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Abstract

Two complementary geometric structures for the topographic representation of an image are devel-
oped in this work. The first one computes a description of the Morse-topological structure of the image,
while the second one computes a simplified version of its drainage structure. The topographic significance
of the Morse and drainage structures of Digital Elevation Maps (DEM) suggests that they can been used
as the basis of an efficient encoding scheme. As an application we combine this geometric representation
with an interpolation algorithm and lossless data compression schemes to develop a compression scheme
for DEM. This algorithm achieves high compression while controlling the maximum error in the decoded
elevation map, a property that is necessary for the majority of applications dealing with DEM. We present

the underlying theory and compression results for standard DEM data.
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I. INTRODUCTION

A geometric approach to encoding and compressing Digital Elevation Maps (DEM) is
proposed in this paper. This is based on Morse theory and drainage structures, which
lead to an efficient representation of the topographic structures of these images.

DEM data consist of a discrete digital representation of a surface terrain. Each cell

in a DEM corresponds to a point (z,y,z) in 3D space. We can think of (z,y) as the
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Fig. 1. Left: Original DEM images. Right: 3D representation of the image on the left.

coordinates in the image domain and the height z as the gray value of the image (see Fig.
1). The acquisition systems used to obtain a DEM have been improved during the last
years in order to obtain a better resolution both in the coordinate plane and in height.

Obviously, this kind of data requires a large amount of bytes to store it. Typically a
DEM image from a small terrain has 1200 x 1200 points, that is 1440000 bytes (1.4Mb)
when using 8 bits for the height, or 2880000 (2.8 Mb) when using 16 bits. If we note that
for a complete terrain description of a country we need thousands of these images, storing
and transmitting them requires efficient encoding and compression.

Many algorithms exist for data compression. They can be classified into lossless and
lossy [1], [2], [3]. Lossless algorithms introduce no error, thereby limiting the amount of
achieved data compression. Lossy algorithms achieve higher compression ratios at the
expenses of introducing errors in the decoded image. It is important in this case to have a
control on this error. Typically, lossy compression algorithms control the Ly norm of the
error (the root mean square error), but it is not so easy to find algorithms which allow a
control on the Ly, norm of the error (that is the sup error). This is fundamental for DEM
applications. Without an L error control the error in individual pixels may be of the
same order of magnitude as the image gray value resolution. For DEM applications, e.g.,
navigation and landing, this leads to an error in terrain height that makes the algorithm
forbidden. A standard algorithm allowing the desired L, control is JPEG Lossless (JPEG-

LS) [2], [3], [4], which has a near lossless mode where one can impose the maximum allowed
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error. The use of JPEG-LS for DEM data has been studied in [4]. Let us mention that
when using standards such as JPEG-2000 [5], and then encoding the errors greater than
a given threshold, a bound in the maximal error can be achieved as well. Of course, this
is not part of the standard itself.

As mentioned above, the control of the maximum error per pixel (terrain point) is
required when compressing DEM data to achieve an accurate description of terrain fea-
tures. On the other hand, in the case of DEM data, it seems reasonable to store only
those geometric structures which are of special relevance (such as its Morse and drainage
structures, see below), and interpolate, while controlling the maximal error, the rest from
this non uniform geometric sampling. The goal of this paper is to efficiently compute
these structures and to use them to efficiently compress DEM data, while controlling the
L, norm of the error. The geometric description of the data is based on Morse theory and
drainage structures, which provide, as we will show below, an efficient topographic rep-
resentation of the image. This natural geometric representation of DEMs is not obtained
with algorithms such as JPEG-LS or JPEG-2000.

This paper is structured as follows. Section II describes the current literature in topo-
graphic representation of images and will help to further motivate our geometric approach
for DEM encoding. Section III is devoted to the computation of the Morse structure of an
image. Some basic notions, like the notion of monotone section of a topographic map, are
introduced, and an algorithm to compute the Morse structure is proposed. We also briefly
comment on the mathematical justification of the proposed algorithms. In Section IV we
describe an algorithm to compute a simplified drainage structure. Section V describes the
coding and interpolation strategy and we summarize the compression algorithm used in
our experiments. Section VI shows comparative results between the proposed algorithm
and the standards JPEG-LS and JPEG-2000. Finally, in Section VII we present the main

conclusions of this work.



II. BACKGROUND ON THE TOPOGRAPHIC DESCRIPTION OF IMAGES

The use of a topographic description of images, surfaces, or 3D data has been intro-
duced and motivated in different areas of research, including image processing, computer
graphics, and geographic information systems (GIS), e.g., [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22]. The motivations for such a description
differ depending on the field of application. In all cases, the aim is to achieve an effi-
cient description of the basic shapes in the given image and their topological changes as a
function of a physical quantity that depends on the type of data (height in data elevation
models, intensity in images, etc.). In our brief literature review below, which will help
to motivate our current contribution, we have separated the works into two main areas
of research: computer graphics and image processing. In some cases this separation is
somewhat arbitrary, some papers, if not all, could be included in both areas, since the
application could be oriented to one or the other.

