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Chapter 1. Introduction 

 

For over two decades, public health and medical research has been largely dominated by 

studies that rely on the use of multilevel statistical models for describing the relationship 

between neighborhood level characteristics and various health outcomes. Multilevel 

modeling can be a powerful approach but it can be limited in its ability to capture the 

complexity of human-environment relationships.  Our understanding of health and 

disease is dependent on the analytical and exploratory methods we use, and therefore 

many have advocated for neighborhood health research to take a more eclectic approach 

to data analysis. By encouraging a comprehensive research agenda that integrates a 

broader realm of new and powerful analytical techniques, we step closer to garnering a 

more complete knowledge of neighborhood effects on health and well-being. 

  

One way to expand neighborhood health research methods is by integrating mapping and 

other spatial data exploratory procedures into the research process. Geovisualization and 

spatial analysis can offer a more complete understanding of complex population health 

relationships by revealing important, hidden nuances that unfold across space. The 

relevance and utility of maps for exploring neighborhood health in particular can be 

important considering the inherently spatial nature of neighborhood health research, and 

yet spatial analysis and mapping appear to remain underutilized in the literature. 

Paper 1: Geovisualization in health research  

It is important to use and share maps because spatial data visualization offers to make it 

easier for readers to comprehend complex, dynamic associations (such as those common 

within neighborhood health research). The role of geovisualization in comprehension is 

especially important when considering the recent rise in interdisciplinary efforts among 

various scholarly and professional institutions. Geovisualization can facilitate effective 

communication within and between academic domains, and effective communication is 

vital to supporting successful interdisciplinary research. In other words, visualization 

provides a common language that can guide these interdisciplinary collaborations. 
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Furthermore, maps may also inspire new hypotheses by more clearly presenting spatial 

trends, patterns, and outliers that may have been overlooked. Therefore, in addition to 

improving comprehension and helping to effectively communicate findings, visualization 

opens avenues for interdisciplinary research and data exploration by offering a means to 

uncover previously unseen patterns that may inspire new ideas. For these reasons, it is 

imperative for researchers to integrate mapping and spatial analytics in investigations of 

neighborhood health and that they further share these results and tools in their 

publications. 

Chapter 2 of this dissertation examines the extent to which maps and spatial analyses 

appear (or do not appear) within the literature on neighborhood health. This examination 

is presented in the form of a literature review and focuses on articles published between 

the twenty years that span 2000 to 2020, which arguably encapsulates both the rise of 

interest in neighborhood health research as well as growing interest in and use of GIS for 

mapping. This chapter offers key insight into temporal trends in the proportion of maps 

present within the neighborhood health literature according to journal type and changes in 

the level of sophistication of the maps being published over time. A second, but vital, aim 

of this chapter is to explore authors’ motivation, and barriers, to sharing (or not sharing) 

maps within their publications. This goal is achieved through the use of survey methods 

and relies on the corresponding authors of the publications used in our literature review. 

The last major review of the public health literature’s use of spatial methods was over a 

decade ago (Auchincloss et al, 2012).  This chapter revisits this topic with a particular 

focus on the public health studies that look at differences between neighborhoods. By 

describing the current state of the literature on neighborhood health and surveying the 

authors in regards to their use of spatial methods, we uncover the kinds of barriers that 

stand in the way of expanding the use of spatial methods in public health. 

 

Paper 2: Challenges with patient data privacy law 

One obstacle that can stand in the way of researchers trying to share maps and spatial 

data within their publications is the HIPAA safe harbor privacy provision that protects 
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patient location data. This provision poses several challenges to researchers wanting to 

use and share spatial data. First, many researchers find core elements of the provision 

ambiguous or difficult to understand, which is reflected in disagreement and uncertainty 

in research and policy circles on how to enact this provision. Second, playing it safe by 

taking a conservative approach to sharing maps in order to better meet safe harbor 

provisions — most often by releasing only highly aggregated maps or no maps at all — is 

a form of data loss that imposes potentially serious costs because it does not allow for the 

examination of local health distributions at reasonable resolutions for many common 

health problems. These two challenges have led to disagreements about how to follow the 

rule and, in fact, the literature is spotted with examples of scholars describing the tenets 

of the privacy provision in ways that are misleading or using patient location data in ways 

that are not in compliance with HIPAA law. At the same time, it is not unreasonable to 

suggest that data could be safely shared in some of the ways described by these scholars. 

In fact, the literature on data de-identification often challenges the safe harbor provision, 

saying that it is possible to share finer-grained mapped health data without jeopardizing 

patient privacy. 

 

One of the major contributors to the barriers observed in Chapter 2 (Paper 1) was the 

privacy regulation specific to sharing spatial data.  For this reason, Chapter 3 (Paper 2) 

addresses how privacy regulations, specifically the safe harbor rule, hinder the ways in 

which epidemiologists and geographers understand how to share spatial data.  This 

chapter draws from existing research in data privacy, de-identification, and reverse 

engineering, as well as congressional records, legal guidance documents, and interviews 

with compliance officers and lawyers with expertise in HIPAA law to elucidate the 

ambiguities that burden those trying to understand the privacy provision specific to 

spatial data. The aim of this chapter is to shed light on how the law was created and how 

it has been understood (and arguably misunderstood) over that past two decades. This 

chapter concludes with discussions on how alternative methods to safe harbor can offer 

researchers better data and better data protection. 
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Paper 3: Regionalization as a way forward? 

One promising way for researchers to share finer-grained mapped health data without 

jeopardizing patient privacy is with regionalization. Regionalization is a geospatial 

analytical process that builds custom regions from underlying data to suit a specific 

function or for the display of specific data. This approach gives researchers control over 

the shape, size, and demographic makeup of the resultant regions within their map. 

Regionalization holds many potential advantages for the analysis and sharing of PHI 

under the guidance of HIPAA’s safe harbor provision.  This is because the population 

requirements of the safe harbor provision, along with other requirements, can be 

integrated into the regionalization procedure so to make the maps we share more useful 

while still maintaining a sufficient level of protection. In spite of the general importance 

of regionalization to spatial analysis, its use in the context of privacy protection has been 

very limited. Only a small handful of studies have explored the use of regionalization as a 

means to create units that meet data privacy regulations and these few studies provide 

little in terms of publically available tools and workflows that epidemiologists and 

geographers could easily use. There is a real need for a greater variety of ways to work 

with, present, and understand patient health data and neighborhood health researchers 

have much to gain from exploring regionalization as a means to better represent and share 

protected health information.   

 

Chapter 4 (Paper 3) explores regionalization as one promising way to protect health data 

while at the same time making it more useful. In this chapter, regionalization, or zone 

design, is used to build geographical units within the Minneapolis metro area for 

modeling and displaying data on depression risk. This chapter draws from existing 

literature on spatial data partitioning, cluster detection, and neighborhood assessment in 

order to advances knowledge of how regionalization can be used to analyze and report 

protected health data in ways that satisfy the population threshold delimited by HIPAA 

guidelines. Four different regionalization approaches are explored for their ability to 

develop more meaningful units for the display and analysis of patient data.  Two of these 

approaches are novel variants that integrate self-organizing maps into the regionalization 

process. Our case study uses a real public health dataset (depression diagnoses) to assess 
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best-fit among different regionalization outputs.  Therefore, in addition to advancing the 

theory and method of data-sharing and visualization, there is potential to provide 

innovative tools to facilitate dissemination of fine-scale information within patterns of 

depression to the community.  

 

In sum, the three papers in this dissertation together bring attention to a problem with the 

way researchers understand how to use and share spatial data and offer a solution in the 

form of guidance, strategies, and workflows that can help investigators work within the 

bounds of privacy provisions to share maps and spatial data. Specifically, this dissertation 

brings attention to the deficiency of maps and spatial analyses published within the 

literature on neighborhood health and points to the ambiguous rules that guide how 

researchers can share geographic data as a potential cause for confusion. This dissertation 

also offers clarity and guidance in the form of a detailed examination of the safe harbor 

rule specific to geographic data and presents a number of regionalization strategies as a 

way to work flexibly within the constraints of the safe harbor rule. 
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Chapter 2. Where are the Maps in Neighborhood Health Research? 

 

 

Abstract 

Introduction. Despite large and growing interest in using spatial data and analysis in 

health research, there appears to be remarkably few maps within the neighborhood health 

literature. Just as data visualizations, such as scatter plots and histograms, are vital to the 

initial steps of data analysis, so too are maps for scholarship and policy on neighborhood 

health. Methods. A review of 233 articles on neighborhood health published between 

2000 and 2020 was used to identify the proportion of maps within the literature, and a 

subsequent survey was conducted to identify authors’ motivation, and barriers, to sharing 

(or not sharing) maps.  We analyzed temporal trends by journal type and map complexity, 

alongside the survey results. Results. Of the 233 articles reviewed, 64 contained maps. 

The proportion of maps found within the literature steadily increased over time for both 

health science and geography/social science journals with the greatest proportion of maps 

appearing within the last half decade. There were a growing number of higher-level and 

more sophisticated maps alongside the general increase in maps observed over time. We 

invited the authors of all papers to complete a survey on map use and sharing and 64 

were completed in full. Interestingly, the majority (63%) of investigators created maps or 

used mapping software to explore questions of neighborhood health but only a small 

proportion of the maps created by investigators were actually shared within their 

publications (29%). Survey results indicated that the primary reason for abstaining from 

sharing maps was the belief that a map would not add value beyond what was provided 

by statistical models.  Other common barriers included journal restrictions, time 

constraints, and HIPAA or other privacy regulations. The survey indicated that most 

authors (>80%) reported results in the form of point estimates from regression output. 

Conclusion.  While correlation or regression coefficients do a good job at describing the 

general strength and nature of how two variables coexist in space, maps are needed to 

understand important, hidden nuances unfolding across neighborhoods. Fortunately, even 

though maps do not appear frequently within the literature, the majority of studies of 

neighborhood health use GIS in some way, shape, or form and this figure appears to be 

increasing over time.  
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1 Introduction 

Data visualization has long been a fundamental step in many forms of exploratory data 

analysis. This need for, and use of, visualization holds especially true for public health 

and epidemiology because they rely on, and offer fundamental advances in, applying 

sophisticated statistical methods. Research in the public health subdomain of 

neighborhood health, given its focus on the importance of space and place in health 

dynamics, uses a mix of visualization approaches that includes mapping spatial data. 

Despite this spatial focus, only a minority of papers using and analyzing spatial data to 

understand neighborhood health employ maps as a final product in publications. We set 

out to understand our anecdotal sense of why there appears to be so few maps. Maps 

offer to enhance neighborhood health research by revealing complex spatial dynamics 

that lead to new insight and discoveries. They also promise to usher the field towards 

more ambitious and effective research, one that focuses on using creative and novel 

approaches to assess the synergistic relationship between neighborhoods and health.   

 

1.1 New insight and discoveries 

The importance of “plotting the data'' is taught early and often in quantitative methods 

courses and for good reason.   Plotting data is among the easiest ways to uncover the 

nature of relationships that could otherwise go unnoticed.  Consider Anscombe’s Quartet 

(Figure 2.1) in which the seemingly same linear relationship is expressed by four very 

different sets of data (Anscombe, 1973).  One of the simplest ways to notice the influence 

of outliers and trends in a set of data is by visually plotting the data, and this simplicity is 

why exploratory data analysis is an essential first step in the research process. Many 

public health studies predominantly rely on point estimates, such as regression 

coefficients, to describe risk relationships, but they also tend to visualize data in the form 

of scatterplots, box plots, or histograms. For many studies, these forms of visualization 

are good enough. For public health studies that focus on the spatial relationship between 

health and neighborhood exposures, however, the data are spatial and a valuable form of 

visualization is a map. 
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2. 1 Anscombe’s Quartet after Anscombe (1973). 

 

Maps are a type of geographic visualization, or geovisualization, which encompasses 

anything from a simple paper map to more complex, dynamic, interactive web maps or 

three or four dimensional figures. Maps provide much of the same kind of insight as 

scatter plots and box plots by allowing researchers to picture the potential influence of 

outliers, trends, and clustering in their data. Spatial data visualization enables the 

simultaneous investigation of multiple factors across space and time and therefore maps 

are key to understanding the drivers of relationships within neighborhood health.  Maps 

have great potential to improve studies of neighborhood health by providing new and 

powerful ways to analyze and explore data such as with spatial clustering and 

autocorrelation analysis, assessment of movement and trajectories, agent-based models, 

and social network and activity space research (Dodge, 2021; Page, 2008; Entwisle, 

2007).  There are a slew of opportunities for geovisualization to improve neighborhood 
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health studies, but one of the most crucial is exploratory spatial data analysis that can lead 

to new insights and discoveries.  

 

One example can be found in considering Liang Yu and colleagues' investigation of 

gender differences in adolescent problematic internet use (PIU) which found that men 

scored higher on PIU than women (Figure 2.2) (2018). If one were to map the gender 

differences, it would become apparent that this effect is moderated by geographic area 

(specifically urban and rural).  Without considering spatiality, this gender/geography 

interaction would remain hidden within the mean effect unless investigators had the 

foresight (or interest) to examine the influence of urban and rural environments on PIU 

(as these authors did). These scenarios are not uncommon and many have found health 

and disease to be moderated by geographic area in ways that are often not apparent when 

just using summary statistics or point estimates (Sheu-jen et al., 2010; Zhang et al., 2014; 

Gu et al., 2015; Van Os et al., 2001). In cases like these, maps provide deeper insight into 

the broader picture of the influence of place on health and wellbeing. 

 

Additionally, mapping can provide insight into more complex place-based dynamics such 

as those presented in Emslie et al’s 2009 paper on gender differences in the geography of 

alcohol-related mortality in Scotland (Figure 2.3). Close inspection of the alcohol-related 

mortality rate maps reveals marked, place-based gender differences in mortality, yet 

unlike the Yu et al. work, no clear rural/urban distinction emerges from these maps. 

There are other, potentially more complex underlying place-based factors moderating 

gender-based risk for alcohol-related mortality including differences in local labor 

markets, community culture, and gendered experiences. In addition, maps can be used to 

identify more than just the obvious geographical splits like urban/rural differences 

because they can also be useful in identifying less overt place-related influences such as 

traffic volume (Cakmak et al., 2012), altitude (Beall 1981), or industrial noise (Stansfeld 

et al., 2000) that might be moderating relationships between the explanatory variables 

and disease risk. 
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2. 2 Interaction between gender and geographic area from Liang Yu et al. (2018). 

 

2. 3 Alcohol-related mortality rate for men and women in Scotland from Emslie et al. (2009). 
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1.2 Ambitious and effective research 

In addition to generating new insight, maps may also help to encourage more ambitious 

and effective research by presenting neighborhoods as something greater than contextual 

components or activity containers.  Maps, especially dynamic, interactive maps, reveal 

the complex interplay between multiple overlapping risk factors across space and time 

(Dodge, 2021).  This means that neighborhoods are emergent, or in other words, born 

from the interactions between people and places, and thus geovisualization can prompt 

investigators to do more than rely on arbitrary boundaries, such as census tracts or county 

lines, to delineate observational units for a regression model.  Acknowledging the 

complexity of neighborhoods requires that researchers explore a greater variety of 

analytical methods that offer new and innovative ways to examine the relationship 

between neighborhoods and health.   

 

For over two decades, public health and medical research has been largely characterized 

by studies that rely on the use of multilevel statistical models that can be limited in their 

ability to address confounding in observational data (Oakes et al, 2015; Bingenheimer 

and Raudenbush, 2004).  As a result, many have called for public health researchers, and 

specifically neighborhood health researchers, to consider taking a more eclectic approach 

to data analysis (Oakes et al, 2015; Diez Roux et al, 2010; Entwisle, 2007).  Geographic 

visualizations, including maps, are but one among a myriad of available approaches that 

offer to advance studies of neighborhood health. The relevance and utility of maps for 

exploring neighborhood health seems obvious given the inherently spatial nature of this 

kind of research, and yet spatial analysis and GIS remain very much underutilized in the 

public health domain (Auchincloss et al., 2012; Jacquez, 2000); this is in spite of the fact 

that neighborhood health research and mapping have complimentary histories. 

 

The rise of neighborhood health research in the 1990s coincided with the introduction of 

geographic information systems (GIS) that are used for the production of maps and for 

spatial data analysis (Diez Roux et al, 2010). GIS continued to grow in popularity into the 
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2000s and manifested as numerous open-sourced mapping platforms (i.e., GeoDa, QGIS, 

and OpenStreet Maps) that offered more analytical choices during a time when the 

number of neighborhood health studies being published was increasing exponentially 

(Diez Roux et al, 2010). Despite the growing availability of software and methods 

alongside the growth in neighborhood health research, it is unclear whether neighborhood 

health researchers were taking full advantage of the powerful mapping resources 

available to them. Around this same time (in the early to mid-2000s) there was rising 

concerns around the effectiveness of neighborhood-level health interventions and the 

misestimation of neighborhood effects (Oakes, 2004; Diez Roux, 2004; Subramanian, 

2004; Didelez and Mendelian, 2007).  

 

In the fifteen years following the turn of the century, a slew of studies on neighborhood 

health found that health and disease were spatially organized. This work established that 

areas characterized by social, environmental, or economic deprivation were generally 

associated with poorer health outcomes on a number of different measures including 

overall mortality (Bosma et al., 2001), chronic disease risk (Freedman et al., 2011), 

infectious disease risk (Iroh Tam, 2017), and mental health (Mitchell et al., 2015).  

However, a handful of these kinds of studies were being challenged for focusing on the 

identification of independent neighborhood effects (Oakes et al, 2015), relying too 

heavily on multilevel statistical modeling (Diez Roux and Mair, 2010), or failing to 

prioritize consequentialist research questions (Nandi and Harper, 2015).  The core of the 

spatial problem is that multilevel regression models cannot alone piece apart the 

independent effects of neighborhoods on health in observational studies, and therefore 

causal claims cannot be made and effective interventions cannot be developed. This 

shortcoming of neighborhood health research becomes more concerning after noting that 

targeted community health interventions and preventive efforts driven by neighborhood 

research are scarce, and the few studies that exist have only shown modest results (Oakes 

et al, 2015; Diez Roux et al, 2010; Nandi and Harper, 2015). 

 



13 
 

Instead of casting doubt on neighborhood health research altogether, many have 

advocated for simply changing the way neighborhood health research is carried out 

(Chaix, 2009; Nandi and Harper, 2015). Studies of neighborhood health are vital 

(regardless of independent place effects) because they offer insight into the complexities 

of communal health by acknowledging the synergy between compositional and 

contextual neighborhood effects (Oakes et al, 2015; Diez Roux, 2010). As neighborhood 

health investigators, we need to acknowledge that neighborhoods are inherently spatial, 

and that exploring neighborhood health data should involve geovisualization of some 

sort.  Put another way, spatial regression, without apriori exploratory spatial data 

analysis, is the equivalent of a spatial Anscombe's quartet, where important nuances 

remain hidden within the data if never mapped.   For this reason, the generally lackluster 

success of neighborhood intervention efforts may not actually be so surprising. In order 

to address these limitations and pursue a more comprehensive research agenda, one must 

integrate a broader realm of new and powerful analytical techniques that take into 

account the multidimensional nature of neighborhood data. 

