Cost = \$5600, Pay Back in 4 years

Scroll comp.= 5 hp (3.7 kW), Cost = \$3,080 Savings = 8898 kWh/yr (\$890/yr) Pay back = 3.5 years

- Only required if a Net-Zero operation is desired
 - It is difficult to replace burned fuels with RE
 - ❖ In MN, solar thermal systems can not replace 100% of thermal loads
- Electric appliances are typically more efficient than their gas fueled counterparts (95% versus 65%)
 - Efficiency alone results in large energy savings
 - But may NOT lead to cost savings if fuel prices are low

WCROC dairy energy optimization goals

- Collect thermal energy from milk as a resource Stored in large, well insulated water tank
- Use stored heat to preheat cleaning water Including pressure water
- 3. Replace gas water heater & PW with electric models
 Eventually do the same for the furnace
- 4. Add solar thermal energy

Energy optimized milking process - 4 C's

Collection

Energy optimized milking process

- WCROC lessons learned:
 - Tankless water heaters can supply dairy hot water loads, but only if well water is pre-heated
 - Storage tank size must be sufficient to cool milk
 - Manure lagoon or fan coil unit could be a good thermal buffer
 - Heat pump controls need to be customized to deal with fluctuating milk flow
 - Solar thermal heating is probably not needed if milk heat is fully harvested

STEP 4: RENEWABLE ENERGY SYSTEMS

- After energy consuming processes have been optimized and thermal loads have been converted to electricity, a RE system can be sized to generate the total annual energy load.
 - This results in a Net-Zero operation
- RE systems generally have high up front costs and longer pay back times than efficiency upgrades
 - Depends on incentives (FTC, MiM, REAP grant, etc.)
 - Solar PV and small scale wind (<100 kW) are probably the most economical options and certainly the simplest

STEP 4: RENEWABLE ENERGY SYSTEMS

- How does it work?
 - * A grid-tie system is probably best choice for most farms.
 - Batteries are expensive and require maintenance
 - Net Metering in MN for systems <40 kW</p>
 - Full retail credit for unused electricity
 - ❖ Otherwise, avoided cost rate (≈3¢/kWh)
 - A larger system may still be economical
 - Need to carefully size system and match use to generation so energy is used "behind the meter"

Commercial Finish Barn Solar PV Study

- > 65 kW system for "Net Zero", but 48 kW is optimal
- > 48 kW cost = \$134,400 (\$2.80/Watt in 2016)

Over 25 years

- 7.2¢/kWh (no incentives)
 18 year payback
- 5.0¢/kWh (fed tax credit)
 13 year payback
- 3.2¢/kWh (FTC & REAP)
 8 year payback

STEP 4: RENEWABLE ENERGY SYSTEMS

Disconnects

Grid-tie system components:

- DC electricity (solar) and wild AC (wind) have a disconnect switch near the installation site
- Electricity travels to a disconnect inside bldg.
- Then to power inverters to be converted to AC
- Then to AC panel
- On to the utility meters
- Finally to the utility electric grid

STEP 4: RENEWABLE ENERGY SYSTEMS

* WCROC lessons learned:

- There are interconnection costs (talk to your utility early!)
 - * \$100 to \$250 application fee, \$200 to \$600 for a 2 way meter
 - Interconnecting directly to a transformer incurs linemen charges
 - There may be stand-by demand charges
- * 3 phase installations can be problematic
 - Mixed phase inverters may not operate properly with a single phase failure
 - Solution is a phase monitoring relay

Our experience so far

WCROC RENEWABLE ENERGY SYSTEMS

GROUND MOUNTED SOLAR

PRO's

- generally simpler
- Allows mounting angle choice
- Probably less expensive
- Easy access for snow removal

Con's

- Takes up valuable space
- In path of debris (mowing/blowing)
- Ground cover/landscaping/fencing

ROOF MOUNTED SOLAR

PRO's

- Out of sight
- Panels are close to the load
- Less chance of damage/vandalism

Con's

- May require engineering study
- May require roof enhancements
- Need to remove panels to re-roof

WCROC RENEWABLE ENERGY SYSTEMS

Solar and snow: 2 days after storm

WCROC RENEWABLE ENERGY SYSTEMS

- Small scale wind:
 - Small wind industry is not as mature as solar
 - Pricing, service, warranties, etc. are all less stable than with solar
 - Performance is highly dependent on local wind speed & site
 - ❖ Bottom of rotor should be 30' above anything within 300'
 - ❖ Good tower height ≈ 100' (30 meters). Guyed or tilt-down
 - Guyed towers are less expensive, but take up more space
 - ❖ Guy radius is ½ to ¾ of tower height
 - ❖ Tilt-down towers make maintenance easier
 - * Small turbines can be louder than utility scale turbines

WCROC RENEWABLE ENERGY SYSTEMS

General guidelines:

- ✓ Use NABCEP certified contractors
 - ✓ Find someone who has experience with what you want to do
 - ✓ A good contractor can help you apply for incentives and permits
- ✓ Talk to the utility company early on
 - ✓ Understand costs, interconnection requirements, and timeline
 - ✓ Inverters must have UL 1741 listing
- Check local and county ordinances for set back req.'s, etc.

Resources:

- http://www.cleanenergyresourceteams.org
 CERT's is a great educational site and a portal to almost any RE information
- https://wcroc.cfans.umn.edu/energy-dairy
 The WCROC site hosts a renewable energy guidebook, dairy energy guidebook & decision tool, as well as information relating to our ag energy projects
- http://www.dsireusa.org/
 The definitive web site for all energy incentives
- http://pvwatts.nrel.gov/ Free Solar PV prediction tool
- http://smallwindcertification.org/home/ Independent certification for wind turbines