In computer graphics and geographic information systems, topographic maps represent
a high level description of the data. Topographic maps are represented by the contour
maps, i.e., the isocontours of the given scalar data. The description of the varying iso-
contours requires the introduction of data structures, like the topographic change tree or
contour tree which can represent the nesting of contour lines on a contour map (or a
continuous topographic structure) [23], [15], [16]. In all cases, the proposed description
can be considered as an implementation of Morse theory, in the sense that Morse theory
describes the topological change of the isocontours of scalar data or height function as
the height varies, and relates these topological changes to the criticalities of the function.
Given the scalar data u defined in a domain Q of RY (u: Q) — IR), the contour map is
defined in the literature as the family of isocontours [u = A] = {z € Q : u(z) = A}, A € R,
or in terms of the boundaries of upper (or lower) level sets [u > A\] = {z € Q : u(z) > A}
([u < A]). The first description is more adapted to the case of smooth data while the sec-
ond description can be adapted to more general continuous data where there are plateaus
of constant elevation or discontinuous data. The second description has been addressed

in [12], [15], while the first description has been used in [9], [10], [16], where an apriori



interpolation of the discrete data is required so that the regularity assumptions permit
the isocontour description.

The contour map is organized in a data structure, either the contour tree [15], [16],
or the Reeb graph [24], [25]. The contour tree represents the nesting of contour lines
of the contour map. According to [15], each node represents a connected component of
an upper (or lower) level set [u > A] (Ju < A]), and links between nodes represent a
parent-child relationship, a link going from the containing to the contained set in the
upper tree, or viceversa if we consider the lower tree. Each node has a list of descendants,
its corresponding elevation value, a list of boundary points, and its parent. The contour
tree encodes the topological changes of the level curves of the data. Critical values and its
associated features, peaks (maxima), pits (minima), or passes (saddles), can be extracted
from the contour trees [15]. The description of the topographic changes requires the use
of both upper and lower trees, and the contour tree can also be used as a tool to compute
other terrain features such as ridges and ravines [15]. For practical applications, the
data structure has to be implemented with a fast algorithm and with minimal storage
requirements. In [16] this is accomplished with a variant of the contour tree where the
criticalities (maxima, minima, saddles, computed in a local way) are computed first. In
[9] several attributes have been added to the contour data which can be used to select a
subsampled family of contours which are representative of the data. As examples of such
attributes the authors choose the length or area of the isocontours, the ratio length of the
isocontour/area of the enclosed set, or the integral of the gradient along the isocontour.

A related data structure is the Reeb graph, which represents the splitting and merging
of the isocontours. The Reeb graph of the height function u is obtained by identifying
two points p,q € Q such that u(p) = u(q) if they are in the same connected component
of the isocontour [u = u(p)]. Thus, a cross-sectional contour corresponds to a point of an
edge of the Reeb graph, and a vertex represents a critical point of the height function w.
The Reeb graph was proposed in [24] as a data structure for encoding topographic maps.
The authors proposed to compute it following the computation of the so-called surface

network. The surface network is also a topological graph, i.e., a graph that represents the
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relations among critical points, whose vertex are critical points and the edges represent
either a ridge or a ravine line. A ridge (ravine) line is a line with steepest gradient which
joins a pass to a peak (pit) [24], [26]. The critical points are computed with an algorithm
based on local computations, so that the Euler’s formula relating the number of peaks,
pits and passes, holds. Then ridges and ravines are computed following the steepest
lines. In the context of computer graphics, Morse theory has also been used to encode
surfaces in 3D space [22]. In [22], the authors also use a tree structure like the Reeb
graph complemented with information about the Morse indexes of the singularities and
including enough (information about) intermediate contours to be able to reconstruct by
interpolation the precise way in which the surface is embedded in 3D space.

In image processing, the topographic description was advocated as a local and contrast
invariant description of images (i.e., invariant under illumination changes), and has lead
to an underlying notion of shapes of an image as the family of connected components of
upper or lower level sets of the image [11], [20], [21], [27]. An efficient description of the
family of shapes in terms of a tree was proposed in [18], [19] and further developed in
[17]. The tree of shapes as proposed in [18], [19] fuses the information of both the trees
of upper [u > A] and lower [u < A] level sets of the scalar image u. The key idea for
this fusion is the notion of shape as a connected component of an upper [u > A] or lower
[u < A] level set in which the holes are filled-in. This topographic structure has been
further studied in [6], [7], [19], where a Morse description of this topographic structure
was developed. The mathematical description permitted to include the case of images as
upper semicontinuous functions. In [17], following bilinear interpolation of the discrete
data, the image could be treated as a continuous function and a tree of bilinear level lines
[u = A] was computed. The tree of bilinear level lines is more related to the contour
tree computed with the isocontours of the interpolated image. A subtree containing the
so-called meaningful level lines [28] can be extracted which contains the main level lines
according to the distribution of gradient values of the image in a statistical way [17], [28].
The work in [29] can be considered as a mathematical description of the (iso) contour tree

in the case of two-dimensional functions. In [12], Morse theory has also been used as a
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basic model to describe the geometric structures of 2D and 3D images, and in general, of
multidimensional data. Applications have been given in different domains, in particular,
to visualize structures in 3D medical images. The data are typically multi-dimensional
sampled data, and it cannot be assumed that the function is Morse in a traditional sense,
even if interpolated. Thus, the authors adapt Morse theory using combinatorial methods.
The authors assume that the given data are interpolated by a continuous real valued
functions u. The basic geometric objects studied are the boundaries of the connected
components of upper level sets [u > A] of u and their variation with the level . In their
set of axioms, the authors assume that those boundaries are compact, oriented manifolds
in IRY, they precise their local structure, and its connection with the original sampled
data. In particular, those axioms imply that the topological structure of the sampled data
is reflected by any interpolating function satisfying their axioms. Then critical points and
critical values are defined, obtaining maximum, minimum, and saddle critical points (and
values). Criticalities are defined by local analysis of the function, including the case of
degenerate sets (i.e., connected regions of the sampled data with the same values). The
authors prove that the topology of their basic objects change at a critical level, and does
not change between critical levels. Then the criticality graph is defined, the vertices of
the graph are the criticalities and the edges go between criticalities in such a way that
no further criticalities are located between them. The regions represented by each edge
are called zones of the critical point with higher value. In each zone the boundaries of
the upper level sets are homeomorphic [12]. The topology change at a critical value is
computed by combinatorial methods if the critical value is a saddle or a minimum, and
by the genus in the case of a maximum value. In some sense, this structure is related to a
Reeb graph. Efficient algorithms are proposed which compute the criticality graph [12].
Let us finally mention that a morphological approach to image compression has been
proposed by several authors, for instance [30], [31], [32], [33], [34]. In [30],[32] the authors
propose to use binary partition trees to select the level curves which have to be encoded.
The trees take into account the cost in bits to encode the selected level boundaries and