 

Despite the advantages of mapping and spatial analysis for health research, our anecdotal 

sense was that there seems to be fewer maps and less spatial research than expected 

within the literature on neighborhood health, but it is unclear to what extent this sense is 

accurate. It is clear, however, that our understanding of health and disease is limited by 

the analytical and exploratory methods we use. Therefore the aims of this paper are 

twofold: 1) to describe the extent to which maps are present within the literature on 

neighborhood health, and 2) to assess motivations for, and identify barriers to, sharing 

maps. This paper sheds light on the current state of the literature and encourages 

neighborhood health researchers to explore the geographical nature of their inherently 

spatial data. 
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2 Methods 

In the following paragraphs we describe the strategies taken for carrying out our literature 

search and subsequent survey. Although not exhaustive, our review of the literature was  

substantive enough to gather a good understanding of the current state of the literature, 

having searched 600 articles and identifying 233 that could be included in our analysis. 

For these articles, we designed a brief survey to assess author’s motivations for, and 

barriers to, sharing maps. 

 

2.1 Article Selection  

We selected 233 articles (table in appendix) from 103 different journals (Figure 2.4) via 

an electronic keyword literature search on Google Scholar.  The articles were selected 

from the first hundred results in six separate Google Scholar searches (600 search results 

in total) of articles published between 2000 and 2020 with the keywords “neighborhood 

health” and either “census tract”, “block group”, “ZIP code”, “county”, “city” or 

“municipality”. Neighborhood health captured a very broad range of topics in this 

review; we considered articles ranging in topic from infectious and non-communicable 

disease to sleep disorders to fire injuries to food security to criminal behavior. Articles 

were only included in the analysis if they contained a map or had the potential to contain 

a map (we refer to this as “map potential” for the duration of the paper). For example, an 

article had map potential if it used a dataset that contained information on individual or 

aggregate location, or performed a door to door or telephone (landline-based) survey. 

Additionally, we were also careful to exclude articles where a map would not contribute 

to the aim of the study (i.e., it makes sense to map patient addresses, but it wouldn’t make 

sense to create a map of simulated data used within a methods paper). One of the ways 

we ensured map potential was by requiring studies to span a large enough area to be 

considered more than one “neighborhood” (in our case, neighborhoods ranged from a 

small number of blocks to a large number of entire cities).  Perceptual neighborhoods 

were included in the study if individuals who provided their perceptions were also linked 

to an aggregated level of geography that could be easily used within an analysis.  
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2. 4 The number of articles from each journal category. Note that ten articles were classified as “other” and 

were excluded from journal category assessments. 

 

We acknowledge the extent to which our methods can be considered subjective in the 

sense that other investigators may have selected different keywords or explored deeper 

into the search results. Our strategy was to try to capture a broad array of relevant papers 

without claiming to be exhaustive. The selection criterion was specific enough to leave 

little question in relation to which articles should and should not be included within the 

study, and the sample of articles was broadly representative of the neighborhood 

literature at this point in time. This being said, we discuss strategies for future work in the 

conclusion. In particular, it is important to note that Google Scholar provides search 

results that are meant to replicate how researchers rank results, which means it is 

weighted articles according to how well the article is cited in other scholarly literature. 

Following the advice of Haddaway and others (2015), the current project is not meant as 

an exhaustive and systematic review but instead an initial investigation of articles using 

one of the primary tools that many researchers use in exploring academic literature. The 

authors acknowledge the extent to which some studies have found traditional academic 

searches, such as those using the Web of Science platform and PubMed, to provide better 

precision and to be less biased against grey literature compared to Google Scholar when 

reviewing science and biomedical topics (Haddaway et al 2015; Anders et al., 2010). 
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However, when the topic to be reviewed was a social science topic (elderly migration), 

one study found Google Scholar to provide better general performance (in terms of 

precision and recall) compared to MEDLINE, Academic Search Elite, Social Sciences 

Abstracts, and EconLit (Walters et al, 2009).  For this reason we find Google Scholar to 

be a suitable platform for our review of the literature on neighborhood health which often 

times centers on the intersection of public health and social science.   

 

2.2 Map Definition 

Maps were defined as a figure or graphic that contained locational information in such a 

way as to illustrate the distribution of a health outcome or risk factor across two or more 

geographical areas. We expected maps to fall within one of three commonly-accepted 

geometric categories: 1) aggregate or polygon maps (e.g., census tracts, counties), 2) 

point maps (e.g., locations of liquor stores, health clinics), and 3) line or network maps 

(e.g., road or social networks).  No line or network maps appeared in our study sample. 

 

2.3 Survey Format 

After collecting articles from the electronic keyword literature search, the corresponding 

authors of the articles were contacted via email and asked to complete a short survey.  

The survey was created and administered anonymously within Qualtrics and therefore 

information was not collected if it could be used to link respondents to an article on our 

list (such as journal name and publication date).  The survey was four to six questions 

and took less than one minute to complete. The survey included multiple choice and 

open-ended questions and only allowed one response per question. The IRB determined 

that these activities were not research involving human subjects as defined by DHHS and 

FDA regulations. Participation was voluntary and therefore our analyses and discussion 

of survey results only consider the responses from individuals who provided consent 

(Figure 2.5).  
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2. 5 The full survey. 
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3 Results 

In the following paragraphs we present the results from our literature review and 

subsequent survey. Results from our literature review include an examination of the 

proportion of maps and spatial analyses found, as well as an evaluation of the differences 

observed across time after stratifying by journal type and map complexity. Our survey 

had a response rate of 31% (which is impressive for external surveys) and provided a 

sufficient sample from which we could gather insight. All results are reported in the form 

of proportions, charts, and graphics. 

 

3.1 Literature map analysis 

Our sample contained 233 articles on neighborhood health published between 2000 and 

2020. Of these, 64 articles contained maps (27%), which is to say that the majority of 

articles on neighborhood health (73%) did not include a map. Furthermore, the presence 

of maps varied with journal type.  Of the sample of articles collected, 154 out of 233 

were pulled from public health, epidemiology, and medical journals while the remaining 

articles were classified into social science, geography, and general science journals. In 

terms of maps, 30% of articles from public health journals, 28% of articles from medical 

journals, and 13% of articles from epidemiology journals included at least one map 

(Figure 2.6). Geography journals had the highest proportion (45%) of articles that 

included maps. 
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2. 6 The proportion of maps published within the neighborhood health literature according to journal type. 

 

In addition to exploring the prevalence of maps in the literature by journal type, we also 

explored trends over time.  Based on our sample, the number of neighborhood health 

publications peaked around 2006, with the number of publications nearly tripling that 

year (Figure 2.7); the years since then have seen fairly consistent production of papers. 

As noted above, Google Scholar results are sorted by relevance and not by date, which 

means that more recent papers may be subtly discounted. The proportion of maps present 

within the literature on neighborhood health seems to follow a general trend of increasing 

over time (Figure 2.8). To supplement this finding, we identified the articles that did not 

contain a map but did perform some sort of spatial analysis (i.e., spatial lag models, 

spatial CAR and SAR, spatial autocorrelation).  Doing so allows us to better understand 

the extent of the investigator's awareness of spatial analytical techniques.  However, of 

the papers that did not contain maps, we found that only a small proportion (7%) 

performed some sort of spatial analysis. Still, when these data are plotted (as the 

proportion of articles containing maps or spatial analyses) over time we reveal a much 

more stable upward trend (Figure 2.8).   
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2. 7 The number of neighborhood health papers published by year (based on our sample of 234 articles). 

 

 

 

2. 8 The proportion of articles from our sample containing maps and the proportion of articles containing 

maps or spatial analyses published between 2000 and 2020. 
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In order to explore temporal trends by journal type, our data was first aggregated as to 

provide more reliable rates due to some journal categories (e.g., geography and 

epidemiology) not being as well-represented as others (e.g., public health and medicine) 

within our literature search (Figure 2.9). Accordingly, time is represented in 5-year 

increments and the journal categories were merged to form two main categories: 1) 

Geography and Social Science (GSS) and 2) Public Health, Medicine, and Epidemiology 

(PHME). When comparing temporal trends between the two main journal categories, we 

found both categories to exhibit a general increase in the proportion of maps published 

over time. However, for the PHME journals, this increase was relatively gradual until a 

spike in the last half decade, whereas for GSS journals the trend was steep and consistent 

from 2000 through 2015 but it dropped off thereafter. These trends become more 

apparent when comparing the proportion of articles containing either a map or spatial 

analysis (Figure 2.9), which illustrates how in the last half decade the PHME journals 

exhibit a spike in the proportion of maps or spatial analyses while the GSS journals 

flatten out. 

 

Additionally, we explored these trends according to the level of sophistication of the 

maps being published over time (Figure 2.10). We rated maps as being simple (1), 

medium-complex (2), and complex (3) according to some simple rules. Simple maps 

included reference maps and maps of study sites. Medium-complex maps included some 

form of analysis, usually using choropleth mapping methods. Complex maps included 

cluster maps (i.e., LISA), time/distance maps, and choropleth maps overlaid by clustered 

features. Review of the maps published revealed a growing number of higher-level, more 

sophisticated, maps appearing within the literature, but this is likely a function of the 

general increase in maps observed over time.  
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2. 9 The proportion of articles that published maps or included spatial analyses within Geography & Social 

Science journals compared with Public Health, Medicine, and Epidemiology Journals from 2000 to 2020. 

 

 

 

2. 10 Map frequency and complexity across time. 
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3.2 Survey results 

We successfully distributed 207 surveys to corresponding authors from our list of 233 

articles. For the remaining 26 authors, our email failed to find a recipient and no 

alternative email address could be found. Of the surveys sent, 66 were returned, and 64 

were completed in full and provided consent to be used within the following analysis. Of 

the 64 survey respondents, 70% (45) did not share a map in their publication. However, a 

notable proportion (nearly half) of those who did not share a map indicated that they 

created a map, worked with a map, or used mapping software to explore their data at 

some point during their study.  

 

When asked for the primary reason for not sharing the maps that they worked with during 

their investigations, most of these respondents (43%) thought that a map would not add 

further insight to their study (Figure 2.11A). The second most frequent response (24% of 

respondents who worked with but did not share maps) selected journal restrictions as the 

primary barrier (i.e., paying extra to include a color figure). Other barriers identified 

range from time constraints (14%) to privacy regulations such as HIPAA law (14%).  
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2. 11 A) The primary reasons for not sharing the map(s) worked with during the investigation. B) The 

primary reasons for not making a map at all. C) The primary reasons for not making a map or for not 

publishing the map(s) worked with during the investigation. 

 

Of the 22 respondents who did not use mapping software at all, the majority (38%) 

indicated that they did not make a map because they did not think it would provide extra 

insight beyond that which was provided by their statistical models (Figure 2.11B). The 

next most common response (33% of these respondents) selected that they had just 

neglected to consider mapping their data at the time. Less than 10% of these respondents 

suggested that the primary reason for not using mapping software was due to not having 
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the resources or skillset to create a map adequate enough for publication. There were a 

number of respondents who selected “other” as their primary barrier and many of these 

respondents did not choose to fill in a more detailed response. Those who did offer more 

detail wrote that author preferences played a role or that they included maps and/or 

spatial analyses in other, follow-up publications. 

 

Figure 2.11C shows all of the barriers aggregated for those who did not create maps and 

those who created but did not share maps. More than half of these respondents did not see 

the value in including a map (39.5%) or neglected to consider it at the time (16%). Only 

5% of respondents considered lack of resources or mapping expertise as a barrier. A 

sizable proportion of respondents selected the “other” answer choice (14%) which 

indicates that our survey was limited in its ability to capture every barrier to sharing maps 

within publications of neighborhood health. 

 

The majority of those who shared maps indicated that the primary purpose for including a 

map was for confirmation (42%) or insight (42%), being that the map(s) revealed new 

knowledge or supplemented and confirmed what was observed within the statistical 

models. Only 3 of the 19 survey respondents who published a map did so only for 

reference purposes. Survey respondents did not indicate any other motivations beyond 

these three options. 
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2. 12 The primary reasons for including a map within the publication. 

 

 

4 Discussion 

It is good practice to explore data before running it through a model.  For this reason, we 

expected that exploring neighborhood health could likely involve creating a map at some 

point during the investigation process. And, in fact, it seems that this is most often the 

case. According to the survey, the use of maps in investigations of neighborhood health is 

relatively common, in that survey results showed that the majority (63%) of investigators 

created maps or used mapping software to explore their data. Interestingly, the presence 

of maps within the literature is much lower—only 27% of the 233 articles reviewed in 

this study included a map and a similarly small proportion (29%) of survey respondents 

shared their maps. Clearly, public health investigators are not neglecting to explore the 

spatial nature of their data, but rather, they are just not publishing the maps that they are 

using. 
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The reasons for not sharing maps that are being created during investigation  ranged 

broadly, but it is significant that the majority of these survey respondents reported that 

they thought a map would not add further insight to their study beyond that of which was 

provided by their statistical models. Related, the majority of people who did share maps 

indicated that the maps were shared for confirmatory purposes, namely to help convey 

what was observed from the statistical models. Although the majority of respondents 

indicated that their papers could have still been published without their map(s), nearly all 

of the respondents reported that they believed it was important for them to share their 

maps. That being said, an equally large proportion of respondents indicated that they 

shared a map because it revealed new knowledge likely gained from exploratory data 

analysis.  In these instances, maps demonstrated patterns and relationships that were 

beyond what could be gathered from their statistical models. 

 

A significant portion of neighborhood health studies simply did not consider mapping 

their data (as indicated on the survey). This finding confirmed our anecdotal sense but it 

is somewhat surprising given that neighborhood health research is inherently spatial and 

that GIS had been introduced and was available many years prior to the time period 

defined for our article search (2000-2020). One potential reason for this finding is that 

most of our survey respondents came from medicine, public health, and epidemiology 

backgrounds with a very small proportion of answers coming from geographers. It is 

important to note that only 22 of our respondents opted to answer the (optional) research 

background question. Nevertheless, the difference between groups was stark (17 from 

medicine, public health, and epidemiology; 4 sociologists; 1 geographer), and this may 

explain why a notable proportion did not consider mapping their data. 

 

Only a small proportion of our survey respondents identified lack of resources and GIS 

expertise as a barrier to sharing maps in their neighborhood health publications. Spatial 

research hubs are becoming more and more common within research universities and 

therefore it is easier for health research groups to gain access to free spatial data 
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consultation on campus. However, the extent to which these spatial research hubs are 

utilized by neighborhood health researchers is unclear. More research is warranted in 

order to better understand how this barrier (lack of GIS expertise) has changed or 

remained stable since 2000. 

 

Perhaps more importantly, it is also the case that a lesser, but nevertheless notable, 

portion of neighborhood health studies are abstaining from sharing map visuals to avoid 

dealing with journal restrictions and working with HIPAA or other privacy constraints. 

By only publishing the point estimates from regression and correlation analyses for 

example, investigators avoid the burden of adding complex graphics to their publication 

while also guaranteeing HIPAA compliance when sharing their study results. However, 

these point estimates are limited in what they can do, and despite criticism from many 

that warn against relying too heavily on the use of regression approaches for the study of 

neighborhoods (Diez Roux et al., 2010; Oakes et al, 2015; Entwisle, 2007) the majority 

of our survey respondents indicated that the primary output of their results came from 

regression modeling. 

 

Regression and multilevel modeling on their own are valuable for understanding many 

features of human health but not sufficient for capturing complex, dynamic, 

interdependent relationships between people and place that characterize neighborhood 

health (Diez Roux et al., 2010). For this reason, maps and geographic visualizations 

(especially for studies of neighborhood health) should be used to supplement standard 

regression modeling to help provide greater insight into the role of spatial clustering, 

outliers, and trends. “Visualization empowers data science” (Dodge, 2021).  And, in an 

age of big data that offers widespread and growing availability of troves of electronic 

medical records, much of public health and epidemiological research stands to become 

data science. These health data sciences rely on data visualization for facilitating the 

interpretation of results, revealing unknowns, and communicating concepts to be shared 

to others. 



29 
 

 

The good news is that there seems to be a trend whereby the proportion of neighborhood 

health articles that are publishing maps is increasing over time.  Looking at raw numbers 

we notice the greatest number of maps during the peak of interest in neighborhood health 

research (between 2006 and 2010), but proportionally to the rate of publication, more 

maps were shared in the last half decade. This trend can be best seen by looking at the 

PHME category plotted in 5-year increments in Figure 2.9.  This figure depicts a gradual, 

but notable, increase in the proportion of maps beginning in 2000. Furthermore, while the 

number of articles in the GSS category is too small to make a complete assessment, it 

seems that the proportion of maps being published within these journals is also increasing 

steadily over time. Additionally, in terms of map complexity, a growing number of 

higher-level, more sophisticated, maps appeared within the literature in the past half-

decade, but this is likely a function of the general increase in maps observed over time.  

Our study was limited in its ability to explore map complexity (only 64 of our articles 

contained maps). Future research should focus on collecting a larger sample and parsing 

this trend by domain to assess the changes in map complexity over time among the health 

and spatial sciences.  

 

Our survey did not ask respondents to provide the date of publication (in order to ensure 

anonymity), and therefore we are unable to talk about how these barriers may have 

changed over time. However, with the data that we have, it is interesting to consider how 

an author's decision to create and share a map seems to be more strongly tied to whether 

they see value in geovisualization rather than to lack of mapping skills or lack of access 

to mapping resources.  A follow-up survey that gathers publication date information 

would be required to assess whether inaccessibility to GIS resources were a more 

formidable barrier in the early 2000s than in the past half-decade.  Additionally, it would 

be interesting to see how the valuation of map visuals may have changed over time. Even 

though our survey was limited in its ability to capture changes in barriers overtime, we do 

believe that the insights gathered here help to shed light on some of the attitudes 

investigator’s hold in regards to the usefulness of maps in neighborhood health literature. 
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Further research is needed to gather a more comprehensive picture of investigator’s 

perceptions. 

 

Here we pause to consider, is it really that necessary to share the map visuals used during 

spatial data exploration? As long as investigators examine the spatial nature of their data 

with geovisualization and/or geostatistical analyses (which according to our survey, most 

are) then perhaps it is not that important for the actual map visuals to be published 

alongside the statistics. In fact, not publishing maps would make the research process 

easier by cutting out the difficulties of navigating HIPAA privacy law and dealing with 

journal graphic requirements and restrictions. Be that as it may, let’s consider what is 

kept from the readers when only the statistical output is shared.  In other words, what do 

visualizations provide readers that statistics cannot? 

 

In addition to aiding investigators in interpreting their own data via exploratory spatial 

data analysis, maps and other geovisualizations help readers to better understand the 

work being presented. Visuals offer to make it easier for readers to comprehend complex, 

dynamic associations (such as those common within neighborhood health research) by 

better conveying the strength and nature of the relationships at hand. This is especially 

important when considering the recent rise in interdisciplinary efforts among various 

scholarly and professional institutions (Van der Aalst, 2016). Effective communication 

within and between academic domains is vital to supporting successful interdisciplinary 

research. According to Somayeh Dodge, geovisualization and movement expert at 

University California Santa Barbara, “[v]isualization provides a common language for 

communication in interdisciplinary research and facilitates the collaboration between 

domain experts, data owners, and developers of methods” (Dodge, 2021, pg 106).   

 

Furthermore, maps may also inspire new hypotheses by more clearly presenting spatial 

trends, patterns, and outliers that may have been overlooked by the authors of the 
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publication. Therefore visualization offers a means to uncover “unknown unknowns” 

(things we don’t know we don’t know) (Van der Aalst, 2016), especially when the 

visualizations are shared in a dynamic and/or interactive form (i.e., web maps). This is 

because visualization exploits the human cognition capabilities and, in doing so, 

previously unseen patterns can emerge. “Insight is the traditional aim of visualization.” 

(Van Wijk, 2005). Sharing maps could help inspire new research ideas and open unseen 

avenues for interdisciplinary research and data exploration. 

 

There are clear advantages to sharing maps—whether they be simple printed maps or 

complex interactive web maps. What remains unclear is whether these gains are 

substantial enough to justify the time it takes for researchers to create a map, mask 

private patient data, format the graphic to journal standards, and potentially pay extra for 

color printing or a web domain host. Future research into the use of and attitudes towards 

maps and other geovisualizations in neighborhood health is warranted in order to better 

guide the field towards one characterized by multimethodology. 

 

There are several ways in which future research can build upon this project. The first 

being to pursue a larger, exhaustive, systematic review of the literature on neighborhood 

health since the present study was purely a preliminary investigation that relied on a 

single search platform (Google Scholar).  Although Google Scholar has been shown to 

provide good performance when the topic to be reviewed was a social science topic 

(Walters et al., 2009), its performance was less impressive for other topics (Anders and 

Evans, 2010; Haddaway et al., 2015).  Furthermore, Google Scholar was found to be 

biased against grey literature (articles not published by commercial academic publishers) 

whereby peak grey literature was achieved after page 80 (Haddaway et al., 2015) (well 

beyond the limits of our search). For this reason, further review should consider using 

traditional search methods consisting of multiple platforms and setting deliberate 

strategies to address biases against the grey literature which may or may not contain more 

maps than the academic literature. Furthermore, we recommend that follow-up 



32 
 

investigations seek to reach a larger number of corresponding authors with surveys. The 

present study included only 64 survey respondents in its analysis of which only 18 

respondents shared maps. A larger sample is needed in order to gain a better 

understanding the motivations of those who shared maps. Additionally, we would 

recommend that a more thorough survey be conducted that includes the collection of 

information on journal type and publication year. Collection of these kinds of information 

will require more in terms of privacy safeguards, but they would allow for a richer 

examination that can address how barriers have changed over time for different domain 

categories.  

 

5 Conclusion 

Many have called on investigators to expand their vision of population health research 

methods and have further encouraged researchers to explore novel approaches and to use 

a combination of strategies when investigating neighborhood health (Oakes et al, 2015; 

Diez Roux et al., 2010; Page, 2008; Entwisle, 2007; Oakes, 2004). One way to expand 

population health research methods is by integrating spatial data exploration into the 

research process. Geovisualization offers a more comprehensive understanding of 

complex neighborhood health relationships and therefore it is encouraging to find that, 

since the year 2000 more and more, neighborhood health investigations are choosing to 

explore the spatial nature of their data. Despite this, very few studies actually share the 

maps they make during their exploratory spatial data analysis. Of our sample of 233 

neighborhood health papers published in the last 20 years, only a handful shared maps. 

The impact of the dearth of maps on neighborhood health research remains unclear.  
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Chapter 3. Twenty Years of the HIPAA Safe Harbor Provision: Unsolved 

Challenges and Ways Forward. 

 

 

Abstract 

The Health Insurance Portability and Accountability Act (HIPPA) was an important 

milestone in protecting the privacy of individuals but its provisions are so vague as to 

hinder how epidemiologists and geographers share spatial data. In particular, the HIPAA 

safe harbor provisions are ambiguous when it comes to the use and sharing of spatial 

data, and the effect of this ambiguity is apparent across the literature on spatial health and 

has resulted in many entities sharing data at what could perhaps be an overly conservative 

level while others potentially put patient data at risk. This paper promotes understanding 

of the HIPAA safe harbor provision by providing a comprehensive overview of the law 

while also presenting various expert perspectives and relevant studies that, taken 

together, show how alternative methods to safe harbor can offer researchers better data 

and better data protection. Much has changed in the twenty years since the introduction 

of the safe harbor provision, and yet it continues to be the primary source of guidance 

(and frustration) for researchers trying to share maps, leaving many waiting for these 

rules to be revised in accordance with the times. 
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1 Introduction 

When addressing many kinds of research problems, maps should generally be shared at a 

resolution that best portrays the reality of the underlying data.  In terms of health and 

disease mapping, this realism often means wanting a fine-detailed visualization that helps 

make community-level public health interventions more effective. Geotechnologies offer 

innovative ways to create these fine-detailed maps and to customize them for the analysis 

and display of health data. At the same time, however, these data and tools can be 

dangerous when working with sensitive data, such as patient health records. In particular, 

scholars must be careful not to share maps with so much detail that individual people can 

be identified. To prevent identification of patient records, in the United States, the Health 

Insurance Portability and Accountability Act (HIPAA) provides guidance on ways to de-

identify protected health information (PHI) before it is shared, but HIPAA guidelines are 

difficult to apply to spatial data.  

 

HIPAA law poses several challenges to researchers wanting to use and share spatial data. 

First, many researchers find core elements of the safe harbor provisions of HIPAA (a set 

of conditions that define how data can be shared) ambiguous or difficult to understand, 

which is reflected in disagreement and uncertainty in research and policy circles on how 

to meet the safe harbor standards. Second, playing it safe by taking a conservative 

approach to sharing maps in order to better meet the safe harbor standard — most often 

by releasing only highly aggregated maps or no maps at all — is a form of data loss that 

imposes potentially serious costs because it does not allow for the examination of local 

health distributions at reasonable resolutions for many common health problems. These 

two challenges lead to disagreement about how to follow privacy rules and, in fact, many 

scholars and policy makers have challenged these rules, saying that it is possible to share 

finer-grained mapped health data without jeopardizing patient privacy. 

 

Addressing the twin challenges of the safe harbor provisions (ambiguity and data loss) 

requires an exploration of past and current understanding of how the provisions are 
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enacted and identifying specific ways in which finer-scaled data may be legally and 

technically possible. Section 2 of this paper begins this exploration by examining the 

legal dimensions of HIPAA law from its creation through to current practice. This section 

looks at the events and concerns that fueled the motivations of those who helped write the 

safe harbor provisions, with a particular focus on answering the question of why ZIP 

codes and a population threshold of 20,000 were chosen as anchors for the safe harbor. 

Section 3 explores the first of the twin challenges, uncertainty, and establishes how some 

unintentional ambiguity in the law has led to different interpretations of HIPAA privacy 

provisions specific to geographic data in the public health literature. We focus in 

particular on how this ambiguity has led to two common but different interpretations 

across a range of scholarship based on 3-digit and 5-digit ZIP codes, and what this means 

for mapped data. Section 4 presents and explores data loss, the second of the twin 

challenges of the safe harbor provisions.  The section builds on the previous ones to 

explore whether there is a middle ground to be found between sufficiency and stringency, 

asking in essence if there are ways to minimize risk under HIPAA while allowing for 

more useful maps. Section 5 concludes by presenting the new approaches to de-

identification of patient data and discusses ways forward. 

 

This paper advances our understanding, and potential use, of the safe harbor provision of 

HIPAA law as applied to spatial presented as maps. It is the first comprehensive 

overview of the long-standing and important conversations around this general topic. By 

untangling the law and reviewing its history and use, this paper offers avenues to finding 

safe and more useful ways to share mapped patient data. It also seeks to spur a broader 

conversation about ways forward that necessarily expand and improve shared 

understanding of the privacy regulations to encourage researchers to investigate 

alternative strategies.  
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2  HIPAA Privacy Act: Zip codes and the 20,000 population threshold 

In order to better understand the safe-harbor provision and what it asks of researchers it is 

best to first understand its origin. Looking at HIPAA in terms of its history and evolution 

sheds light on how to approach sharing geographic information under the safe harbor 

standard.  We ask two related questions: 1) why do ZIP codes hold such sway over 

defining the safe harbor rule? and 2) why is the threshold of 20,000 people used to define 

privacy? Answering these questions clarifies some of the key ambiguities in HIPAA safe 

harbor and gives insight into why there is so much seeming disagreement within and 

across research domains.  The following section provides a brief overview of HIPAA 

privacy law before diving into the history of the safe harbor provision to provide insight 

into the two key ambiguities (the use of ZIP codes and the population threshold). 

 

2.1  The safe-harbor provision 

In order to protect patients’ privacy, HIPAA limits the ways in which patient data can be 

shared. Patient data is considered Protected Health Information (PHI) that needs to be 

kept secure because it includes private medical information along with identifying 

information such as names, birthdates, addresses, and social security numbers. Address 

data, in particular, is considered extremely sensitive as it (along with other location data 

such as longitude and latitude) may be used to pin-point the home residence of an 

individual. This degree of locational specificity substantially increases the likelihood of 

identification, if not fully guarantees identification in the case of single-occupant 

residences. For this reason, patient locations need to be masked in accordance with 

HIPAA privacy law. 

 

Two standards are specified under the HIPAA rule for de-identifying patient data — the 

safe harbor standard and expert determination — but former is the de facto standard 

(Office for Civil Rights, 2012). Expert determination—also termed the statistical 

standard—is the process by which an investigator masks their data and has a third party 
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expert determine whether the location masking strategy applied provides a low 

probability of identification. Expert determination is not frequently used in large part 

because it is ambiguous and requires unspecified documentation, in addition to placing a 

good deal of pressure on the third-party expert who is charged with certifying HIPAA 

compliance. This leaves the safe harbor standard as the most commonly relied upon 

practice for de-identifying patient data. Its immediate appeal, and primary reason for 

broader acceptance than expert determination, is that it offers ostensibly clear guidance. 

The safe harbor standard is the focus of the remainder of this paper. 

 

In essence, the safe harbor method protects patient data by simply removing 18 types of 

identifiers (Table 1). Many of these elements are straightforward to comprehend and 

implement, such as not including names, birthdates, and social security numbers. Some of 

the other elements pose their own challenges in an age of surveillance, such as biometric 

markers including vehicle license plates and facial imagery. Our focus, however, is 

section (2) of safe harbor, relating to the patient’s location, which is especially relevant to 

mapping and not surprisingly, the primary source of confusion in applying the safe harbor 

rule to mapping. The location provision of the safe harbor rule requires a minimum 

population of at least 20,000 people to be contained within each aggregated geographical 

unit, and the rule further requires that the only permissible geography (smaller than the 

state) is a form of ZIP code. 

 

Ambiguity arises when the type of ZIP code isn’t specified. Although it seems fairly clear 

from the text below that the rule intends for investigators to rely on the use of 3-digit zip 

codes (as compared to 5-digit ZIP codes), not all who read this stipulation see it that way.  

There are many reasons for this including various misleading representations of the rule 

found in legal online documentation as well as in literature on public health and disease 

mapping.  The following section explores how ZIP codes have come to play a key role in 

the safe harbor rule. 
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Table 1. The key elements of the safe harbor provision 

The following identifiers of the individual or of relatives, employers, or household members of the 

individual, are removed: 

 (1) Names 

(2) All geographic subdivisions smaller than a state, including street address, city, county, precinct, ZIP 

code, and their equivalent geocodes, except for the initial three digits of the ZIP code if, according to the 

current publicly available data from the Bureau of the Census: The geographic unit formed by combining 

all ZIP codes with the same three initial digits contains more than 20,000 people; and the initial three 

digits of a ZIP code for all such geographic units containing 20,000 or fewer people is changed to 000 

(3) All elements of dates (except year) for dates that are directly related to an individual, including birth 

date, admission date, discharge date, death date, and all ages over 89 and all elements of dates (including 

year) indicative of such age, except that such ages and elements may be aggregated into a single category 

of age 90 or older 

(4) Telephone numbers 

(5) Vehicle identifiers and serial numbers, including license plate numbers 

(6) Fax numbers 

(7) Device identifiers and serial numbers 

(8) Email addresses 

(9) Web Universal Resource Locators (URLs) 

(10) Social security numbers 

(11) Internet Protocol (IP) addresses 

(12) Medical record numbers 

(13) Biometric identifiers, including finger and voice prints 

(14) Health plan beneficiary numbers 

(15) Full-face photographs and any comparable images 

(16) Account numbers 

(17) Any other unique identifying number, characteristic, or code, except as permitted by paragraph (c) of 

this section [Paragraph (c) is presented below in the section “Re-identification”]; and 

(18) Certificate/license numbers 
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2.2    Why ZIP codes? 

If we were to remove ZIP codes from the safe harbor provision there would be no 

ambiguity in terms of its interpretation because the rule would simply focus on the 

threshold of 20,000 people to define whether some arbitrary geographical unit is 

sufficient. So why are ZIP codes written into the law?  To answer this, we need to start at 

the very beginning in terms of how it came into being and understand how the political, 

social, and technological milieu of the time shaped some core principles and guidelines. 

ZIP codes were originally not included in the rule but this quickly changed as a result of a 

mix of happenstance and deliberation. The following paragraphs provide insight into the 

series of events that led up to the HIPAA safe harbor provision that we understand today, 

beginning at the proposed bill. 

 

Before HIPAA was law, it was a bill, specifically bill H.R. 3103 of the 104th Congress 

from 1995-1996 (H.R. 3103, 1996). This bill was introduced in the spring of 1996 as part 

of an initial attempt at healthcare reform by the Clinton administration.  The overarching 

focus of H.R. 3103 was to improve access to healthcare and address fraud, waste, and 

abuse in health insurance and healthcare delivery, but it also—quite briefly—mentions 

specific interest in the protection of patient data (see SEC. 1177 of H.R. 3103, 1996).  In 

a single, paragraph, the bill addresses the wrongful disclosure of individually identifiable 

health information, in large part, as it relates to insurance fraud and abuse. 

SEC. 1177. WRONGFUL DISCLOSURE OF INDIVIDUALLY 

IDENTIFIABLE HEALTH INFORMATION. “A person who knowingly and in 

violation of this part uses or causes to be used a unique health identifier; obtains 

individually identifiable health information relating to an individual; or discloses 

individually identifiable health information to another person, shall...be fined not 

more than $50,000, imprisoned not more than 1 year, or both; if the offense is 

committed under false pretenses, be fined not more than $100,000, imprisoned not 

more than 5 years, or both; and if the offense is committed with intent to sell, 

transfer, or use individually identifiable health information for commercial 

advantage, personal gain, or malicious harm, fined not more than $250,000, 

imprisoned not more than 10 years, or both.” 
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This bill was the first step towards the development of a series of protections that would 

eventually become the HIPAA Privacy Law that we know today. However, much 

changed during the journey from the bill’s initial proposal to passage of the final law and 

attendant guidelines—especially in terms of modifications made to the data privacy and 

de-identification standards.  Early renditions of HIPAA provided very little guidance on 

how to define de-identified health information. Mass computerization of individual health 

information had only just begun, with electronic health records (EHR) making their first 

appearance in 1992.  In the mid-1990s, with the rise of the internet and home computers, 

threats to data privacy elicited much fear within the American public (Best, Krueger, & 

Ladewig, 2006). Despite these concerns, when the bill went to congress in the summer of 

1996, the disclosure of identifiable health information was not documented as a part of 

the discussion on the congressional record (Gingrich, 1996). 

 

One year after its introduction, Latanya Sweeney, a computer scientist working at MIT, 

purchased a voter registration list for Cambridge, Massachusetts and cross-referenced 

that with a “de-identified” (meaning the names were missing but other information like 

birthdate remained) Massachusetts Group Insurance hospitalization dataset that was 

provided to researchers (Sweeney, 1997).  Sweeney determined that by using birth date, 

gender, and 5-digit ZIP code she could match a patient’s medical records with their name 

on the voter registration list.  This meant that for only twenty dollars (the cost of the voter 

registration list), Sweeney could potentially identify (by name) some of the registered 

voters and their medical records which included sensitive information such as diagnoses, 

procedures, and medications. With this knowledge in hand, Sweeney famously mailed the 

governor his own medical records.  This event fueled anxiety about the potential misuse 

of patient information and put data protection at the forefront of many conversations 

about privacy reform. Sweeney’s 1997 study was central to the next chapter of the story 

of HIPAA’s evolution—the 1999 Notice of Proposed Rulemaking (NPRM) (Standards 

for Privacy of Individually Identifiable Health Information, 1999; Barth-Jones, 2012). 

In response to Sweeney’s work, the 1999 NPRM proposed a very stringent definition of 

de-identified health information. Of particular interest to this paper is how the NPRM 
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defined the smallest unit of allowable geography as the state. All other geographic 

identifiers would be removed, meaning that street address, city, county, and both 3-digit 

and 5-digit ZIP were not permissible. This state-level geographic standard was too 

restrictive for any researcher interested in studying the geographic variation of health and 

disease such as geographers and epidemiologists. Under such rules, researchers would 

only be able to publish maps at the state-level (usually at the national extent). For most 

scholarship, this limit meant that only statistical point estimates (such as regression 

output) could be published under the safe harbor rule.  

 

Fortunately for researchers, feedback from the 1999 NPRM’s call for public comments 

pushed the HHS to allow some information about age and geographic area to be shared as 

de-identified information. The safe harbor standard’s 3-digit zip code rule made its first 

appearance on a federal record (Standards for Privacy of Individually Identifiable Health 

Information, 2000). The rule states: “In the safe harbor, we explicitly allow...some 

geographic location information to be included in the deidentified information, but...zip 

codes must be removed or aggregated (in the form of most 3-digit zip codes) to include at 

least 20,000 people.” Compared to the 1999 NPRM guidelines this safe harbor standard 

was much less stringent but still meant to withstand a population-level identification 

attack of the sort developed by Sweeny which required 5-digit ZIP codes to carry out. 

 

This simple 3-digit zip code rule became more complicated in the decade after HIPAA 

was promulgated. The initial formulation seems clear (that 3-digit ZIP codes were the 

intended level of aggregation) however, subsequent modifications to HIPAA introduced 

ambiguity.  Changes to the final rule in 2003 left out a key clause that made it clear that 

3-digit zip codes would be the only permissible form of aggregation (other than the state-

level). This contributed to the ever-growing ambiguity regarding the provision on 

geographic deidentification, and along with other nebulous aspects of the law, many 

researchers were finding it difficult to navigate HIPAA. As a result—with the passage of 

Health Information Technology for Economic and Clinical Health Act (HITECH) in 
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2009—the HHS was required “to issue guidance on methods for de-identification of 

protected health information (PHI) as designated in HIPAA's Privacy Rule.” In response, 

the US Office of Civil Rights (OCR) held a workshop in 2010 to provide guidance on 

strategies for the de-identification of PHI. OCR used input from the panelists, including 

Latayna Sweeney and Daniel C. Barth-Jones (noted later in this paper), and workshop 

attendees to develop a lengthy guidance document (Office for Civil Rights, 2012). This 

comprehensive document is helpful in that it provides a more detailed description of the 

safe harbor rule, but unfortunately, it still contained the same ambiguous phrasing 

(regarding zip codes) found in the written law. To make matters worse, the landing page 

for the workshop on HIPAA’s de-identification standard (which features the link to the 

guidance document page) refers to geocodes rather than ZIP codes (refer to Table 2 for 

full phrasing) which could easily lead readers to believe that any unit (not only zip codes) 

could be used for aggregation. These ambiguities, alongside inconsistencies in use and 

opinion found throughout the literature (explored below in section 3 below) about core 

HIPAA documents (e.g., HHS, 2003; Modifications to the HIPAA Privacy, 2013; OCR, 

2012), may very well have contributed to the widespread confusion that continues today. 