the approximation error (measured with an L? norm). In [34], the author selected the
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level lines taking into account its perceptual significance which was measured in terms
of the number of T" and X junctions contained in it. Because of our application to the
encoding of DEM data, we use a description more adapted to the topographic features of

the data.

III. MORSE THEORY AND MONOTONE SECTIONS

As we explained in the previous section, the aim of Morse theory is to describe the
topological changes of the (iso)level sets of a function in terms of its critical points. We
consider here the case of 2D real valued data (gray level images, or height data), and
describe a simple and efficient algorithm to compute its Morse structure from its upper
and lower level sets.

To make the ideas precise, let us first recall some definitions. Let D be a subset
of IRN. Given a function v : D — IR, we call upper (lower) level set of u any set
of the form [u > A := {x € D : u(x) > A} or [u > A := {x € D : u(z) > A}
([u<A]l:={x e D:uz) <A}oru<lA:={zxe€D:u(r) <A}), where A € IR. The
(upper) topographic map of a function u is the family of the connected components of
the level sets of u, [u > A], A € IR, the connected components being understood in the
relative topology of D. We shall assume that our image is a continuous function and each
upper or lower level set has a finite number of connected components which is true for a
discrete image or for a continuous image after some basic filtering [6]. It was proved in
[11] that the topographic map is the structure of the image which is invariant under local
contrast changes, a notion also defined in [11]. In [6], [7] the authors studied the Morse
structure of the topographic map for continuous functions (a similar study can be done for
bounded upper semicontinuous functions). They defined a notion of nonsingular region
of the topographic map trying to express the fact that the level lines of the topographic
map in a nonsingular region do not change topology, as it happens for smooth functions
where singularities are understood in the usual way [35]. A first version of this notion

appeared in [27].



Let u: D — IR be a function. For each A\, u € IR, A < p we define
Uvpy={z €D :X<u(z) < pu}.

The connected components of a set X C IRY will be denoted by CC(X). If x € X, the
connected component of X containing z will be denoted by cc(X, z)
Definition 1: Let v : D — IR be a continuous function. A monotone section of the

topographic map of u is a set of the form
Xoy € CC(Un), 1)
for some A, u € IR with A < p, such that for any X, p' € [A, u|, A < u' the set
{zeXy,: N <u(z) <y}

is a connected component of Uy .

Due to small oscillations in the image, its Morse structure is too complex, i.e., there are
many criticalities. To simplify the structure of the topographic map while preserving its
main features we filter the image with the Vicent-Serra filters [36],[37], also called extrema
filters [38]. Extrema filters eliminate the small connected components of upper and lower
level sets of the given image [6], [39]. The resulting image has a simplified topographic
map structure. If u has been filtered with the extrema filters with an area threshold € and
X is a connected component of [u > A or [u < A], then | X| > € [6],[39]. This implies that,
for any A < p, there are a finite number of connected components of U, ,. In particular,
there are a finite number of connected components of [u > A] and [u < ] [6], [39]. In all
what follows we shall assume that
(H) u has been filtered with the extrema filters.

Assuming property (H), if X, , is a monotone section, then the family of sets X N[u =
o], a € [\ p], is a family of nested connected sets [40], [41]. Moreover, the union of
monotone sections which intersect is a monotone section [6], Proposition 2, [40]. This
permits to define the notion of maximal monotone section containing a given point. Let

z € D and A = u(z). For each n > A, let X, ,, = cc(Uy,, ). We define

ni(z,\) =sup{n:n>X s. t. X,, is a monotone section}.
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Fig. 2. Left: Original function and its decomposition in its maximal monotone components. The vertical
arrows denote the degree of contrast of each monotone section. Right: A function u and its upper and

lower level sets at level A with its assigned signature.

Similarly, we define
n-(z,A) =inf{n:n <X s.t. X, is a monotone section}.

Note that both numbers are well defined since X,  is always a monotone section. Note
that, by definition, n_(z, ) < ny(z, A). By Proposition 2 in [6] (see [40]), we may define
the (open, closed, half-open, half-closed) interval I(x,\) containing A whose end-points
are n_(z,\),ny(z,\) and which determines a monotone section containing z maximal
with respect to inclusion, which we denote by X . Note that A € I(z, ) for all
A € (—o0,supp u(x)].

Maximal monotone sections represent the largest sections of the topographic map con-
taining no topological changes (see Fig. 2, left), and our purpose is to compute them.
Intuitively monotone sections are topologically equivalent to truncated cones and the
maximal monotone ones are the largest truncated cones contained in the graph of the
image. The interpolation algorithms described in Section V are able to re-interpolate
these truncated cones from the curves bounding them.

To compute the maximal monotone sections we require some additional definitions.

Definition 2: Let M C €. We say that M is a zonal maximum (resp., minimum) of u at
height A if M is a connected component of [u = A] and, for all e > 0, the set [A—€ < u < )]
(resp., [A < u < A+ ¢€]) is a neighborhood of M.