 

2.3  Why 20000 people? 

Part of the ambiguity around using ZIP codes is tied to the 20,000-person threshold in 

defining safe harbor rules. The decision to allow sub-state level geographies, specifically 

ZIP codes, is partially tied to research on the role of population size in protecting privacy. 

In simple terms, by increasing the number of people reported within a given region, the 

chances of successfully matching an individual in that region to a record decreases.  This 

is because the odds of a unique combination of identifying characteristics occurring in a 

population declines as the number of people in a dataset increases. 

 

So how did the HHS determine that 20,000 was the appropriate population threshold?  To 

answer this, we must look to the proposed final rule (Standards for Privacy of 

Individually Identifiable Health Information, 2000) as there is little to no discussion of 
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this determination within the literature or the HHS support and guidance webpages.  In 

the final rule, the HHS points to the precedent of how the Bureau of the Census “shares 

geographical units only if they contain populations of at least 100,000 people” (The 

Federal Committee on Statistical Methodology, 1994).  This standard is conservative and 

so the HHS turned to other sources to dropping the threshold lower (Standards for 

Privacy of Individually Identifiable Health Information, 2000).  

 

The HHS drew on two simulation studies in particular, one by Greenberg and Voshell 

(1990) and the second by Horm (2000).  These studies explored how the proportion of 

unique records within a dataset can be influenced by changes to the size of the population 

and the number and type of variables included. For instance, about 7.3% of records 

within the 1990 census are unique, or potentially identifiable, given the 100,000 person 

population threshold using standard census variables like age, race, ethnicity, sex, and 

housing/household information (Standards for Privacy of Individually Identifiable Health 

Information, 2000). But the proportion of unique records is a function of available 

information. Sharing a greater number of variables increases the potential to identify an 

individual, and for this reason, the Census Bureau population threshold increases from 

100,000 to 250,000 or more when greater numbers of variables are released as microdata 

(The Federal Committee on Statistical Methodology, 1994). 

 

However, there comes a point where increasing the size of the population no longer adds 

notable increases to data protection. In the case of census data, when only six 

demographic variables are shared, there is point of diminishing returns around about 

20,000 people, per Figure 3.1 (Greenberg & Voshell,  1990). In addition to the number of 

demographic variables, the type of variables shared matters as well. For instance, a 

population of 25,000 contains 25% unique records when 9 variables were shared, but 

when the occupation variable is removed, this proportion drops to 10% (Horm, 2000). In 

this case, occupation can be a particularly identifying given that some occupations are 
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much rarer than others. The HHS drew on this scholarship to making their determination 

(Standards for Privacy of Individually Identifiable Health Information Final Rule, 2000): 

“After evaluating current practices and recognizing the expressed need for some 

geographic indicators in otherwise de-identified databases, we concluded that 

permitting geographic identifiers that define populations of greater than 20,000 

individuals is an appropriate standard that balances privacy interests against 

desirable uses of de-identified data. In making this determination, we focused on 

the studies by the Bureau of Census cited above which seemed to indicate that a 

population size of 20,000 was an appropriate cut off if there were relatively few 

(6) demographic variables in the database. Our belief is that, after removing the 

required identifiers to meet the safe harbor standards, the number of demographic 

variables retained in the databases will be relatively small, so that it is appropriate 

to accept a relatively low number as a minimum geographic size.” 

 

3. 1 Plot of percent uniqueness according to the size of the dataset.  This plot was used in the determination 

of the 20,000 population threshold (Greenberg & Voshell,  1990). 

Additionally, the fact that HHS considers the 20,000 population stipulation the lowest 

bound could also be tied to adoption of the 3-digit ZIP. Although, 3-digit ZIP codes vary 
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widely in terms of the size of the population they contain (in 2020, ranging from 3,147 to 

3,310,455 people), only 18 3-digit ZIP codes contained fewer than 20,000 people at the 

time safe harbor was first determined. Today, there are only 11 ZIP codes in the nation 

that are too small and would need to be merged with neighboring geographies to meet the 

minimum threshold of 20,000 people.  Fortunately, because the majority of 3-digit ZIP 

codes contain populations well-over 20,000 people, researchers following the 3-digit ZIP 

code rule would not often be burdened with the task of data aggregation. Perhaps the 

HHS hoped that by using these 3-digit ZIP codes they could help enforce a more 

conservative following of the population threshold while also making the guidelines more 

straightforward. Unfortunately, this would not be the case in important ways. 

 

3.  Twin challenge #1: Ambiguity 

The safe harbor rule seems straightforward when seen from the original 2000 final rule, 

but given the modifications, and how it appears in the literature today, it carries an 

essential ambiguity that has led to large gaps and disagreements in research and policy 

work. We first examine different interpretations of the rule based on these ambiguities 

and draw examples from scientific literature in order to show how different scholars rely 

on different interpretations. We then simplify the discussion by proposing that the crux of 

many disagreements — and the basis of productive ways forward — can be seen in terms 

of focusing on the use of 3-digit and 5-digit ZIP codes. 

 

3.1 Safe-harbor provision and ZIP code ambiguity 

The primary driver of disagreements in the literature seems to hinge on how individual 

researchers and teams interpret the role of ZIP codes vs. the 20,000 person threshold. 

This often comes to the fore in determining how much location data must be removed 

from patient data to satisfy HIPAA requirements. 

The potential for misunderstanding stems from the one part of the provision—the piece 

regarding geographic information which states with respect to patient location data: 
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(2) All geographic subdivisions smaller than a state, including street address, city, 

county, precinct, ZIP code, and their equivalent geocodes, except for the initial 

three digits of the ZIP code if, according to the current publicly available data 

from the Bureau of the Census: 

(2a) The geographic unit formed by combining all ZIP codes with the same three 

initial digits contains more than 20,000 people; and 

(2b) The initial three digits of a ZIP code for all such geographic units containing 

20,000 or fewer people is changed to 000. 

 

Understanding of the HIPAA safe harbor rule has been furthered muddied by the 

different ways it is described by experts in the fields of public health and geography as 

well as by the guidance by HHS and OCR. Anyone reading the background and context 

section on the 2010 De-Identification Standard Workshop page on the U.S. Department 

of Health & Human Services (HHS) website (OCR, 2017) could justifiably conclude that 

any aggregation of 20,000 people is in compliance with the safe harbor rule regardless of 

ZIP code. On the other hand, focusing on the ZIP code rules as they appear in the 

literature could lead someone to conclude that ZIP codes are the primary vehicle for data 

protection.  This is because, in many cases, authors simply do not specify the type of ZIP 

code used in their work. This potential for ambiguity among different sources has likely 

contributed to the number of studies that have aggregated (or that have suggested the 

possibility of aggregating) in ways that do not align with the 2000 HIPAA final rule 

(Browne et al., 2014; Jung & El Emam, 2014; Mu et al., 2015; Acevedo-Garcia, 2001). 

Table 1 offers a number of different justifications for how scholars interpreted the safe 

harbor provisions. 

 

 

 

Table 2. The various ways investigators interpret the geographic location stipulation of the HIPAA safe 

harbor rule. 



47 
 

Paper & Author Interpretation 

Confidentiality risks in fine scale 

aggregations of health data 

(Curtis et al., 2011). 

“Unfortunately there are few guidelines with regards the release of 

aggregated data. A commonly discussed threshold between researchers 

is that health data should only be visualized for ZIP codes with a base 

population of no less than 20,000.” 

Re-identification Risks in 

HIPAA Safe Harbor Data: A 

study of data from one 

environmental health study 

(Sweeny et al., 2017). 

“[T]he provision requires removing explicit identifiers (such as name, 

address and other personally identifiable information), reporting dates 

in years, and reducing some or all digits of a postal (or ZIP) code.” 

Workshop on the HIPAA privacy 

rule’s de-identification standard 

(OCR, 2017). 

“[The Safe Harbor approach] permits a covered entity to consider data 

to be de-identified if it removes 18 types of identifiers (e.g., names, 

dates, and geocodes on populations with less than 20,000 inhabitants) 

and has no actual knowledge that the remaining information could be 

used to identify an individual, either alone or in combination with other 

information.” 

Conforming to HIPAA 

regulations and compilation of 

research data (Clause et al., 

2004). 

“Implementation of these methods can be somewhat difficult for the 

clinical researcher for data sets of less than 20,000 records (as 

determined by collapsing populated geographic codes representing 

sparse populations).” 

From Healthy Start to Hurricane 

Katrina: Using GIS to eliminate 

disparities in perinatal health 

(Curtis, 2008). 

“The error of recording ‘70808’ rather than ‘70806’ in Baton Rouge 

would involve considerable changes in social, economic, and racial 

contexts. This is a problem if data are only available by zip code, which 

unfortunately is still too common in terms of releasing data for GIS 

analysis.” 

  

“Although there are HIPPA regulations regarding the display of 

aggregate data on choropleth maps, these guidelines are generally 

considered too restrictive for useful cartography (only zip codes with 

more than 20 000 can be visualized).”  

A linear programming model for 

preserving privacy when 

disclosing patient spatial 

information for secondary 

purposes (Jung and El Emam, 

2014). 

“A prevailing method to create de-identified data sets is to aggregate 

pre-defined areas, such as ZIP codes or counties, into a new area.” 

  

“Yet, the first three digits of a ZIP code may be included, provided that 

at least 20,000 people share the same first three digits.” 

The Challenges of Creating a 

Gold Standard for De-

identification Research (Browne 

et al., 2014). 

“[The guidelines of the Privacy Rule] say that units smaller than a state 

should be redacted, although Baltimore has a population of well over 

20,000, the size limit for Zip-Codes. D.C. was considered a state for 

this purpose.” 

Challenges and Insights in Using 

HIPAA Privacy Rule for Clinical 

Text Annotation (Kayaalp et al., 

2015). 

“The Privacy Rule states that information about all geographic 

subdivisions smaller than state, except the first two digits of the zip 

code, must be de-identified. The third digit of the zip code can be left 

intact, only if the size of the population in the area of the censored two 

digits is greater than 20,000 according to the most recent census data.” 
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Broken Promise of Privacy: 

Responding to the Surprising 

Failure of Anonymization (Paul 

Ohm, 2010). 

“Id. § 164.514(b)(2)(B) (allowing only two digits for ZIP codes with 

20,000 or fewer residents).” 

 

The fact that a range of views exists is not surprising considering the ways in which 

HIPAA provisions have been interpreted within the fast-growing scholarly literature 

using spatial health data and among various online help resources. Understanding of the 

safe harbor provision is muddied by conflicting or ambiguous phrases that appear across 

a broad array of resources and how different scholars seem to follow different practices 

and procedures for handling patient location data.  This profusion of differing practices, 

while perhaps engendering interesting conversation, likely comes at the cost of research 

outputs being unnecessarily overly masked in order to protect sensitive health data. 

 

3.2  Two different interpretations 

In order to find a way forward towards more standardized interpretations of HIPAA safe 

harbor rules, it helps to delineate two distinct ways of interpreting the safe harbor 

provision specific to location data (while recognizing that less-common interpretations 

may also exist). In essence, two different and competing interpretations have emerged: 

the 3-digit ZIP interpretation and the 5-digit ZIP interpretation.  

 

The 3-digit ZIP code interpretation. For many health researchers there is only one 

interpretation of the safe harbor provision.  This is likely because much medical research 

involves working with data in its tabular form.  For these investigators, a ZIP code is 

primarily a helpful 5-digit number that can be reduced to a 3-digit one.  Consider, for 

example, an analyst receiving a spreadsheet of patient data from which to build her risk 

model.  One column in the table would be designated for the location attribute (i.e., a 

column for ZIP codes). According to this rule, only the first three digits of the ZIP code 

are permitted to be shared (unless the population value is under 20,000 whereby the data 

is suppressed or converted to 000). For most lawyers, medical researchers, and anyone 
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using patient data in its tabular format, there is little ambiguity in the safe harbor 

standard. 

 

The 5-digit ZIP code interpretation. To those who see ZIP code data primarily as 

spatial data, the privacy rule elicits some confusion. While a ZIP code is a 5-digit 

number, to geographers and a growing number of other scholars who use spatial data, a 

ZIP code is also an area on a map.  ZIP codes divide regions into smaller areas designed 

to aid post-delivery.  There are both 3-digit ZIP code areas (Figure 3.2) and 5-digit ZIP 

code areas (Figure 3.3). Five-digit ZIP codes areas are nested within 3-digit ZIP code 

areas (Figure 3.4).  People who work with spatial data are likely familiar with this 

hierarchy of spatially nesting areas and how it can lead to conflicting interpretations of 

provision §164.514(b)(2a) which states: 

(2a) The geographic unit formed by combining all ZIP codes with the same three 

initial digits contains more than 20,000 people; 

In this view, there are two ways of reading “ZIP codes with the same three initial digits”, 

namely either: 1) 3-digit ZIP codes (as described in the previous paragraph) or 2) 5-digit 

ZIP codes that share the same three initial digits. 

 

3. 2 Three-digit Zip code boundaries.     3. 3 Five-digit Zip code boundaries.   3. 4 Five-digit Zip codes 

nested within three-digit Zip codes. 

The root of this apparent ambiguity comes from the term “all ZIP codes.” If we interpret 

“all ZIP codes” as “all of the 5-digit ZIP codes”, then the 3-digit ZIP code rule would still 

apply because when you combine all of the 5-digit ZIP codes together you are left with a 

3-digit ZIP code area (Figure 3.5A).  If however, “all ZIP codes” were interpreted as “all 
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5-digit ZIP codes within the aggregation”, a less conservative interpretation emerges 

where 5-digit ZIP codes can be combined to meet the 20,000 population threshold as long 

as all of the 5-digit ZIP codes used have the same three initial digits (Figure 3.5B). 

Simply put, this interpretation would permit investigators to aggregate 5-digit ZIP codes 

when they all fall within the same 3-digit ZIP code area. The large difference in areas 

highlighted by Figures 3.2 and 3.3 demonstrates the impact of these two competing 

interpretations.  

  

 

3. 5 A) All of the 5-digit Zip codes beginning in “563”. B) An aggregation of 5-digit Zip codes that all 

begin with “563” that contains more than 20,000 people. 

 

3.3 Drivers and implications of the two interpretations  

Comparing studies that use 3-digit vs. 5-digit ZIP codes illuminates a potential cause for 

the existence of competing interpretations tied to whether the work uses tabular data or 

spatial data. In the case of either the 3 or 5-digit ZIP code interpretation, the tabular data 

can appear in essentially the same format (only containing the first 3 digits of a ZIP 

code). These same data mapped, however, would be very different.  A researcher 

operating under the 3-digit interpretation would share maps of patient data at the 3-digit 

ZIP code level (Figure 3.6A), and if a 3-digit ZIP code contained fewer than 20,000 
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people it would be merged with a neighboring unit (Figure 3.6B and 3.6C). The 

corresponding tabular data for these maps would only contain three-digit ZIP 

codes.  However, investigators operating under the 5-digit ZIP code interpretation could 

share maps at the 5-digit ZIP code level (Figure 3.6D), and if the 5-digit ZIP code 

contained less than 20,000 people it would be merged with neighboring units that share 

the same first initial digits (Figure 3.6E and 3.6F). The corresponding tabular data for 

these maps would only contain the first 3-digits of a ZIP code as well, however since 

more than one aggregation would fall within each 3-digit ZIP code area, there would be 

multiple records with the same 3-digit ZIP code. 

 

 

3. 6 The aggregation process as see within 3-digit Zip codes (top row) and 5-digit Zip codes (bottom row). 

Zip codes with populations less than 20,000 people are suppressed.  To address suppression, low-

population Zip codes are merged with neighboring Zip codes to meet HIPAA requirements. It is not in 

adherence with HIPAA safe harbor to use 5-digit Zip codes as the unit of aggregation. 

These differences are not hypothetical because relevant examples are abundant within the 

literature. Bearing in mind that researchers rarely describe their decision making in detail, 

there is a body of work that seems to operate under the 3-digit ZIP code interpretation 

(e.g., Barth-Jones, 2012; Browne, Kayaalp, Dodd, Sagan, & McDonald, 2014; Janmey & 
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Elkin, 2018; Malin, Benitez, & Masys, 2010; Nicholson & Smith, 2007; Sweeney et al., 

2017; Tellman et al., 2010). There is another realm of scholarship that appears to operate 

under the 5-digit ZIP code interpretation (e.g., Curtis, 2008; Curtis, Mills, Agustin, & 

Cockburn, 2011; Wang, Guo, & McLafferty, 2012; Acevedo-Garcia et al., 2001), as well 

as related work that seems to suggest the capability of aggregating any geocode to meet 

the 20,000 threshold (e.g., Browne et al., 2014; Jung & El Emam, 2014; Mu et al., 2015). 

These are some of many potential examples of how there appears to be a divide between 

the 3-digit and 5-digit ZIP code interpretations of HIPAA. 

 

Interestingly, there appears to be some commonality within and differences between 

disciplines in regards to the way safe harbor is interpreted. While this paper does not 

attempt to do a full literature review, anecdotally, of those studies cited in the paragraph 

above, all those operating under the 3-digit ZIP code interpretation are authored by 

epidemiologists, medical researchers, or computer and information scientists, while the 

papers backing the 5-digit ZIP code interpretation are authored by geographers. Although 

this is just a sample of a larger literature, there seems to be a trend where spatially-

oriented researchers are more likely to embrace the 5-digit interpretation or a more 

lenient understanding of the rules around a threshold of 20,000 people. This is not 

surprising given that geographical research often necessitates a map, and three-digit 

ZIP codes are not intuitive map units. It is also the case that 3-digit ZIP codes are not 

easy to find in the form of shapefiles, or mapping files, that are often used for research. 

Neither census.gov nor USGS offer data at the 3-digit ZIP code level.  In fact, at the 

time of writing, we can only find two sources that provide data for download in the 

form of 3-digit ZIP code boundaries for the U.S. and both of these sources are 

proprietary (Esri’s ArcGIS Online and Caliper’s Maptitude). Even without having 

access to these proprietary resources, it is possible to create these boundaries on your 

own. However one would think that, since 3-digit ZIP codes are the required units for 

display under HIPAA law, they should be more readily available online. On the other 

hand, data at the 5-digit zip code level is easy to find online and appears abundantly 

within the public health literature. The extent to which the dearth of 3-digit ZIP code 
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map data plays a role in the misunderstanding of the safe harbor rule is unclear, but 

one can’t help but wonder whether the widespread confusion would exist if 3-digit ZIP 

code mapping files were available for download on the HHS website. 