Definition 3: We say that A € IR is a singular value of the topographic map of w if it
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corresponds to a zonal maximum, minimum, or it corresponds to a level where it begins
or ends a maximal monotone section, i.e., there is a point z € Q such that n, (z,\) =
orn (z,\) = A

We will present a simple algorithm to compute the singular values of the topographic
map of u. For this we introduce a notion of critical value of u and we observe that it is
indeed equivalent to the notion of singular value (detailed proofs are given in [40], [41]).

Definition 4: Let A € IR. Assume that (H) holds. The signature of the level set
[u > A] (resp. [u < A]) consists of a finite family of points {p; : ¢ = 1,...,r} (resp.
{gj : 7 =1,...,s}) such that each p; (resp. g;) is a point in a different connected component
XM (resp. X)) of [u> A (resp. [u < A]). The points p;, g; are selected so that

u(p;) = sup u(z),and wu(g;) = inf wu(z).
zeEXAi zEX,j

We denote the signature of [u > A] by sig([u > A]), the signature of [u < A] by sig([u < AJ).
We define sig([u > A], [u < A]) = sig([u > A]) U sig([u < A)).

An example of the above definition is given in Fig. 2 (right). To stress the marker
point in the notation, we write X*?i instead of X**. As it is proved in [40], [41], under
assumption (H), given A € IR, there is € > 0 such that sig([u > p], [u < p]) is constant
for all p e (A —¢, M.

Definition 5: We say that A\ € IR is a critical value for u if there is a sequence pu, | A
such that sig([u > pnl, [u < py)]) # sig([u > A, [u < A]) for each n =1,2, ....

The following result is proved in [40], [41].

Proposition 1: Let A € IR. Assume that (H) holds. Then X is a critical value of u if
and only if ) is a singular value of the topographic map of u.

This permits us to compute the singular values of the topographic map of u by com-
puting the critical values of u. Moreover, at the discrete level, a topological change occurs
when going from level A to level A—1 if and only if either i) sig([u > A]) # sig([u > A—1]),
or i) sig([u < A]) # sig([u < A — 1]). This is equivalent to saying that i) two connected
components of [u > A| merged at level A — 1, a phenomenon which we call merging of

upper connected components, or a new connected component of the upper level sets was
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Fig. 3. From left to right and up to down the four cases explained in the text.

born at level A — 1, or #7) two connected components of [u < A — 1] merged at level A, a
phenomenon which we call merging of lower connected components, or a new connected
component of the lower level sets was born at level A (see Fig. 3). We call the first type
of criticality of upper type, while the second is called of lower type.

Several notions of criticalities have appeared in the literature (see previous section).
Our aim has been to show that, essentially, they are equivalent for 2D images. Full

proves will be given in subsequent papers.

A. The computational algorithm

For the sake of simplicity we only describe the algorithm to compute the critical values
of upper type. The critical values of lower type can be computed using the same algorithm
applied to the inverted image max(u) — u. Note that it is possible to compute both types
of criticalities at the same time. Anyway, the computational cost will be similar either

if we compute the sup and inf monotone sections separately or at the same time. As we
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will see in Algorithm 1, the computational cost derives mainly from the computation of
the connected components at each level. Since we perform this computation by means
of a region growing strategy, it makes no difference to do both computations (upper and
lower connected components) simultaneously or not.

As before, let D be a subset of IRY and u : D — IR a continuous function. To simplify
our terminology we call sup-monotone section a connected component X of an upper
level set [u > A] which contains no criticalities of upper type due to merging of connected
components of upper level sets. Note that it contains a single critical value due to the
birth of the connected component corresponding to a zonal maximum. As already men-
tioned, for simplicity we only describe how to compute the sup-monotone sections. The
corresponding inf-monotone sections can be computed with the same algorithm applied

to maz(u) — u.

We have observed that due to low oscillations in the image, a large number of criticalities
may appear. In order to avoid this problem we have used two different strategies. The
first one consists on making a pre-filtering step to reduce the number of low oscillations
present in the image.! This pre-filtering step can be done by means of the extrema filters
which preserves as much as possible the topographic map structure [6], [39]. The second
strategy (which can be combined or not with the pre-filtering step) consists on discarding
those critical sections which do not satisfy a minimum contrast criterion, in other words,
low contrasted sup-monotone sections will be discarded. The contrast criteria is specified
by means of a parameter MinContrast.

We need some additional simple notation in order to make explicit an algorithm taking
into account the contrast criterion. Denote by (X*Pi, 32Pi) the sup-monotone section
of [u > )] beginning in $*?i, thus it contains no criticality of upper type due to merg-
ing. We can define now a measure of contrast C for the couple (X*?i, 3APi) simply by
C(XApi pAPi) = gAPi — X\, Note that at a critical level p the couple (X#Pi, 3#Pi) defines a

maximal sup-monotone section of the topographic map starting at level 5#P: and ending
'Note that this filtering is done only for the computation of the Morse structure. All other operations, and in

particular the maximal encoding error, refer to the original image.
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Algorithm 1

1 Set A= M and compute X*Pi and set fMPi = M, Vi.
2 Store the couples (XM, fAPi) in L[]

3 If(A\—=1)>m, set A= \—1, and recompute X*Pi (note the
abuse of notation on \ and p;); else go to step 8.

4 Vp; € sig([u > A]) if p; € sig([u > A+ 1]) and X was not
marked as critical, then BMPi = BATLPi - else fAPi = )

5 Let A=sig(fu>X+1])\(sig([u > X+ 1]) N sig([u > A]))-

6 If A # ¢ then Vp € A search q € sig([u > A]) such that
p € XM and mark X as critical.

7 Return to step 2.

8 Select from L the list of couples (X*P, BMP) marked as critical
and verifying that C(X*P, M) > MinContrast.

9 The output of the algorithm will be the set of curves I'y; cor-
responding to the boundaries of the selected sections X and
its markers.

TABLE I
ALGORITHM FOR COMPUTING THE MAXIMAL Sup-MONOTONE SECTIONS OF AN IMAGE.

at level p (see Fig. 2).

We assume that our image u ranges from m = min(u) to M = mazx(u) (for example
from 0 to 255). To store the computed connected components we use a dynamical data
structure L consisting on a vector, ranging from m to M, of lists of couples (X*Pi, f2P:).
The algorithm computing the maximal sup-monotone sections is summarized in Table I.

It is important to remark that the parameter MinContrast allows us to discard low con-
trasted sup-monotone sections in a causal way. That is, if we denote as M S(u, MinContrast)
the set of maximal sup-monotone sections of v with contrast > MinContrast, then the
inclusion principle MS(u,0) D MS(u,1) D ... D MS(u,n) holds. An example of the
performance of the preceding algorithm is presented in Fig. 4, where we have computed

the critical sections of a low resolution synthetic image.



15

Fig. 4. Left: Synthetic image representing a set of peaks. Right: Computed saddle structures and
criticalities.

As we noted in the Introduction, many different approaches exist to compute the basic
Morse structure of images or 3D data. We have presented a simple computational ap-
proach and have studied its mathematical properties in [40], [41]. Longer writing space
would be required to prove that all the approaches are essentially equivalent in theory.
Let us also note that the singularities of the tree of shapes of an image as introduced in

[19], [7], coincide with the notion of critical value defined here [40].

IV. DRAINAGE STRUCTURES

In the previous section we have developed an algorithm to compute the Morse structure
of an image. This Morse structure consists on the maxima, minima, and the level lines
where a topology change occurs (i.e., the boundaries of the maximal monotone sections).
This can be considered as a reasonable global description of a DEM. There are also other
structures which are of special interest due to its topographic significance in DEM data.
These structures correspond mainly to the drainage structures (e.g., rivers and ravines).
There exists many different algorithms accurately computing such structures, see [42]
and references therein. We will present an approach which is related to the one in [43].
Strictly speaking, we do not compute the drainage structures but a version of them which
is adapted to our purposes. In a simplistic way we can think of the drainage structures
as the set of points for which there exists at least one direction in which the flow of
water is accumulated or repealed. We can write down this definition mathematically

by considering the set of points {Z : 37 € IR* and ¢ > 0 such that u(Z) < u(Z + t7)
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Vt € (—¢,¢), or u(Z) > u(Z + tv) Vt € (—¢,e)}. Observe that this set of points will
contain in particular the maxima and minima of u. It has been shown in [40], [41] that
this set of points is contained in an at most a countable family of curves. Intuitively,
these curves contain the drainage structures (ridges and valleys), giving also information
about boundaries of plateaus for example. In the discrete case we only consider 4 different
directions (values of v) corresponding to 4 different profiles in the image. Concretely, we
search maxima and minima of the vertical, horizontal and diagonal profiles. In [43] only

two directions were used, namely the horizontal and vertical ones.

Algorithm 2

1 Set (v1,pl) « Compute Extrema(x)
2 Setv/ =wvl

3 forj =1 tolength(vl) do
compute cepr = |v(j) — v(j — 1)
compute Crignt = |v(j) —v(j + 1)]
if Clept < thr or crignt < thr then

set Clept = Wi (j) — v/ (5 — 1)
if Clepr < thr then
vl (j) = v (5 - 1)
else
v/ (j) = v/ (j +1)
end if
end if
end for

4 Set (v2,p2) < ComputeExtrema(v’)

5 Set p(i) = pl(p2(7)) Vi = 1..length(p2). This vector p con-
tains the x coordinates of the selected extrema. We can think
of p as the vector defining the intervals of monotonicity of x
after the filtering. Due to the flatness of v, in each interval
(p(i —1),p(i+ 1)) the extrema v2(p(i)) could not be the abso-
lute mazimum (minimum) so we have to recompute it in each
of these intervals.

6 Finally, if an extrema v2(7) lies in a flat zone we redefine the
extrema as the boundaries of this flat zone.

TABLE II
ALGORITHM FOR COMPUTING THE SIGNIFICANT EXTREMA OF A 1D PROFILE.
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Fig. 5. Left: Computed maxima and minima of a 1D signal. The dotted curve denotes the ideal profile
(before introducing electronic and quantization noise which is always present in digital images). Right:
Signal obtained by filtering the less contrasted extrema according to Algorithm 2 (light gray arrows
depict the contrast of the filtered extrema). Note that if we simply reject those extrema instead of filtering

them with Algorithm 2, then the only computed extrema would be the two maxima.

In order to specify the algorithm we assume that we have a simple subroutine, Com-
puteFEzrtrema, which receives as input a vector z = [z(1), ..., z(n)] and returns two vectors
(v,p), where v = [v(1), ..., v(k)] contains the maxima and minima of z consecutively and
p = [p(1), ..., p(k)] its relative positions in such a way that v(:) = z(p(7)). The problem is
that a large number of extrema can appear due to low oscillations, mainly due to noise.
In order to solve this problem we have to choose the most significant extrema, in our case
those which have maximum contrast. The contrast of an extremum v(i) can be defined
simply by C(v(7)) = min(|v(i) —v(i—1)|, |v(i) —v(i+1)|). Using this criteria directly, for
example by eliminating those extrema with contrast less than a threshold thr, produces
undesirable results (see Fig. 5). Instead of using the contrast to eliminate extrema points
we use it to filter them. The filtering step simply consists on replacing the value of v(7) by
v(i—1)if C(v(3)) = |v(i) —v(i—1)| < thr or v(i+1) if C(v(i)) = |[v(i) —v(i+1)| < thr.
These filtering step produces a new vector v/ and recomputing the extrema of v/ produces
a more desirable result, see Fig. 5. If any computed extremum lie in a flat zone (i.e., it is
a zonal extremum), we shall replace it by the boundary of the flat zone. The algorithm
computing these significant extrema from a 1D-profile x is summarized in table II.