 

The potential implications of misunderstanding the privacy guidelines are profound when 

considering that researchers share patient data in inconsistent ways that bear on both 

efficacy of health interventions and potential for privacy breaches. When studies share 

aggregate patient data at the level of the 3-digit ZIP code their output is generally not 

useful for identifying local distributions of health and disease, although they do provide a 

more generous degree of data security. When studies share PHI at the 5-digit ZIP code 

level, they can provide a much more useful depiction of the spatial heath dynamics at 

hand, but at the cost of weaker data privacy. 

 

In terms of this tradeoff, the difference in identification risk between 3-digit and 5-digit 

ZIP codes is substantial enough to warrant alarm, as discussed in detail in the next section 

(Sweeney, 1997). At the same time, the difference in spatial resolution between the two 

forms of ZIP codes carries its own and potentially problematic costs. For instance, one 

study demonstrated how different disease patterns emerge depending on whether 3-digit 

or 5-digit ZIP codes areas are used and, with an example dataset, the authors showed that 

if 3-digit ZIP codes areas are used to determine how to best distribute N95 respirators 

during a pandemic, it would result in a surplus of supplies for healthcare workers in some 

communities and shortages others (Tellman et al., 2010). 

 

4.  Twin challenge #2: Data loss 

Even after gaining a clearer understanding of HIPAA law and how it is meant to be 

interpreted, one more challenge remains— namely that HIPAA guidelines are very likely 

too strict in general resulting in an unnecessary large degree of data loss. The following 

sections provide insight into the extent of the data loss that takes place when adhering to 
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HIPAA Safe Harbor’s 3-digit ZIP code rule and how other (non-HIPAA compliant) 

interpretations can reduce data loss while not add much in terms of privacy risk 

depending on the kinds and amount of data being shared.  

4.1  Data loss from 3-digit ZIP codes & 20,000 people 

Opting for the 3-digit ZIP code interpretation is a conservative choice that has a number 

of negative implications for research and policy. The 3-digit ZIP code interpretation is 

very cautious with respect to adhering to the 20,000 person rule. Bear in mind that, as of 

2020, the average population contained within a 3-digit ZIP code is 397,372 people, 

which is almost four times the population threshold of 100,000 required by the Bureau of 

the census for the release of microdata (individual response data from the census). Thirty 

years after the initial rule, there are now only eleven 3-digit ZIP codes that require 

suppression (because they have fewer than 20,000 people within them).  The number of 

ideal units containing small, yet acceptable, populations is disappointingly low—only 12 

units contain between 20,000 - 30,000 people and only 14 contain between 30,000 - 

40,000 people. Just over 92% percent of 3-digit ZIP code geographies contain more than 

60,000 people, or at least three times the 20,000 threshold.  In simple terms, we should 

expect that most geographies shared under the 3-digit ZIP code safe harbor standard will 

contain populations far greater than the 20,000 threshold.  
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3. 7 Three-digit Zip codes (100-999) ordered least to greatest by population from 2020 estimates from the 

ACS. 

 

Given that most 3-digit Zip code geographies contain well over 20,000 people, under the 

HIPAA safe harbor provision, the majority will have a very small proportion of uniques. 

However, a few places will have a proportion of unique records considered to be 

relatively more risky in terms of patient protection.  In any case, the small number of 

instances that contain the “riskier” low-level minimum populations still meet the 

minimum acceptable level of risk (which if we look back at Horm’s simulation study, we 

can estimate this to be a little over 10% proportion unique).  This is a little bit higher than 

the 7.3% estimated uniques in the 1990 census microdata, but the HHS points out that the 

actual risk will be much lower because of the limited number of publicly available tables 

that can be used to compare the patient data with.  Here, it is also important to recall that 

these risk estimates are also subject to the previously mentioned myth of the perfect 

population register.  Finally, HHS suggests that the relatively low probability of success 

should be a deterrent in and of itself.   
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One interpretation of this threshold is that, if the HHS is okay with some units being 

shared at the level of 20,000 people, could all units be shared at that resolution?  After all, 

if populations of 20,000 meet the minimum acceptable level of risk, then what’s stopping 

investigators from aggregating 5-digit ZIP codes to meet this requirement?  3-digit ZIP 

codes are rather impractical for research purpose and so it is very uncommon to find a 

map shared at this level.  For this reason, it is easy to see how researchers could come to 

believe that the 5-digit interpretation is permissible if they haven’t given the legal 

documents a thorough read.   

 

Aggregating 5-digit ZIP codes to create the finest-grained units possible that also still 

meet the 20,000 person threshold is tempting, because this would allow investigators to 

meet the minimum acceptable level of risk in a way that enables the sharing of maps with 

more detailed and consistent geographies than that provided by 3-digit ZIP codes.  In this 

scenario, there would be slightly greater risk of identification due to the minimum 

population size, but it would still seem to be an acceptable level of risk as long as the 18 

other safe harbor restricted identifiers were removed.  The problem that remains is that 

one of the 18 identifiers isn’t being fully removed in this scenario.  By aggregating 5-digit 

ZIP codes, an individual record contains more information than a single 3-digit ZIP 

code—it now also contains a handful of 5-digit ZIP codes that could be used to further 

narrow down the possible matches.  For this reason, 5-digit ZIP code aggregations do not 

meet HIPAA safe harbor standards. 

 

However, depending on what other information is kept, it is reasonable to believe that 

sharing a map of patient data, stripped of age and other demographics, at the aggregated 

5-digit ZIP code level would lead to a very low (certainly quite low) risk of identification. 

One study showed that certain elements from the list of 18 identifiers can still be shared 

without jeopardizing patient privacy “when other features are reduced in 

granularity”.  Specifically, Malin and colleagues found that more detailed age data 

(beyond what is permitted by safe harbor) could be shared when they coarsened the 
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specificity of other variables such as ethnicity (Malin et al., 2011).  The authors noted 

that every dataset is different and, because of this, alternative de-identification practices 

can be used to enable the safe disclosure of patient data that is normally suppressed under 

the safe harbor method.  This means that there is potential for 5-digit ZIP code 

information to be safely shared in aggregated form as long as other identifying 

information is suppressed.  

 

In sum, it may be time to rethink the one-size-fits all strategy that is the safe harbor 

method.  It is reasonable to ask whether aggregating 5-digit ZIP codes to regions that 

contain at least 20,000 people could achieve a “sufficiently low” risk of identification 

when other patient information is suppressed such as date of birth and gender.  It would 

be even more reasonable to suggest that aggregating 5-digit ZIP codes could work if no 

patient information was shared other than diagnosis and location. Andrew Curtis and 

colleagues tested this such claim in a study that found that, when put to the test, students 

were unable to identify individuals in simulated cancer maps (Curtis et al., 2011).  There 

was little reengineering risk even at aggregated resolutions finer than 20,000 people. Up 

to this point, this paper has pointed out the ambiguities within the safe harbor standard 

while shedding light on some of the arbitrary determinations made by the HHS that have 

contributed to a perhaps overly conservative definition of privacy.  The following section 

takes a closer look at how the safe harbor rule has been criticized for being too stringent 

and, at the same time, not protective enough, specifically when it comes to identification 

risk.  

 

4.2  Do the privacy gains justify the amount of data loss? 

In order to dive deeper, we must go back and consider the influence of Sweeney’s 1997 

population-level identification attack. As stated previously, this initially resulted in the 

decision to bar both 3-digit and 5-digit ZIP codes from de-identified data, but after taking 

public comments, HHS reconsidered and 3-digit ZIP codes were deemed permissible as 

long as they contained a population of at least 20,000 people.  HHS justified their 
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restrictions by citing particular studies which led them to believe that the combination of 

5-digit ZIP code, gender, and date of birth (DoB) would be enough to potentially identify 

a great deal (more than half) of the U.S. population on the basis of uniqueness (L 

Sweeney, 2000). Note that, to be considered “unique”, a record must contain a 

combination of characteristics that make it different from all other records in that table 

(Zayatz, 1992). If the number of unique individuals within the U.S. population was really 

as large as Sweeney reported it to be, the motion to block 5-digit ZIP code and DoB 

under safe harbor seems quite justified.  However, some have pointed out that the 

combination of these three identifiers—even with their formidable discernibility 

capabilities—might not be as threatening as Sweeney’s article makes it out to be.  

 

Daniel C. Barth-Jones describes the “myth of the perfect population register” in his 2012 

paper, which points out how many investigators often forget to account for the people 

missing from the lists used to link individuals to their medical records.  These missing 

populations add significant uncertainty into the calculation of true population uniqueness 

(Barth-Jones, 2012). For this reason, the actual proportion of unique individuals on a list 

cannot be determined with 100% certainty if potential matches exist off the 

list.  Therefore these kinds of studies must be careful in the statements they make—

oftentimes including phrases such as “likely unique” or “potentially identifying” as 

certain identification cannot be claimed without a list of the entire population or the 

knowledge that the individual under identification attack was indeed contained within 

both lists. 

 

Consider for instance, Sweeney’s 1997 paper which the 1999 NPRM cites saying “A 

1997 MIT study showed that, because of the public availability of the Cambridge, 

Massachusetts voting list, 97 percent of the individuals in Cambridge whose data 

appeared in a data base which contained only their nine digit ZIP code and DoB could be 

identified with certainty” (Standards for Privacy of Individually Identifiable Health 

Information, 1999). According to this, nearly all of Cambridge voters can be identified 
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using the combination of date-of-birth and 9-digit ZIP code.  Within Sweeney’s paper, 

she states that this proportion of people can be “uniquely identified” on this basis, 

however, these individuals are only uniquely identifiable within the population of 

registered voters and not within the general Cambridge population (see Barth-Jones for 

full explanation).  This means that, in order for an intruder to identify an individual’s 

medical record, they would have to know that the individual exists on both lists AND that 

no other person in Cambridge shares the same DoB and 9-digit ZIP code. When 

deciphering the data, the intruder must account for 35,000 non-registered voting-aged 

people living in the city—any one of which could be the true subject of the medical 

record of interest.  Unaccounted for populations inject much uncertainty into the 

identification of unique records (in the case of Sweeney’s 1997 study 35% error).  With 

an imperfect population register, as exemplified in the Cambridge attack, an intruder 

would be able to identify with 100% certainty no one. Barth-Jones concludes that the 

governor was likely only identifiable based on the fact that he was a public figure who 

had a public hospitalization.  The date of hospitalization was known as well as his DoB, 

gender, and ZIP code; moreover it could be easily assumed that he would be a registered 

voter.  In instances such as this (having information a priori)1, an intruder can be 

confident in the unique match. 

 

It is unclear whether the HHS wrote the NPRM with a full understanding of 

methodological limitations of voter list-based identity attacks of the kind described by 

Barth-Jones.  It is possible that the clause “...could be identified with certainty” was taken 

without really considering the implications of the prior clause “...whose data appeared in 

the data base”.  Many assumptions need to be met before we can ignore the myth of the 

perfect population register.  In this example, in order to identify 97% of the individuals 

with certainty, we would need to be sure that none of the 54,805 voters on the voter list 

 
1The safe harbor law has an additional stipulation (the very last line of the provision) which was built in to 

protect against identification attacks targeting highly identifiable people (like the governor).  This 

stipulation reads: “The covered entity does not have actual knowledge that the information could be used 

alone or in combination with other information to identify an individual who is a subject of the 

information.” 
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had the same birthdate as a non-voter living in their neighborhood.  We might then 

wonder how would the identifiable 97% on the list compare to the proportion identifiable 

in the entire Cambridge population?  This is something we can’t determine because we 

don’t have a population register, but given that the total population of Cambridge is 

approximately 88,000 (Barth-Jones, 2012), there is quite a bit of room for error.  If the 

HHS based their development of safe harbor on a limited understanding of these 

complexities, it might lead us to wonder whether the level of protection delineated within 

the safe harbor standard is overly conservative.   

 

Nevertheless, even if the HHS misunderstood how Sweeney was using the term 

“identifiable” within her 1997 paper, there is still room for concern about how far to read 

into the study. Sweeney’s work is bold, insightful, and conveys a critical message: our 

private information is vulnerable to attack. What’s unclear is the extent to which we 

understand the vulnerability.  Even with the injection of uncertainty from missing 

populations, the risk for identification may still be considered too high and the 

implications would be quite serious.  Let’s go back to Barth-Jones’ review of Sweeney’s 

1997 attack, which finds that somewhat fewer (but perhaps not much fewer) than 29,000 

people out of 88,000 in Cambridge are identifiable (if the record is unique and the data 

intruder already knows that the individual is on both lists).  Depending on the motive of a 

data intruder, this might not be that far from likely.  Consider that it is easier to link a 

specific person to their medical record than it is to link a specific medical record to the 

person it belongs to. This is because a motivated attacker would have likely collected 

background information on the person a priori.  The data intruder likely has a target in 

mind—someone that they know—and therefore it is not that unlikely for them to already 

have information on the target’s voting behaviors and place of work—allowing the 

intruder to determine the employment insurance coverage that could be used to confirm 

the target’s presence on the insurance hospitalization data list. Moreover, even without 

knowing with certainty if the target of the attack is on both lists, the fact that the chance 

of a false positive (matching a record to a voter on the list when the record actually 

belongs to a non-registered voter) occurring could be perceived as highly unlikely by the 
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attacker—which could encourage them to carry on with their plans regardless of the 

potential false positive. 

 

The combination of DoB, gender, and 5-digit ZIP code can be troubling when shared in 

conjunction. The question that remains is: Can this combination of identifiers be 

reworked to reduce the risk for identification? Within the literature on microdata 

anonymity, ZIP code, gender, and DoB are actually not considered full identifiers 

themselves, but rather, they are quasi-identifiers that can be used in combination to find 

unique instances.  The term “identifier” is reserved for information that uniquely 

identifies an individual such as a Social Security Number (Ciriani, De Capitani di 

Vimercati, Foresti, & Samarati, 2007).  Nevertheless, quasi-identifiers can be dangerous 

when used in combination, but how dangerous are they? In order to gain some insight 

into this question, we must look more closely at how identification risk has appeared 

within literature relying on the HIPAA safe harbor method. 

4.3  What level of data loss defines sufficient data protection? 

What is an acceptable level of identification risk? There is no universally recognized 

standard that defines what a sufficient proportion of unique records should be.  Some 

have suggested that the nationally accepted standard of re-identification risk is defined by 

HIPAA’s safe harbor standard itself (Janmey & Elkin, 2018), but recall that the safe 

harbor standard was derived somewhat arbitrarily, being loosely based on rules used by 

the Bureau of the Census and a couple simulation studies.  In fact, when determining the 

population requirement of the HIPAA safe harbor rule, the HHS made the following 

statement in regards to defining “minimal risk”: 

With respect to how we might clarify the requirement to achieve a "low 

probability" that information could be identified, the Statistical Policy Working 

Paper 22 referenced [in the 2000 final rule] discusses the attempts of several 

researchers to define mathematical measures of disclosure risk only to conclude 

that "more research into defining a computable measure of risk is necessary." 

When we considered whether we could specify a maximum level of risk of 

disclosure with some precision (such as a probability or risk of identification of 
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<0.01), we concluded that it is premature to assign mathematical precision to the 

"art" of de-identification. 

 

Because twenty years later there is still no threshold defining “sufficiently low 

probability,” investigators fall back on the safe harbor standard as a point of reference for 

comparing different levels of data protection.  De-identification with the safe harbor 

method is said to leave somewhere around 0.03% or 0.04% records within the US 

population vulnerable to identification (NCVHS, 2007; Barth-Jones, 2012), but this 

proportion fluctuates according to the geographical extent of the dataset, where some 

regions have much smaller proportions of unique records and others have much 

higher.  Specifically, re-identification risk has been found to range from 0.01% to 0.19% 

(Malin et al., 2011), 0.01% to 0.25% (Benitez & Malin, 2010), and 0.013% to 0.22% 

(Kwok, Davern, Hair, & Lafky, 2011) on a state by state basis. 

 

Most studies estimate the identification risk under safe harbor to be rather low.  Despite 

this, there is no consensus on whether or not safe harbor standards are sufficient for 

protecting patient data.  In other words, “sufficiently de-identified” is subjective and, on 

occasion, very similar proportions of unique records have evoked very different 

assessments.  For example, Sweeney asserts that her estimated safe harbor re-

identification risk of 0.04% of the US population is not a sufficient privacy guard 

(NCVHS, 2007; Sweeney, 2017) while Barth-Jones suggested that the risk would 

actually be less than 0.03% (when using a voter list attack strategy), and that this 

proportion is in fact sufficient, going on to compare the identification risk under safe 

harbor to the likelihood of being struck by lightning (Barth-Jones, 2012).  A re-

identification attack by Kwok and colleagues re-identified only 2 of 15,000 individuals 

(0.013%) from a safe harbor protected dataset and the intruder was provided with a 

substantial amount of information from a market research company (Kwok et al., 

2011).  Kwok et al concluded that there was a low risk of re-identification and that 

masking with safe harbor makes re-identification a challenging task.  Others have 

asserted that safe harbor is too stringent.   Bradley Malin suggested in a 2011 article that 
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the safe harbor method was too conservative because it is possible to release more 

detailed information without presenting greater risk than that provided by the safe harbor 

method.  On the other hand, a 2016 study found that even when data seems sufficiently 

masked, computer science models can be used to identify a large proportion (42.8%) of 

patients by linking demographics such as age, sex, hospital, and year (O’Neill L, Dexter 

F, 2016).  Although specific to a single case study, this is an a high and very likely 

unacceptable level of risk! More recently, Janmey and Elkin suggested that the safe 

harbor standard is sufficient for preserving privacy at an overall population level 

(2018).  However, they also found that encounter notes within data can sometimes 

include indirect identifiers that can be used to help match records, and this could increase 

the risk of identification to 0.07% which does not meet the safe harbor criteria of 

sufficiently de-identified.  

 

It is safe to say there is disagreement about what is sufficient in terms of data 

protection. This type of risk calculation is complicated in and of itself and a concept like 

‘sufficiency’ is necessarily a judgement call. Recall that identification risk depends not 

only on how the data is released, it also depends on the alternative lists publicly available 

to the data intruder.  Sweeney described how identification risk for safe harbor abiding 

datasets can be as high as 25% when the intruder uses more than just a voter registration 

list (Sweeney et al., 2017).  Other detailed registries can be used to re-identify masked 

data such as real estate tax data, credit reports, and property records.  Moreover, 

identification risk can foreseeably jump much higher—far beyond the expected ranges—

for certain areas where the demographics of the base populations allow an intruder to 

easily narrow down potential matches based on age or ethnicity, as seen in regions 

dominated by college dorms, ethnic enclaves, or transient communities (Sweeney, 1997; 

O’Neill et al., 2016). Sufficient data protection (leaving aside the definition of 

sufficiency) will always be dependent on the dataset being masked because a slew of 

factors determine the overall identification risk.   
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5.  Ways forward 

So far we have focused on the two key issues of safe harbor provisions — the confusion 

around which ZIP codes to use and whether the rule warrants an unnecessarily large 

amount of data loss.  Reviewing the process by which the safe harbor concept came into 

being provides insight into the intended interpretation of the provision and the 

motivations that guided its development, but it is a first step. The ambiguity about how to 

best interpret and use ZIP codes or other geographic identifiers persists and there is no 

clear consensus on what defines sufficient minimal risk. Here we explore new approaches 

to data privacy and how they may meet the needs of some researchers, but we conclude 

by arguing that the most promising way forward to addressing the twin problems of safe 

harbor is to steer away from one-size-fits-all guidelines and towards deeper assessments 

of domain-specific and data-specific modes of masking that could offer a middle ground 

between useful data and protected data.  