Figure 5 illustrates the extrema filtering process. On the left we show the real (solid
line) and the ideal (dotted line) profile without noise and its extrema. On the right we

show the profile after the filtering process. Note that the filtered profile contains a new
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Fig. 6. Computed zonal maxima and minima of one image profile using the algorithm described above

with a contrast parameter of 10.

minimum (zonal minimum in fact) which does not coincide with any of the minima of the
original signal. This is solved easily by recomputing the absolute minimum in the interval
where the filtered signal is convex (see step 5 of Algorithm 2).

Figure 6 shows the output of the algorithm just presented using a real profile of DEM
data. In order to obtain the desired curves we must compute the maxima and minima
of all the selected profiles of the image. As we have previously said, we compute these
curves using the horizontal, vertical and diagonal profiles of the image.

Figure 7 illustrates the whole geometric sampling process. From left to right and top to
bottom we show the original DEM image, the level lines I'y; corresponding to its Morse
structure (MinContrast = 10), the curves I' corresponding to the extrema of the profiles
(thr = 10), and the final sampling I';,, = '3y UT'p. A thinning step has been performed

in order to obtain one pixel width curves.

V. THE INTERPOLATION AND CODING STEP

We have described two algorithms that compute important points and curves from an
image, thereby providing the basic geometric description of DEM data. These algorithms
can be considered as a non uniform geometric sampling of the image. The next step is
to interpolate the missing data from our sampling. There exists several algorithms to
interpolate data from curves and/or points. We have in particular tested three of them:
the Laplacian model (which corresponds to min [ ||Vu||?dzdy), the AMLE model (which

corresponds to minlim,_, [ ||Vu|[Pdzdy), and the thin plate model (which corresponds
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Fig. 7. From left to right and up to down: The original DEM image, computed level lines (white),

computed ridge/valley structure (white) and the whole image sampling (white).

Fig. 8. Top row: From left to right the initial data, the interpolated data using Laplacian interpolation

and its 3D representation. Bottom row: From left to right the initial data, the interpolated data using

AMLE interpolation and its 3D representation.
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to min [(A(u))2dzdy). We remark that, rigorously speaking, only the AMLE model
can be used to interpolate values specified on points [44] (see Fig. 8). In spite of this,
we shall also use the Laplacian since there are many curves in the data and we may
think of points as small regions. In order to evaluate these interpolation schemes we
have chosen as a measure of goodness the entropy of the residual between the original
image and the interpolated one. This is a natural choice since we want to minimize
the number of bits used to encode the errors between the interpolated and the original
images. After several tests we have discarded the thin plate approximation since it needs
to store not only the gray values at the curves but also its derivatives in order to obtain a
good interpolation. The AMLE model and the simple Laplacian model were both tested
using the whole image sampling (I'y, and u|r,,) and using only the level lines (I'y; and
u|r,,). In the second case the AMLE model performed better than the Laplacian (the
entropy of the residual, the maximum, and RM S FE errors were lower than in the Laplacian
interpolation). Surprisingly, in the case of the whole sampling structure the winner was
the Laplacian, although the interpolation for the AMLE model looked visually better and
the maximum errors were almost the same. After these tests we have decided to use
the Laplacian interpolation to obtain the first estimation of the image from the selected
curves and points. In order to control the maximum (sup) error we simply store/encode
the quantized error information (that is why the entropy of the residual was a natural
measure of goodness for the interpolant). See the Appendix for more details on these
interpolation processes.

At this point we need to consider how to encode both the initial curves (geometrically
sampled data) and the residuals once a sup error e is specified. We proceed to address
this now. The geometry of the sampled curves (I'y,) and their gray levels (u|r,,) are
encoded separately. To encode the geometry we use a differential chain coding strategy,
see [45], [46], [47]. In the future we plan to explore an encoding based on rate-distortion
theory, as in [48]. For the gray levels we use an ENO (Essentially Non Oscillatory) based
encoding scheme [49] which also controls the sup error, a fundamental requirement of the

application as stated before. Finally we compress both the geometry and the gray values
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of the curves using an arithmetic coder. Having these curves and the data on them, we
can interpolate them by means of the Laplace equation to obtain the first estimate of the
image.

Finally, to control the maximum error, we need to store the residuals . Encoding the

residuals r can be simply done by quantizing them using

r? = sign(r) {MJ e, (2)
e
and then coding the resulting r? with an arithmetic coder.

Algorithm 3

1 From the original image, eventually filtered to reduce its band-
width, u compute a subsampled image u; (3, j) = u(li,lj) where
[ is the reducing factor.

2 Compute I'yy and w|r,,. Encode I'yy. Compute 1|r,, by ap-
plying an ENO encoding scheme, with mazimum error e, to
ul|rmy.

3 Compute the interpolated image u; by solving Laplace equation
with initial data (Tyy, Ur,,)-

4 Compute and quantize the residual r] between u; and ;. Let
Uy = Uy + r] be the approzimation of u; satisfying sup{|u; —
ﬁl|} = €.