5.1  New approaches to de-identification 

In the face of the complex nature of re-identification risk, scholars and policy makers 

have begun to advocate for the widespread adoption of k-anonymity or differential 

privacy methods (Sweeney et al., 2017). The primary argument for these approaches is 

that de-identification methods should come with privacy guarantees, especially as 

technology advances and powerful automated systems can be made to search for matches 

between multiple public lists.  For this reason, although k-anonymity and differential 

privacy cannot necessarily guarantee data security, these methods have been getting 

much attention as of recent because they provide a sort of privacy guarantee that offers 

more complete data protection than the traditional masking approaches.  

 

K-anonymity ensures that no unique records exist in the dataset and further requires that 

each record has a minimum of “k-1” common records (those that have the same quasi-

identifiers) so that they can’t be differentiated and therefore identified with certainty 

(Samarati & Sweeney, 1998).  K-anonymity can be achieved through many traditional 

methods such as through jittering, aggregation, and location swapping, and often provides 
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a higher level of protection than if one were to use one of these traditional methods 

alone.  Despite this, k-anonymity is not impervious to intruder attacks.  An intruder can 

still use background knowledge to narrow down the possible matches to increase the 

likelihood of identification such as in the case of a homogeneity attack (attacks based on 

data that contain identical values for an attribute) in which a region with a homogeneous 

population containing similar values for a record in the table can be used (alone or linked 

with other data) to identify an individual or diagnosis.  Therefore, k-anonymity, strictly 

speaking, does not guarantee privacy.  However, it guarantees non-uniqueness which, in 

the absence of outside knowledge, provides considerable data protection and, for this 

reason, k-anonymity remains a popular approach. 

 

Differential privacy (DP) is attracting attention as a newer approach to protecting 

sensitive data that assures a very low likelihood of individual identification. The most 

common definition of differential privacy is that of epsilon (ε) differential privacy 

introduced by Cynthia Dwork and colleagues (2006).  Dwork’s ε-differential privacy 

involves creating a synthetic aggregated dataset from an original unprotected dataset 

which ensures that an individual record cannot be identified. This simulated data is built 

by injecting a predetermined amount of noise (based on a Laplace distribution) into the 

original aggregate table in a way that does not significantly influence the output (of 

queries into particular pre-specified relationships). In other words, the aggregate table is 

systematically adjusted in a way that secures individual privacy while also ensuring that 

the data provides similar results to what would have been given if the original data was 

used in a pre-specified analytical model.  The way in which this is achieved also makes it 

so that if any one individual was removed from the dataset, it would not influence the 

overall results.  This means that epsilon differential privacy provides relative guarantees 

about disclosure risk, and essentially promises that “…any given disclosure will be, 

within a small multiplicative factor, just as likely whether or not the individual 

participates in the database.” (Dwork, 2006). 
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Unlike k-anonymity, differential privacy protects data under the assumption that an 

intruder has close to perfect knowledge and, in doing so, differential privacy offers a 

level of protection unlike others. Differential privacy does not succumb to the same 

weaknesses of traditional methods (including the homogeneity attack), and provides 

stronger data protection against differencing, linkage, and reconstruction attacks (Dwork 

& Roth, 2014).  Additionally, due to its robustness, differential privacy has the advantage 

of reducing improper data analysis techniques by limiting the ability of a single 

observation to have an effect on the result, which helps to deter things like p-hacking, 

HARKing, and overfitting models (Dwork et al., 2015).  For these, and many other 

reasons, differential privacy has gained much attention over the past two decades. In fact, 

differential privacy methods have the potential to replace existing masking methods and 

have already been adopted by Apple and the Bureau of the Census—which intends to use 

differential privacy to protect the 2020 census microdata. Differential privacy is not 

infallible; it offers “an extremely strong guarantee, it does not promise unconditional 

freedom from harm” (Dwork & Roth, 2014). 

 

Because differential privacy provides a higher level of protection than many other 

methods, it potentially offers a way for researchers to share data at more detailed levels 

than previously allowed under safe harbor. Consider the example of disease surveillance 

mapping. Safe harbor’s minimum population requirement of 20,000 people is rather 

limiting in terms of map resolution.  A map with units that contain 20,000 people would 

not provide enough detail to be helpful to researchers, policy makers, or community 

members.  Differential privacy, however, would allow investigators to share maps at 

much finer scales (down to the neighborhood-level) without putting patients’ identities at 

risk. 

 

So why not use differential privacy? Because it has critical drawbacks for research use 

(Muralidhar et al., 2020).  For instance, a map created from a differentially private 

aggregated table displays simulated data, so it is possible that some regions on the map 
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would not accurately reflect the original data—especially at finer scales where the 

population numbers are lower. Santos-Lozada and colleagues found that the infusion of 

noise from DP methods impacts observed distributions differently for different 

demographics, meaning that DP has the potential to bias understandings of health 

disparities at the national level (2020). In particular, the authors demonstrated how 

mapping differentially private data led to “overestimates of population-level health 

metrics of minority populations in smaller areas and underestimates of mortality levels in 

more populated ones”, and these effects were dramatic.  For instance:  

“…in McCulloch County, Texas, the mortality rate ratio for non-Hispanic blacks 

is 75.9, indicating the mortality rate would be 24% lower under the current 

methodology compared with the differential privacy methodology. Similarly, in 

Clarke County, Virginia, the mortality rate ratio for Hispanics is 121.4, indicating 

the mortality rate would be 21% higher under the current methodology compared 

with the differential privacy methodology. At the same time, the non-Hispanic 

white mortality rate ratios were essentially unchanged for these two counties, at 

100.3 and 99.8, respectively, meaning substantial biases may enter into 

understandings of disparities.” 

 

The implications of differential privacy for research are dire and the recent move by the 

Bureau of the Census to adopt this approach for the 2020 census microdata has drawn 

much attention to its advantages and disadvantages (Oberski & Kreuter, 2020; Ruggles, 

Fitch, Magnuson, & Schroeder, 2019). Census data is one of the largest sources of 

sociodemographic data used by social scientists and therefore, differentially private 

methods threaten to degrade the reliability and effectivity of social science research. 

Other than threats to data accuracy and biases, another source of concern regarding 2020 

census data is that these differentially private tables would not enable exploratory data 

analysis.  This is because differentially private data is synthetic and therefore 

relationships cannot be explored unless they were pre-specified when the synthetic table 

was created.  For this, it is very likely for differential privacy to interfere with the process 

of data-driven scientific research, pushing some scholars to suggest that 

perhaps “…differential privacy goes far beyond what is necessary to keep data safe” 

(Ruggles et al., 2019).  
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There is much uncertainty in regards to the practicality of differential privacy for the 

protection of large-scale, sensitive data. Differential privacy is a relatively new concept 

for many social scientists and epidemiologists. There is a dearth of investigations into 

differential privacy within the social science literatures, and particularly in regard to the 

impact it might have on health mapping—we could only find only one study at the time 

of writing (Santos-Lozada et al., 2020) but expected more given the attention giving to 

differential privacy and many unanswered questions it poses. What are the implications 

of differential privacy on mapping in terms of accuracy and use? How do differentially 

private maps compare to maps of original raw data? Furthermore, it is unclear how 

differential privacy stands within institutional IRBs.  This is relatively new territory and it 

is likely that many HIPAA compliance officers are not familiar with differential privacy. 

As part of our examination of the history of HIPAA, we spoke with legal experts and 

HIPAA compliance officers. One such officer, being introduced to differential privacy, 

stated that “this doesn’t play into our office’s considerations of 

deidentification.” Differential privacy holds some promise for mapping spatial data but at 

known and unknown costs. 

 

5.2  Current state and future research 

Despite ongoing interest in expanding use and sharing of health data mapping, the safe 

harbor rule stands as the primary guidance for those interested in sharing maps.  It is far 

from perfect in that for many scholars, it is ambiguous and either too stringent or not 

sufficient in terms of securing data or lessening data loss. Alternative methods exist that 

have the potential to do a better job but they come with their own drawbacks. HIPAA 

safe harbor provisions do not set out to guarantee data protection like the newer modes of 

data protection; instead they only ensure a low risk of identification with the ultimate 

goal being “to balance the needs of the individual with the needs of the society.” 

(Standards for Privacy of Individually Identifiable Health Information, 2000) The 

challenge is finding the “sweet spot” between protected data and useful data, while also 

understanding that this sweet spot changes for each dataset depending on what and how 

much information is available to the public. Furthermore, with rapidly evolving 
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technology, this sweet spot will continue to change over time.  The amount of individual-

level data collected by companies today is large and continuously growing.  In fact, 

society may have already come to the point where the myth of the perfect population 

register is no longer a myth in the face of big data (Narayanan & Shmatikov, 2008). 

 

While safe harbor continues to stand as the primary source of guidance for handling 

spatial health data, researchers continue to work with and against it in ways that reflect 

their understanding of the law and their data against a larger sociotechnical backdrop. As 

demonstrated by Malin et al (2011), there are ways to safely share more detailed data 

(i.e., age information) by coarsening the granularity of other data. From this example, we 

could assume that there are also ways to share finer-grained geographic data by censoring 

other elements in the data. Given that some pieces of information contribute more heavily 

to individual identification than others (i.e., DoB being more identifying than gender), we 

are left to ask some questions that, if answered, could help inform future approaches. 

Could a 5-digit ZIP code become innocuous without age information?2  How many 

individuals can be uniquely identified by age and 5-digit ZIP code alone? What if all age 

and gender information were removed? Would a 5-digit ZIP code still have the power to 

identify an individual? In other words, is it reckless to share maps at the 5-digit ZIP code 

level if all other patient information is removed (i.e., only sharing 5-digit ZIP code and 

diagnosis)? What if these ZIP codes were aggregated together to form units that each 

contained 20,000 people within them? What would the risk for identification be? Of 

course, it is easier to ask these questions than answer them, but by examining the history 

of HIPAA and clarifying the important of 3-digit ZIP codes versus 5-digit ZIP codes, we 

have a stronger foundation for answering these questions. Until then, the safe harbor 

method stands as our primary mode of guidance and, two decades after its introduction, 

these guidelines do not meet the public’s needs for data security nor researchers’ need for 

useful data.   

 

 
2 HIPAA safe harbor requires that DoB be removed before data can be shared, but investigators are still 

allowed to share age information (as long as the person is under 89 years old). 
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6.  Conclusion  

Vague privacy provisions stand as an obstacle in the way of progress and pose a threat to 

public privacy by hindering the ways in which epidemiologists and geographers 

understand how to share spatial data. This paper promotes understanding of the HIPAA 

safe harbor provision by providing a comprehensive overview of the law while also 

presenting various expert perspectives and relevant studies that, taken together, show 

how alternative methods to safe harbor can offer researchers better data and better data 

protection. In particular, two different interpretations of the safe harbor rule exist—the 3-

digit and the 5-digit zip code interpretation—and although 5-digit zip codes are not the 

intended level of aggregation under the rule, there is reason to believe that information 

can be safely shared in a map at this level. More research is needed in order to determine 

if the risk for individual identification is sufficiently low for maps shared at the 5-digit 

zip code level when DoB and gender are suppressed from a map’s corresponding table. 

Much has changed in the twenty years since the introduction of the safe harbor provision, 

and yet it continues to be the primary source of guidance (and frustration) for researchers 

trying to share maps, leaving many waiting for these rules to be revised in accordance 

with the times. 
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Chapter 4. Regionalization with Self Organizing Maps for Sharing Higher 

Resolution Protected Health Information 

 

 

Abstract 

Background: This paper addresses the challenge of sharing finer-scale Protected Health 

Information (PHI) while maintaining patient privacy by using regionalization to create 

higher resolution HIPAA-compliant geographical aggregations. We use existing 

regionalization methods and introduce two novel regionalization approaches that 

integrate self-organizing maps (SOM) and then compare and contrast these methods in 

terms of their fitness for analysis and display. Methods: Four regionalization approaches 

based on different clustering methods (max-p-regions, REDCAP, and SOM variants of 

each) were used to each create a configuration of regions that aligns with census 

boundaries, optimizes intra-unit homogeneity, and maximizes the number of spatial units 

while meeting the minimum population threshold required for sharing PHI under HIPAA 

guidelines. The relative utility of each configuration was assessed according to: 1) model-

fit characteristics using AICs and geosilhouettes and 2) region characteristics using 

compactness, homogeneity, and resolution. Results: Adding the SOM procedure to Max 

P resulted in statistically significant improvements for nearly all assessment measures 

whereas the addition of SOM to REDCAP primarily degraded these measures. The 

MSOM procedure’s most notable improvements were seen in increases to average 

compactness and resolution. In contrast, RSOM produced degraded measures of average 

compactness, homogeneity, and resolution, only having a slight improvement in the 

variability of region size. The differences observed can be attributed to the different 

impacts of SOM on top-down and bottom-up regionalization procedures. Conclusions: 

Overall, REDCAP proves to be a superior approach to regionalization for the analysis 

and display of PHI, providing relatively high scores on characteristics most important for 

neighborhood health (compactness, homogeneity, and model-fit), as well as providing 

much finer regions than the standard approaches we rely on today. Additionally, 

MSOM—which provided the finest grained units—stands to offer an improved version of 

Max P for those who require a bottom-up procedure or can’t access REDCAP. 
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1 Introduction 

With the big data revolution underway, an inundation of data and new, powerful, 

computational tools have highlighted the need to find better ways to disseminate 

information about human health and well-being. This need was driven home by the 

Covid-19 pandemic and the desire on the part of many people and communities for fine-

detailed information about local disease risk. One of the most common ways to share 

insights about human health is with data visualizations, including maps that are used to 

share geographically-linked, or spatial, information. The central challenge to mapping 

health data is the risk of disclosing highly confidential patient data by reporting the 

locations of people or cases in ways that make it easy to discover the identities and 

attributes of specific individuals.  To overcome this challenge, researchers must strike a 

balance between sharing map data in a form that is useful—typically by offering finer-

scaled data—and sharing map data in a form that protects patient privacy—typically by 

offering coarser-resolution data. The tension between needing fine and coarse data is a 

long-standing problem in health research. Geographic Information Science (GISc) 

approaches can help scholars solve this problem by offering innovative ways to share 

more useful data with research and policy communities while staying within the 

boundaries of privacy laws. In particular, regionalization — a geospatial approach of 

aggregating observations into new regions that can satisfy a variety of criteria—is a 

promising way to support better research with spatial health data. We examined several 

regionalization approaches for the case study of depression in the Twin Cities metro 

region of the United States  

 

Before introducing these promising strategies, we must first understand the basic tenets 

of the privacy laws that regulate the way in which we share spatial data. The US Health 

Insurance Portability and Accountability Act (HIPAA) is one of the most commonly used 

set of guidelines for the use and sharing of spatial health data. In order to ensure that 

patient privacy is protected, the HIPAA privacy law provides rules to help data 

custodians understand precautions necessary to work with Protected Health Information 

(PHI) (HHS.gov, 1996). The main goal of HIPAA is to strike a balance between 

protecting the privacy of individuals and providing researchers with data that is still 
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useful.  The most commonly used approach is termed the “safe harbor provision” of 

HIPAA, wherein individual locations must be aggregated to a polygon built from 3-digit 

zip codes that contains at least 20,000 people in addition to removing eighteen key 

identifiers, such as names, birthdates, and phone numbers. The idea here is that it is hard 

to identify specific individuals when there is not much known about them and they share 

the same characteristics with many other people. It is important to note that some 

confusion exists in regards to how geographic data should be aggregated to meet HIPAA 

standards (see Chapter 2 of this dissertation for more on this challenge). 

 

In the US, health information is very often mapped at the county-level, which depending 

on context can be both too-restrictive and too-permissive from a HIPAA perspective. 

Many forms of health data are collected at the county level and much health policy and 

provision is a county responsibility. More broadly, people are arguably used to thinking 

about many issues in terms of county-by-county comparisons. Interestingly these county-

level maps are not HIPAA compliant as in most instances a county shares more 

geographic information than what is allotted by the HIPAA safe harbor provision (which 

only permits data to be shared in the form of 3-digit zip codes and at aggregations of 

20,000 persons or greater).  And although many state agencies defer to state privacy laws 

as they are not regulated by HIPAA, if the state law is contrary to HIPAA, these agencies 

are required to follow the more stringent rule (which means that HIPAA could therefore 

restrict county-level data from being shared even by uncovered entities). Nonetheless, 

counties are one of the most commonly used units of display of health data in the 

US.  The potential for improving public health and safety is often greater than the risk for 

individual identification (as with in an emergency outbreak or public health crisis), and 

therefore many agencies would conclude that the use of county-level data is justified 

given it serves communities while sufficiently protecting individual identities. While 

counties may not satisfy HIPAA because they are too-fine scaled, they are often also too 

coarse to be useful in many parts of the country. Consider metropolitan areas with large 

populations. Hennepin County Minnesota, for example, has a population of 1.3 

million.  This number is well over the 20,000 person threshold delimited under safe-

harbor guidelines, so arguably it is possible for smaller geographies within Hennepin 
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County to be safely shared without putting individuals at risk for identification (as long as 

these smaller geographies still had more than 20,000 people within them). 

 

Here we explore the potential for a less stringent but arguably still-valid interpretation of 

the safe-harbor provisions. We use regionalization, or zone design, as a way to build 

better HIPAA-compliant maps. Regionalization is a way of developing spatial units that 

satisfy key elements of HIPAA while also being more useful for research and policy. We 

explore a generic approach that allows for the aggregation of health records into any 

geocode (meant in the sense of any arbitrary region that encompasses at least 20,000 

people) rather than only 3-digit ZIPs (Browne et al., 2014; Jung & El Emam, 2014; Mu et 

al., 2015). The reasons for exploring alternates to the 3-digit ZIP code are twofold: 1) it 

allows for finer resolution data therefore permitting the exploration of more 

computationally intensive techniques, and 2) it is more practical in the sense that very 

few people share data at the 3-digit ZIP code level because this type of geography is too 

coarse-grained (i.e., it often covers large expanses) and is unfamiliar to most people. 

Regionalization offers units that align with census boundaries, optimize intra-unit 

homogeneity, and maximize the number of spatial units while meeting the minimum 

population threshold required for sharing PHI under HIPAA guidelines.  

 

Regionalization is a geospatial analytical process that builds custom regions from 

underlying data to suit a specific function or for the display of specific data. This 

approach gives researchers control over the shape, size, and demographic makeup of the 

resultant regions. Regionalization can aggregate underlying units (or observations groups 

into spatial units) while optimizing an objective function based on the investigator’s 

research needs (Openshaw, 1977). A common example is aggregating units of relatively 

fine-scaled census geography, like blocks or block-groups, into a set of larger regions for 

analytical purposes. One important form of optimization is developing regions that 

maximize homogeneity within regions and maximize heterogeneity between them in 

order to support other forms of analysis. For example, regionalization can increase the 

power of statistical analyses by developing better observations. Data aggregation reduces 

the margins of error from insufficient samples (which can be quite large especially within 
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fine-scale units such as census block groups) by ensuring that units minimize artificial 

heterogeneity (Folch & Spielman, 2015). It may also offer to strengthen other kinds of 

analysis by making regions more homogenous among one another (as opposed to within 

each unit) as a way of controlling a given variable. For examples, by building regions that 

are uniform in terms of median household income we can, in essence, help control for 

potential confounding when mapping related variables like green space or pollution 

(Krzyzanowski et al., 2019). 

 

Regionalization holds many potential advantages for the analysis and sharing of PHI 

under the aegis of HIPAA’s safe harbor provision. In spite of the general importance of 

regionalization to spatial analysis, its use in the context of privacy protection has been 

very limited. Very few studies have explored the use of regionalization as a means to 

create units that meet data privacy regulations (Croft, 2016; Mu et al., 2015; Wang, Guo, 

& McLafferty, 2012).  These studies used regionalization (Wang et al., 2012) or multiple 

regionalization strategies (Croft, 2016; Mu et al., 2015) to create configurations that 

reduce the amount of suppression required, maximize the number of regions, or 

maximize the compactness of regions. Despite many insights, at the time of writing, none 

of these studies offer publically available tools or workflows that can be easily used by 

others. Furthermore, these regionalization procedures were designed for specific use 

cases with the goal of restricting the extent to which the geographic aggregations could 

be refined either to achieve sufficient anonymity of microdata (Croft, 2016) or reliable 

risk estimates for low-incidence disease such as cancer (Mu et al., 2015; Wang et al., 

2012). Therefore, if these regionalization procedures were eventually shared with the 

public, the scripts and workflows would still require some sort of modification in order to 

achieve the finest-grained map units possible for sharing PHI. 

 

The present project uses regionalization to create higher-resolution HIPAA-compliant 

regions in order to address the need to share finer-scale maps while adhering to privacy 

standards.  This research offers several significant advances in the use of confidential 

health data.  First, it addresses a real need for a greater variety of ways to work with, 

present, and understand PHI. Second, it advances knowledge of how we could use 
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regionalization to analyze and report PHI in ways that satisfy HIPAA guidelines, or more 

generally, any rules that specify population thresholds and geographical limits. By 

extension, this work points the way towards sharing data with the community at a 

meaningful resolution without breaching HIPAA privacy regulations. Third, our case 

study uses a real public health dataset (depression diagnoses) to assess best-fit among 

different regionalization outputs.  Therefore, in addition to advancing the theory and 

method of data-sharing and visualization, there is potential to provide innovative tools to 

facilitate dissemination of fine-scale information within patterns of depression to the 

community.  

2 Methods 

We test several different regionalization methods in terms of their potential to develop 

HIPAA-compliant maps in the context of neighborhood-level depression risk in the Twin 

Cities region of Minnesota, United States.  The regionalization procedures and 

assessments require the use of two different data sets, patient-level data on depression 

and socioeconomic data from the US Census. We tested two basic forms of 

regionalization, heuristic (Max P) and hierarchical (REDCAP), and integrated self-

organizing maps with each, so we have four basic modalities. We assessed each of these 

four types of regionalization with two measures of model-fit (Akaike Information 

Criterion and Geosilhouettes) as well as three measures of region characteristics 

(homogeneity, resolution, and compactness). 

2.1 Data and the Twin Cities region 

We conducted our analyses for a case study set in the Twin Cities of Minnesota. The 

Twin Cities metropolitan region includes Minneapolis and St. Paul and encompasses the 

seven counties that contain and surround these cities (Anoka, Carver, Dakota, Hennepin, 

Ramsey, Scott, and Washington).  The seven-county region is commonly used in research 

as it provides a broad range of human and environment characteristics from which to 

explore. 
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We use two basic datasets: socioeconomic data from the US Census and patient-level 

data from a Twin Cities’ health system. We used the socioeconomic data to guide the 

regionalization, especially to achieve homogeneity and a minimum population, and to 

create a simple model of depression for assessing model-fit. We used 2010 census data, 

including median household income and education as measured as number of persons per 

census block group with a bachelor's degree or higher. Median household income and 

educational attainment together have been shown to be an adequate measure of SES 

(Gerber et al., 2008; Roblin, 2013; Siahpush, Heller, & Singh, 2005). In addition to these 

census data, the project used the Fairview Health system’s data from the Academic 

Health Center Clinical Data Repository to assess model-fit in each of the configurations 

(Fairview Health Clinical Data Repository, 2019).  Patient data included electronic health 

records of 97,432 outpatient visits between 2010 and 2018. Patients were included if they 

were over the age of 18 and had at least 1 depression diagnostic code (ICD-9 code: 

296.20, 296.22, 296.23, 296.30, 296.32, 296.33, 311; ICD-10 code: F32.XX, F33XX). 

For patients who presented more than one diagnostic visit between 2010 and 2018 only 

the first instance was kept.  The prevalence of depression was calculated as the number of 

cases divided by the total population within each unit. 

 

2.2 Regionalization overview 

There are many different regionalization methods. The present study required a 

regionalization method that: 1) guaranteed contiguous regions (so as to not have gaps and 

to have neighborhoods), 2) constrained regions to align with census boundaries (because 

we use census data at various scales), 3) incorporated a population minimum (for privacy 

protection), and 4) did not limit the number of regions (in order to create as many as 

possible). We examined methods that meet these requirements and exemplify the three 

main kinds of generic clustering approaches (in the sense that regionalization is a 

specialized instance of the more general set of clustering approaches used across the 

sciences), namely heuristics, hierarchical clustering, and neural networks (Dao & Thill, 

2018). For heuristics and hierarchical clustering respectively, we chose two widely 

accepted current methods, Max P Regions and REDCAP, while for neural networks we 
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turn to self-organizing maps (SOM). SOM must be tied to another regionalization method 

(it is a clustering approach but not a spatial regionalization method) and so we introduce 

two novel methods—variants of Max P and REDCAP that integrate SOM. We refer to 

these new regionalization approaches as MSOM (Max P + SOM) and RSOM (REDCAP 

+ SOM). In sum, we have four key approaches: Max P, REDCAP, MSOM, and RSOM. 

 

Max P Regions is so named because it solves the ‘p-regions problem,’ which attempts to 

find the maximum number of contiguous areas that can be created from a study area 

while optimizing an objective function.  The method begins with an initial random seed 

point, merging contiguous base units until a satisfactory solution is achieved or—if the 

configuration is determined to be unfeasible—a new random seed point is chosen and the 

process starts over again. Max P can be thought of as a bottom-up procedure as it starts 

by iteratively linking together smaller units into larger regions and continuing to build-up 

until the final solution is reached.  Because Max-p partitions zones by the means of linear 

integer programming (LIP)  which can be computationally intensive, it is vulnerable to 

becoming trapped in a local minimum (meaning that it could converge on a less than 

optimal configuration) (Li, Church, & Goodchild, 2014; She, Duque, & Ye, 2017).  In 

order to address this, there are many heuristic approaches that can be added to Max P 

Regions including simulated annealing and tabu search—both of which prolong the 

search for an optimal solution by allowing for non-improving moves. 

  

REDCAP stands for Regionalization with Dynamically Constrained Agglomerative 

Clustering and Partitioning and describes a family of six methods that partition according 

to different attribute homogeneity (constraining) and contiguity rules (Guo, 2008). 

REDCAP is a hierarchical procedure, meaning that sub-regions are nested within larger 

areas.  Unlike Max P, REDCAP can be thought of as a top-down procedure that starts by 

creating a minimum spanning tree (MST) by growing branches, or links, between 

contiguous units that are the most similar to each other in attribute space (i.e., linking 

block groups that are most similar in median household income).  Once all units are 

connected in the tree, the branches are progressively cut with the aim to maintain the 

smallest overall sum of squared deviations possible. In other words, the first cut would be 
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between the two connected units that, when separated, produce two subtrees, or nests, 

that have smaller within group variances than the initial tree had prior to the cut. Culling 

of the tree continues until subsequent cuts can no longer result in an improvement to the 

final solution and the units are merged within their respective subtrees, becoming a new 

region.   

 

Self-Organizing Maps (SOMs) are a type of artificial neural network that is used to 

transpose complex high-dimensional data (including multivariate components across 

space and time) into a one or two dimensional map-like surface that highlights the 

strongest aspects of the dataset in different places in space and/or time. The neural 

network strategy places nodes (neurons) across a data set, and then uses those nodes to 

build a network of relation by assigning weights to each node based on its similarity to a 

vector, or the starting node. The vector in SOM is chosen at random at the start of SOM 

training.  The SOM algorithm is adaptive in the sense that it relies on unsupervised 

learning, specifically competitive learning, to create the neural network that finds the best 

matching unit (or the node that is most similar to the vector) and then transposes the 

winning characteristics onto a map-like surface. The Geo-SOM method, developed by 

Bação et al, accounts for space by incorporating a geographical tolerance or k parameter 

which restricts the search for the winning node to a neuron’s geographical neighbors 

(2004).  The Geo-SOM method has shown potential to be integrated into regionalization 

processes as it creates delineations between homogenous areas (Relia, Akbari, Duncan, & 

Chunara, 2018; Bação et al, 2005).  In particular, we turn to guidance from Bação's et al’s 

conference paper which suggested that ridges between places where high values meet low 

can be easily distinguished after transposing the u-matrix onto a geographical surface, 

and that these areas of change can be used to delineate homogenous areas (2005). With 

this knowledge, we introduce our two novel methods for partitioning areas by integrating 

GeoSOM with Max P and REDCAP regionalization to create the MSOM and RSOM 

methods. 
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2.3 Regionalization specifics 

The base units, or building blocks, for all four regionalization approaches were set to 

block groups. We repeated all regionalization processes thirty times to create thirty 

different configurations for the assessment stage of the analysis. 

 

Max P Regions. The Python library ClusterPy (Duque, Dev, Betancourt, & Franco, 2011) 

was used to implement the max-p-regions regionalization.  The regionalization was used 

to optimize areas to be homogeneous according to median household income and 

educational attainment.  A floor constraint of 20,001 was used to ensure that every region 

contains a population of more than 20,000.  The maximum number of iterations was set 

to 100 in order to increase the likelihood of achieving the maximum number of 

regions.  The tabuLength parameter was set to the default value of 85—limiting the 

number of non-improving moves.   

 

REDCAP. Guo’s REDCAP software was used to implement the REDCAP method 

(2008). The regionalization method was set to average-linkage clustering with full-order 

constraining.  These parameter settings were selected in accordance with previous work 

that suggests that full order constraining with average-linkage clustering maximizes the 

number of regions produced (Kugler, Manson, & Donato, 2017). The weights matrix 

used in the regionalization was built using rook contiguity and the regionalization process 

was set to optimize by the income and education variables (which were given equal 

weight). In order to ensure that the output meets HIPAA safe harbor standards, regions 

were set to contain a minimum of 20,001 persons. Unlike Max P Regions, REDCAP 

creates the exact same output with each run.  Therefore, in order to produce 30 slightly 

different configurations for our assessment, the smoothing setting needed to be changed 

after each execution. Adaptive kernel smoothing settings of 1 through to 28 were used, in 

addition to using no smoother and having one configuration that relied on empirical 

Bayesian smoothing (set to have three neighbors). We exhausted all of the available 

smoothing settings within REDCAP in producing the 30 different configurations. 
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MSOM. Our MSOM procedure involves integrating Bação's et al’s Geo-SOM method 

with Max P regionalization. The initial steps require the Geo-SOM procedure to build a 

u-matrix which is transposed onto the geographical surface.  This was achieved within 

Matlab (Bação's et al’s Matlab routines are available at 

<https://www.novaims.unl.pt/labnt/geosom/index.htm>) and R Project (our script 

available at <https://z.umn.edu/SOMregionalization>). The Geo-SOM was trained with a 

map initialization of 100 x 100; the geographic radius was set to 2 neighbors and a sheet 

hexagon lattice was used.  Latitude and longitude coordinates defined the geographical 

components used in training the GeoSOM, while median household income and 

educational attainment served as the non-geographical components. GeoSOM was 

iterated 30 times (to obtain 30 different u-matrices). Each of the thirty u-matrix tables 

were joined with their corresponding latitude and longitude component table to create 30 

complete output tables.  Figure 4.1A illustrates the spatial spread of the nodes for one of 

the thirty GeoSOM executions which can be observed from plotting the X and Y 

coordinates.  This process was streamlined via an R script that preprocesses GeoSOM 

output to prepare it for regionalization by joining the tables, formatting variable headings, 

removing records with NaN values, plotting the nodes, and building Thiessen polygons 

around each node (script available at <https://z.umn.edu/SOMregionalization>). Within 

this script, Thiessen polygons are assigned the u-matrix value of the node that falls within 

it (Figure 4.2A) and then projected onto a map of the Minneapolis metro area. U-matrix 

values were then transposed onto the map surface by assigning the u-matrix value of the 

Thiessen polygon to the block group whose centroid falls within it (Figure 4.2B-D). This 

block group-level map was then used as input for the Max P Regions regionalization 

procedure.  By setting the regionalization to optimize according to u-matrix values, we 

partitioned the study area according to the homogenous areas identified by Geo-SOM 

while ensuring a minimum population of 20,001 persons per unit.  Supplemental 

illustrations and animations detailing this process can be found at 

(<https://z.umn.edu/SOMregionalization>).  

 

https://www.novaims.unl.pt/labnt/geosom/index.htm
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4. 1 A) Nodes for one of the thirty GeoSOM executions. B-C) Thiessen polygons built around each node. 

 

 
4. 2 A) Thiessen polygons each assigned the u-mat value of the node that falls within it. B) Thiessen 

polygons projected onto a map of the Minneapolis metro area. C) U-matrix values transposed onto the map 

surface by assigning the u-matrix value of the Thiessen polygon to the block group whose centroid falls 

within it. D) Final u-matrix map at the block group level. 
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RSOM. 30 separate u-matrices were transposed onto a geographical surface in the same 

manner as described in for MSOM. Then these 30 u-matrix maps were used as input for 

the REDCAP procedure. The RSOM procedure relied on the same parameter settings that 

were used within the REDCAP procedure (see REDCAP section), with the only 

difference being that the regionalization process was set to optimize by u-matrix values 

instead of the income and educational attainment variables.  

 

2.4 Assessment procedures 

Assessment is a key step in evaluating the utility of configurations created from different 

regionalization approaches with respect to their fitness for use in developing analytical 

frames while protecting patient confidentiality. In simple terms, we adopt a two-pronged 

assessment of each regionalization (Table 1), focusing on model-fit characteristics and 

then on spatial measures. 

 

 

Model-fit Characteristics 

AIC 

Geosilhouettes 

 

Spatial Measures 

Compactness 

Homogeneity 

Resolution 

Table 4.1 Assessment approaches. 

 

First, we determine how well a given configuration supports a simple model of health 

with a standard model-fit measure, the Akaike Information Criterion (AIC), and then the 

more spatially-oriented geosilhouette approach. The AIC is traditionally used as a means 

of model selection, or finding the most parsimonious model from a set of candidate 

models that use different covariates and/or interaction terms, but it can also be used to 

assess relative goodness-of-fit in a set of models that use the same variables but different 

geographic scales (Cabrera-Barona et al., 2016).  We used multilevel modeling 

techniques to develop a simple model of linear regression of greenspace and air quality 

on risk of depression and use this model to compare the goodness-of-fit between the four 
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different regionalization methods. The geosilhouette approach did not rely on this model 

and is an assessment of depression risk and space alone. 

 

AIC.  The Akaike Information Criterion (AIC) is a well-established and widely supported 

in the modeling literature (Burnham & Anderson, 2004; Cabrera-Barona, Wei, & 

Hagenlocher, 2016; Rose & Nagle, 2017). In order to determine which configuration 

provided the best model-fit, we used the four regionalizations to regress depression risk 

on greenspace and then compared the AICs across each model. Lower AIC values 

indicate more parsimonious models or a relative better fit that strikes a balance between 

over and under-fitting the data. In order to do this, we first used multilevel regression 

modeling to select a suitable model from a set of possible models describing the 

relationship between depression risk, greenspace, air quality, and median household 

income. Multilevel modeling revealed a more parsimonious model could be obtained by 

adding air quality as a covariate. However, the addition of median household income to 

the model did not improve the model-fit. For this reason, the final model maintained air 

quality but not income (Y risk = a + bx greenspace +bx air quality). After selecting the model, we 

performed 30 regression analyses for each of the 4 regionalization approaches.  The 

average AIC was compared across each regionalization approach to assess relative 

model-fit and determine which of the four configurations is (on average) better suited for 

modeling the relationship between depression and greenspace (as determined by the 

model with the lowest average AIC). Regression modeling is commonly used in 

geographic analyses of aggregated data (Fei et al., 2016; Hallowell, Robb, & Kintziger, 

2018; Iroh Tam, Krzyzanowski, Oakes, Kne, & Manson, 2017). 

 

Geosilhouette. Geosilhouettes are a geographic approach to model-fit specifically created 

for model-fit for geographical units assigned to larger clusters (Wolf, Knaap, and Rey, 

2021), which in our case means regions built from regionalization. Traditional measures 

of goodness-of-fit largely focus on attribute homogeneity and ignore or simplify the role 

of space. For example, Rousseeuw’s 1987 original silhouette model measures a single 

observation's goodness-of-fit to its region (relative to another region) using Euclidean 

distances. In contrast, Geosilhouettes uses a modified definition of distance and similarity 
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in order to incorporate a more meaningful measure of joint geographic-attribute 

similarity. There are two kinds of geosilhouette’s: path and boundary silhouettes. In this 

study, we use the path geosilhouette model, which uses the path dissimilarity distances to 

assess how well a regionalization strategy places a block group into a region, given that 

the block group’s next-best-connected (NBC) region may be further away. The path 

dissimilarity model accounts for the dissimilarity between the block group and the block 

groups within its NBC region by looking at the total attribute dissimilarity along the path 

that connects them. This is how the path silhouette modifies the distance metric of the 

original silhouette to account for geography. It is a silhouette score that uses the length of 

the dissimilarity paths within the computation. A path silhouette score is calculated for 

each block group taking into account the joint spatial–social similarity of the block group 

to the block groups contained within its NBC region. When the silhouette score is close 

to 1, that means that the block group has a short attribute-weighted path to its NBC 

region.  In other words, the block group is physically close to its NBC region and/or very 

similar in attribute value to it. If the silhouette score is close to -1 that indicates that the 

block group is better connected with block groups in its own region compared to the 

block groups within its NBC region. In this study, path geosilhouettes scores were 

calculated for each block group and then the average geosilhouette score was calculated 

for each region for all 30 runs. All calculations were executed using the PySAL library 

that is freely available to the public from 

https://pysal.org/esda/notebooks/geosilhouettes.html. 