5 Zoom out ujand compute and quantize the new residual 9
between u and @ in order to satisfy sup{|u — (@ + r9)|} = e.

6 Finally compress U'yy, Ulr,,, ] and r? using an arithmetic
coder.

TABLE III
ALGORITHM FOR COMPRESSING DEM DATA.

The compression ratios using this approach were already satisfactory. We observed that
the encoding of the geometry represented the main cost in bits. This is due mainly to the
irregularity of the curves and the inefficiency of the differential chain coding approach (3
bits/pixel with 8-connected curves or 2 bits/pixel with 4-connected curves). To further

improve the encoding of the geometry we have adopted a simple multiscale approach. We
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compute and encode the curves and the residuals in a subsampled image and then zoom
out the result and recompute new residuals. If required, before sampling, we may filter
the given image with a low pass filter or with an anisotropic filter like motion by mean
curvature or affine invariant smoothing [38], [50]. Indeed, it is convenient to apply these
filters while keeping some points fixed, namely, the points corresponding to the extrema
values and the saddle points. In practice we may fix the multiple points of the sampled
curves I';,. Anisotropic filtering fixing points was studied in [51].

The zoom out process can be done by using a bicubic spline interpolation, although
this can create new maxima and minima due to the well known oscillation problem of
splines. In order to avoid this kind of errors we have used a shape preserving spline, which
avoids the oscillation problem of classical splines, that is, respects the monotonicity of the
original data (no new maxima or minima are created). Concretely, we have implemented
the algorithm proposed in [52].

The complete algorithm for compressing DEM data is summarized in Table III.

VI. COMPRESSION RESULTS

In order to compare our results, we use the JPEG-LS standard for lossless and con-
trolled lossy image compression, being this the only standard that permits a control on
the maximal per pixel error [3]. We also compare with JPEG-2000 [5], in which, by rein-
troducing the errors, we are able to control the maximum error, while deviating from the
standard specifications (that is, the complete compressed bit stream is not in standard
format due to the error control part). In the comparison tables below, JPEG-LS is de-
noted by JLS, while ours is denoted by M E, standing for morphological encoding. We
also report the RMSFE as frequently done for lossy image compression algorithms. We
report results on a set of 10 DEM images of size 1200 by 1200 pixels with 8 bits per pixel.
We also report the results of our algorithm when applied to the same set of images with a
resolution of 16 bits per pixel (note that JPEG-2000 doesn’t support this range, and the
image has to be subdivided).

Figure 9 shows 10 plots (corresponding to a set of 10 different DEM images), each one
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Fig. 9. Performance of the compression ratio of ME and JPEG-LS methods when allowing maximum
errors ranging from 1 to 5. The amount in meters corresponding to a difference in gray level of 1 depends

on the image, but typically this value may be of 10 meters.

showing the compression ratio (vertical axis) versus the maximum error allowed (horizon-
tal axis) for ME and JPEG-LS. When e = 1 there is no significant difference between both
methods, though as e increases M E outperforms JLS. In fact when e is greater than 1
the plots show that M E reaches almost twice (or more in some cases) the compression
ratio (CR) of JLS.

Figure 10 shows a more detailed study for the case e = 5. In the left plot we can see the

compression ratio of both methods for the set of 10 images, the right plot corresponds to
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Fig. 10. Left: Compression ratio of JLS vs the proposed method for a set of ten images compressed with

a maximum error of 5. Right: Corresponding root mean square error (RM SE) for the two methods.

the RMSFE for both methods. Table IV shows the exact values for the compression ratios
and RMSFE errors of both methods. The last row shows the average values for the CR
and RMSE of JLS and ME. The average C'R for the case of JLS and M FE are 18,9872
and 36,7245 respectively. That is, our proposed scheme M E reaches almost twice the
compression ratio of JLS. In addition, the average RMSE for the cases of JLS and
ME is 2,9038 and 2,3782, respectively. The last two columns contain the compression
ratio and the RMSFE in meters, respectively, corresponding to the above set of images
quantized with 16 bits per pixel when compressed with M E (with e = 5 meters).

Table V shows the results obtained using JPEG — 2000. Column 1 displays the maxi-
mum error obtained when using JPEG — 2000 at the same compression rate as the one
obtained with M E (which corresponded to a maximum error of 5), and displayed in the
first column of Table IV. Recall that strictly following the JPEG-2000 specifications, this
algorithm can not automatically control the maximal error. We can correct the error
to be the same as the one obtained with ME (i.e., 5), as displayed in column 4. Col-
umn 2 contains the RMS error. Although this average error is lower than for ME, recall
that the significant geometry of the DEM as encoded by ME is losslessly represented,
outperforming JPEG-2000 in those critical areas.

Figure 11 displays the original image and its compressed versions using JLS, M E and
JPEG — 2000. The figure shows both the gray scale images and its level sets. Note that

the topographic structures are better preserved in the case of the M E and JPEG — 2000
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CR (ME) | CR (JLS) | RMSE | RMSE | CR (ME) | RMSE
(8 Dbits) (8 Dbits) (ME) (JLS) | (16 bits) | (meters)

baker-e 304549 | 14,6585 | 24099 | 2,9546 | 11,1249 | 25825
bend-e 25,7138 | 14,2491 | 2,3946 | 29152 | 11,5988 | 2,5523
bend-w 53,4223 | 24,7324 | 2,2787 | 2,8677 | 15,8313 | 2,6217

billings-e 47,6631 26,8321 2,3121 | 2,9588 19,2838 2,5408

sacramento-e 37,6028 19,8254 2,4127 | 2,8664 9.0562 2,6763

salina-e 43,5954 | 24,2159 | 24062 | 2,8538 | 13,7127 | 2,5936

salina-w 34,8702 16,5692 2,4093 | 2,9166 11,5446 2,5988

sandpoint-e 20,7807 10,6721 2,3901 | 2,9491 9,6334 2,5501

yakima-e 37,7655 22,2050 2,3521 | 2,8488 17,0275 2,4659

yakima-w 35,3764 15,9119 2,4166 2,907 7,3900 2,7532

AVERAGE | 36,7245 18,9872 | 2,3782 | 2,9038 | 12,6203 | 2,5935
TABLE IV

COLUMNS 1 TO 4: COMPRESSION RATIO (CR) AND RM SE ERRORS FOR JLS AND ME ON 8 BIT
IMAGES WHEN COMPRESSING WITH A MAXIMUM ERROR OF 5 GRAY VALUES. COLUMNS 5 AND 6
SHOWS THE PERFORMANCE OF THE ALGORITHM WHEN CONSIDERING THE FULL RANGE (16 BITS), IN
THIS CASE THE ERROR CORRESPOND TO ELEVATION METERS. THE LAST ROW SHOWS THE AVERAGE

VALUES FOR THE SET OF 10 IMAGES.

compression while it is severely distorted in the case of JLS compression.

VII. CONCLUSIONS

In this work we have presented techniques to compute a basic geometric representation
of images. This representation is given by the Morse and drainage structures of the image.
As an application, this geometric image representation was used to derive a non uniform
sampling strategy that when combined with standard interpolation and coding techniques,
provided a novel DEM compression algorithm. This algorithm produces compression
ratios similar to a modified JPEG-2000 and permits to control the maximal error in
the decoded image, a property which is fundamental for most DEM applications. In

addition, a natural geometric representation of the DEM is obtained, which includes a
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Lo no correction | RMSE | Ly corrected | increment (bytes)
baker-e 11 1,0016 5 550
bend-e 11 1,0258 5 708
bend-w 9 0,8057 5 391
billings-e 12 0,8224 5 825
sacramento-e 10 0,9689 ) 568
salina-e 11 0,8961 5 615
salina-w 10 0,9635 5 630
sandpoint-e 10 1,0081 5 628
yakima-e 9 0,8748 5 504
yakima-w 9 0,9599 5 424

TABLE V

FIRST AND SECOND COLUMNS CORRESPOND TO THE L., AND RMSE ERRORS FOR THE SET OF
IMAGES IN THE FIRST COLUMN COMPRESSED WITH THE STANDARD JPEG-2000 AT THE SAME
COMPRESSION RATIO AS THE ONE ACHIEVED BY OUR METHOD (SEE TEXT FOR MORE DETAILS ON
THESE RMSE). THE THIRD COLUMN CORRESPONDS TO THE Lo, ERROR AFTER CORRECTING THE
RESULT ACHIEVED BY JPEG-2000. THE FOURTH COLUMN CORRESPONDS TO THE INCREMENT IN

BYTES DUE TO THE CORRECTION.

lossless representation of its topology and drainage structure, unique characteristics of
the method here proposed.

In order to improve the compression results here reported, the lossy compression of the
topographic representation needs to be investigated. It is important to investigate how
errors in the position of the critical level-lines and the drainage curves affect the maximal
error in height. Further study of the particular lossless encoders used once the structure
has been computed will help to improve in the compression.

We are currently investigating the use of geometric sampling techniques for the com-
pression of natural images. Some of the criteria used for the compression of DEM data,
e.g., the use of an L., norm, are too stringent here. Other concepts, like the selection
of drainage structures, are natural for DEM data, but not as much for other types of

data. The question then is what is a good geometric representation of natural images
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Fig. 11. Top row: From left to right selected region of the original DEM image baker-e, the same region
after compressing with JLS with sup error 5, after compressing with M E with sup error 5 and after
compressing with the corrected JPEG — 2000 with sup error 5. Bottom row: Level lines of the above

images.

that will lead to compression results as the ones obtained for DEM with the techniques

here introduced.

APPENDIX

In this Appendix we give a result which explains why the Laplacian and the AMLE
interpolations are in some sense shape preserving. For the detailed proof we refer to [40],
[41]. We shall consider an interpolation operator as a transformation E which associates
to each open bounded set 2 and each function ¢ € C(99) a function E(p, Q) € C() such
that E(p,Q)|an = ¢. We shall say that the interpolation operator satisfies the stability

principle if

E(E(QD, Q) |3Q’, QI) = E(@a Q) |Q'
for any open bounded set €2, any ¢ € 02, and any open bounded set €' C ). Suppose
that the interpolation operator E satisfies the stability property, we say that E satisfies
the maximum principle if

inf o <inf F(p, Q") <sup F(p,Q) <supp (3)
oY Q’ o 99
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for any open bounded set €2, any open bounded set ' C Q) and any ¢ € C(09). If E
satisfies the maximum principle and ¢ = « in 9, where « € IR, then E(p,) = o in Q,
and the same is true in any open bounded set Q' C €.

Theorem 1: Let {25 be an open simply connected set. Let {2; be an open set whose
boundary 99 is connected and ©; C Q,. Let Q = Qy \ ;. Assume that ulso, = A,
ulag, = # with A < g or A > p. Let E be an interpolation operator satisfying the
stability and the maximum principle. Then F(u|gq,{2) contains only a monotone section
in the sense that ) is a monotone section of E(u|sq, ). In particular, if E(u|sq, ) is

the AMLE extension of the boundary data inside €2, then F(u|sn, 2) contains only a

monotone section.
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