 

The second set of approaches for assessing regionalization involves examining how well 

each method can produce regions that are meaningful or useful according spatial 

measures. Model-fit characteristics help determine the extent to which a regionalization 

help capture an important modeled relationship, but the best-fitting configuration for one 

model is not necessarily the one that will capture a wider array of potential relationships 

(Openshaw, 1977). Therefore, it is helpful to examine each regionalization according to 

how well it offers more generic desirable neighborhood characteristics. We assess regions 

with three of the most commonly accepted and longstanding measures in the region and 

cluster assessment literature, namely resolution (shape and size), intra-unit homogeneity, 

https://pysal.org/esda/notebooks/geosilhouettes.html
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and compactness (Openshaw, 1977; Openshaw, 1983). Note that we do not explicitly 

assess the extent to which method enhances data privacy because it is held constant 

across methods by being integrated into each regionalization process itself via the 

population minimum threshold of 20,000 people.  

 

Homogeneity. Pinzari and others (2018) developed a measure appropriate for assessing 

homogeneity of regions built from aggregation. Their homogeneity index accounts for 

how an attribute is distributed across ordinal categories (in deciles) within each region 

rather than only accounting for the range of the data (for a thorough explanation, see 

Pinzari et al. (2018)). Homogeneity indices were calculated for each region and then 

averaged across the entire configuration for all 30 runs. All calculations were executed 

using an R script that is freely available from https://ij-

healthgeographics.biomedcentral.com/articles/10.1186/s12942-018-0162-8#Sec16.  

 

Resolution. Overall resolution for each configuration was determined according to the 

size of regions (measured as polygon areas) and the variance of the region areas within 

each configuration. In terms of spatial modeling, configurations with a smaller average 

area value are generally considered more desirable as smaller units are generally 

associated with higher resolution and offer greater spatial specificity in terms of 

measuring features on the ground (Goodchild, 2011). Similarly, configurations with a 

smaller variance of region areas are considered more desirable for spatial modeling 

because there is a more consistent region size across the realization. Variance provides a 

simple measure of the extent to which the level of detail in one part of the configuration 

matches all other parts of the configuration.  

 

Compactness. Average compactness of each configuration was assessed with the 

isoperimetric ratio, perhaps the most widely-accepted standard for compactness (Li et al., 

2013; Osserman, 1978).  This compactness measure is calculated by dividing the area of 

a region by the area of a circle with the same perimeter as the region (Kugler et al., 

2017).  Thus, a high isoperimetric ratio indicates more compact regions and is generally 

https://ij-healthgeographics.biomedcentral.com/articles/10.1186/s12942-018-0162-8#Sec16
https://ij-healthgeographics.biomedcentral.com/articles/10.1186/s12942-018-0162-8#Sec16
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seen as more desirable in how it avoid sprawling shapes. The overall compactness of the 

configurations was calculated as the average of compactness scores over all 30 

realizations.  

 

3 Results 

We assessed the four regionalization modalities (Max P, REDCAP, MSOM, and RSOM) 

across the five assessment measures, namely model-fit characteristics (AIC and 

geosilhouettes) and region characteristics (compactness, homogeneity, and resolution). 

We use a mix of statistical and graphical reporting methods, supplementing use of test 

statics and p-values with group means, effect sizes, maps, and graphics. Our primary 

statistical approach was F-tests with post hoc comparisons of the four regionalization 

approaches. Levene’s F test revealed that the homogeneity of variance assumption was 

not met for any of the assessment measures (p < 0.05). Since the assumption of 

homogeneity of variance was not met for this data, we used Welch’s ANOVA (Welch’s F 

test) followed by Games-Howell post hoc comparisons.  Furthermore, normality testing 

revealed that the homoscedasticity assumption was met for all measures except for the 

geosilhouettes. For this reason, geosilhouette scores were analyzed with nonparametric 

tests, the Kruskal-Wallis test and Dunn's test with a Bonferroni correction. 

There are many potential comparisons among the four methods but since the four are not 

independent (given how SOM modifies other methods), we focus on comparing the two 

parent approaches (Max P and REDCAP) and the parent and offspring approaches (Max 

P vs MSOM and REDCAP vs RSOM). Even though we focus on three comparisons, we 

opted for a conservative alpha value for our post hoc tests (setting alpha to the Bonferroni 

adjusted .008 for six comparisons (.05/6)). We do this because MSOM and RSOM stand 

best to be compared to their parent regionalization approaches; however, we 

acknowledge that others may have interest in comparisons that we did not find that 

interesting. Therefore, results from all 6 comparisons can be found in figure 5.1 in the 

appendix. 
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3.1 Spatial measures: Compactness 

Welch’s ANOVA determined that there was a statistically significant difference in mean 

compactness scores between the regionalization methods Welch’s F (3, 61.14) = 203.25, p < 

.0001, ω2 = .90, 90% CI [0.87, 0.93]. Subsequent post hoc comparisons with Games-

Howell revealed that REDCAP produced configurations with significantly higher mean 

compactness scores (.2732 ± .0037) compared to all other regionalization methods 

including Max P (.2026 ± .0013). In terms of the differences observed between parent 

(without SOM) and offspring regionalization (after SOM integration), we found that 

adding SOM to the Max P procedure (i.e., MSOM) resulted in a 14% increase in mean 

compactness to .2313 ± .0012 (p < .0001).  In contrast, adding SOM to the REDCAP 

procedure (RSOM) resulted in an 8% reduction in mean compactness scores (.2521 ± 

.0026) which was statistically significant (p < .0001). 

 

 

4. 3 150-meter resolution raster maps of the average cell value calculated from stacking 30 rasterized 

compactness score maps for each of the four regionalization strategies (Max P, MSOM, REDCAP, and 

RSOM). A single point on the scatter plot represents the average compactness score of one map 

configuration. There are 30 points in each regionalization group. 
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3.2 Spatial measures: Homogeneity 

Results from Welch’s F test determined that there was a statistically significant difference 

in mean homogeneity index between the regionalization methods Welch’s F(3, 63.52) = 

191.84, p < .0001, ω2 = .89, 90% CI [0.85, 0.92]. Post hoc comparisons (with Games-

Howell) revealed that Max P produced configurations with significantly higher mean 

homogeneity indices (.6952 ± .0027) than all other regionalization methods including 

REDCAP (.6435 ± .0018). Additionally, adding SOM to the Max P procedure (MSOM) 

resulted in a 9% decrease in average homogeneity (.6321 ± .0016) which was statistically 

significant (p < .0001). The same was found when adding SOM to the REDCAP 

procedure (RSOM), which reduced average homogeneity to .6165 ± .002 (p < .0001).  

 

 

4. 4 150-meter resolution raster maps of the average cell value calculated from stacking 30 rasterized 

homogeneity indices maps for each of the four regionalization strategies (Max P, MSOM, REDCAP, and 

RSOM). A single point on the scatter plot represents the average homogeneity of one map configuration. 

There are 30 points in each regionalization category. 
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3.3 Spatial measures: Resolution  

Welch’s ANOVA results determined that mean resolution (according to average area of 

the regions within a configuration) differed among the regionalization methods, in that 

Welch’s F(3, 62.65) = 36.0, p < .0001, ω2 = 0.61, 90% CI [0.48, 0.70]. Games-Howell post 

hoc comparisons revealed that the Max P procedure produced configurations with 

significantly finer-grainer units, or units with lower average areas, (28.1 ± .2316 km2) 

than REDCAP (30.0 ± .3439 km2). Additionally, adding SOM to the Max P procedure 

(MSOM) reduced the average area even further to 26.6 ± .172 km2 (p < .0001). No 

statistically significant difference in resolution was observed between REDCAP and 

RSOM (29.4 ± .3308 km2, (p = .55). The average number of regions per configuration 

corroborates these findings. Whereby, MSOM produced the most regions (117.066), 

followed by Max P (112.633), REDCAP (103.8), and RSOM (99). 

 

ANOVA results also showed that the mean variability of regions areas (standard 

deviation of region areas) differed among the regionalization methods Welch’s F(3, 64.23) = 

54.14, p < .0001, ω2 = 0.70, 90% CI [0.59, 0.77]. Games-Howell post hoc comparisons 

revealed that the Max P procedure produced configurations with statistically significantly 

lower average variation in region size (117 ± 1.23 km2) than REDCAP (123 ± 1.37 km2; 

p =.009). And additionally, adding SOM to the Max P procedure (MSOM) reduced the 

average variability in region area even further to 102 ± 1.09 km2 (p < .0001). 

Furthermore, although no difference was found in average region size between REDCAP 

and RSOM (paragraph above), a statistically significant difference in average variability 

in region size was observed between these two approaches (116 ± 1.29 km2, (p =.004)). 

See figure 5.2 in the appendix for a scatter plot for the standard deviation of areas. 

 



92 
 

 
 
4. 5 150-meter resolution raster maps of the average cell value calculated from stacking 30 rasterized 

average area maps for each of the four regionalization strategies (Max P, MSOM, REDCAP, and 

RSOM). A single point on the scatter plot represents the average area of all of the regions contained within 

one map configuration.  

 

3.4 Model fit: Akaike Information Criterion.   

Welch’s F test results determined that mean AIC (outputted from a linear regression of 

greenspace and air quality on risk of depression) differed among the regionalization 

methods Welch’s F(3, 57.51) =196.4, p < .0001, ω2 = .91, 90% CI [0.87, 0.93]. Lower AIC 

values indicate more parsimonious models and therefore lower AIC values are more 

desirable (or higher negative values). Post hoc comparisons revealed a statistically 

significant difference between Max P (-642.1 ± 14.5) and REDCAP (-634.6 ± 12.1). 

Furthermore, there was a significant difference in average AIC after adding SOM to the 

Max P procedure (MSOM) -653.8 ± 10.5. However, adding SOM to REDCAP did not 

have a statistically significant effect on the average AIC (-547.5 ± 6.6, p=0.3).  
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Recall that prior to AIC comparison, multilevel modeling was used to select which 

covariates should be included in our model of depression risk. If, however, someone were 

to compare AICs across regionalization types using a model with different covariates 

and/or interactive terms, the relative pattern observed across regionalization types may 

change. In fact, we found a very different pattern when comparing the AICs in a simple 

bivariate model of depression risk and greenspace Welch’s F(3, 61.49) =34.3, p < .0001, ω2 

= .60, 90% CI [0.47, 0.69]. These results are important as they demonstrate that using 

AIC as a metric for comparing relative model-fit between regionalization strategies could 

be considered somewhat questionable because the AIC is rather sensitive to the model 

used. For this reason, we recommend that the AIC be only used to assess relative model-

fit in geographic regionalization studies when the model is pre-specified and investigators 

are confident in their choice of variables. See figure 5.2 in the appendix for a scatter plot 

for the average AICs. 

 

3.5 Model fit: Geosilhouettes 

Kruskal-Wallis test results determined that mean geosilhouette scores (derived from 

modeling depression risk) differed among the regionalization methods Kruskal-Wallis 

χ2= 97.24, p < .0001, df=3, ε2= .82, 90% CI [0.79, 0.85]. Bonferroni adjusted post hoc 

comparisons with Dunn’s test revealed that REDCAP had a higher mean geosilhouette 

score (better model-fit) than Max P (.013 ± .001 vs -.136 ± .001, respectively (p <.0001)). 

No significant difference was observed between Max-P and MSOM (MSOM= -.139 ± 

.004, p = 0.2) or between REDCAP and RSOM (RSOM=.004 ± .002,p=.09). When using 

median household income instead of depression risk as the variable of interest in the 

geosillhouettes model, the relative pattern observed between regionalization approaches 

remained the same.  
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4. 6 150-meter resolution raster maps of the average cell value calculated from stacking 30 

rasterized geosilhouette score maps for each of the four regionalization strategies (Max P, 

MSOM, REDCAP, and RSOM). A single point on the scatter plot represents the average geosilhouette 

score of one map configuration. There are 30 points in each regionalization group. 

 

4 Discussion 

Overall, all of the regionalization procedures can successfully produce contiguous 

regions that meet our desired criteria for mapping PHI. Each method can produce regions 

that: 1) align with census boundaries ; 2) contain populations of at least 20,000 people; 

and 3) provide a better resolution than the current standard for sharing PHI (3-digit 

ZCTAs). The regionalizations provided between 99 and 117 units on average per 

configuration which is far greater than that provided by counties and ZCTAs.  Figure 4.7 

illustrates how regionalization provides a much higher resolution depiction of the Twin 

Cities—with around two dozen units which can be used to describe various parts of 

Minneapolis and St Paul. On the other hand, counties and 3-digit ZCTAs only split the 
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cities into two regions (each containing populations well over 20,000).  The oft-used 5-

digit zip codes provide a resolution almost as good as what is given by regionalization, 

but this schema suffers from suppression or holes in the data where some regions are 

removed because they contain populations less than 20,000. In terms of meeting the 

20,000 population threshold required by HIPAA safe harbor, regionalization achieves a 

full configuration of finer-scaled units for displaying PHI, striking a balance between 

high resolution and protected data.   

 

 

 
4. 7 The Twin Cities (bright blue) shown at the level of 3-digit Zip codes, Counties, and 5-digit Zip codes 

(aggregations commonly used to share PHI) and compared with regionalization (MSOM in this example). 

Areas that contain populations under 20,000 are suppressed and are shown in black. 

 

Furthermore, if we were to ignore the HIPAA safe harbor requirements and compare how 

regionalization fares against finer-scaled (non-HIPAA compliant) alternatives such as 

census tracts, we find that regionalization offers better fit despite census tracts having a 

higher resolution (census tracts outnumber regionalization in units by more than 6 to 1). 

The better relative fit is exemplified in Figure 4.8 which shows how using regionalization 
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(Max P, MSOM, REDCAP, and RSOM) leads to tighter fitting predictions (smaller 

average residuals) compared to census tracts in the example of the highly-correlated 

relationship between greenspace and nitric dioxide exposure. This greater fit is due to 

how regionalization approaches will optimize partitioning according to median household 

income and education (which have been shown to covary with greenspace and nitric 

dioxide exposure).  In other words, the optimization process leads to improved groupings 

of distinct populations, and these distinct populations systematically differ in exposure to 

green spaces and nitric dioxide.  In contrast, census tracts (which are built with 

socioeconomic homogeneity in mind) are not always homogeneous since populations 

shift overtime while tract boundaries remain relatively stable. This means that some 

census tracts contain disparate populations and these tracts would have higher residuals. 

Therefore, the optimization process in regionalization has implications for how we can 

better identify communities or neighborhoods. Still, we might argue that although 

neighborhoods are usually homogenous, some are not (i.e., areas undergoing 

gentrification), and there is value in maintaining the diversity of these areas within our 

analysis. This is where other parameters (such as compactness) come into 

play.  Maintaining a certain level of compactness could help to keep some of these 

diverse neighborhoods intact. 

 

 

4. 8 A comparison of census tracts versus regionalization (Max P, MSOM, REDCAP, and RSOM) 

in the example of the highly-correlated relationship between greenspace and nitric dioxide 

exposure. All five plots are scaled the same on the x-axis and y-axis. 
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There are many different regionalization strategies and they all differ in terms of how 

they prioritize the optimization of homogeneity and maintaining compact units.  The 

present study focused on two of the most popular strategies, Max P and REDCAP, and 

two SOM variants of these procedures. The following paragraphs provide a discussion of 

the differences observed between these different regionalization approaches in terms of 

our five assessment measures. 

 

4.2 Global variation among regionalization approaches 

There some consistent global differences among the four regionalization approaches, 

where global is meant in the spatial sense of overall or averaged characteristics that 

ignore local variation within each regionalization. We continue to focus on the 

comparisons between the two parents regionalization approaches (Max P and REDCAP) 

and between parent (non-SOM) and offspring (SOM) approaches. By examining global 

differences in homogeneity, compactness, resolution, and model-fit among 

regionalization approaches, we are able to paint a general picture of the advantages and 

disadvantages of each strategy. We consider how local variations in region traits present 

across all four strategies in the following section. 

 

4.2.1 Parent vs offspring: How does SOM impact regionalization? 

SOM has different effects on Max P and REDCAP. Overall, MSOM was an improved 

version of Max P for almost every measure.  Compared to its parent regionalization (Max 

P), MSOM provided superior compactness, model-fit (according to the AIC metric), and 

resolution (in terms of having both smaller average size and less variability between 

sizes).  The only instance in which adding SOM to Max P resulted in significant 

degradation of region characteristics was for average homogeneity. This means Max P’s 

only advantage was that it maintained the highest average level of homogeneity 

compared to the other three methods.  In contrast, adding SOM to REDCAP did not 

result in much improvement, whereby RSOM had degraded measures of compactness 
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and homogeneity, as well as having no significant effects on resolution and AIC. The 

only improvement we observed was that RSOM had significantly reduced variability of 

region size compared to REDCAP. For most modeling situations, the single improvement 

to the variability of region size likely does not outweigh the degradation of compactness 

and homogeneity.  In light of this overall degradation in performance (to mention the 

extra time and effort it takes to implement the RSOM procedure compared to REDCAP), 

RSOM may not be a worthwhile approach for many situations. 

 

Why does SOM help Max-P but not REDCAP? In essence, SOM impacts region 

characteristics differently depending on whether the regionalization procedure proceeds 

in a top-down fashion (hierarchical) or bottom-up (linear integer programming) 

fashion.  Max P and REDCAP delineate regions in different ways and therefore prioritize 

different characteristics. Max P begins with creating feasible solutions guided by the 

population threshold and holds off on the optimization of attribute similarity until the 

final step, while REDCAP does the reverse.  REDCAP uses attribute similarity as an 

initial means to build the spanning tree and then makes cuts guided by attribute similarity 

and the population threshold in the final step.  Another major difference is that Max P 

integrates a search heuristic (we used tabu search) to test out different arrangements in 

that final step in order to find the optimal solution (tabu search allows for non-improving 

moves which dramatically expands the range of solutions tested). REDCAP is simpler in 

the sense that the range of possible solutions is restricted to one initial spanning tree built 

in step 1. In other words, Max P creates the (near) optimal solution that prioritizes 

homogeneity while REDCAP creates the best solution within the reach of its original 

spanning tree. For these reasons, Max P prioritizes homogeneity while REDCAP 

indirectly favors compactness by using the hierarchical and nested structure of minimum 

spanning trees. These procedural differences in regionalization are why SOM ended up 

improving most of the region characteristics of Max P and degrading most of those of 

REDCAP. 
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In terms of specifics of how SOM affects REDCAP and Max P, we can dive into specific 

measures. 

• Homogeneity. The SOM procedure essentially smooths the data before inputting 

it (the u-matrix) into regionalization. Blending the underlying data before 

regionalization by smoothing population demographics (in this case median 

household income and education) impacts the output in terms of our region 

characteristics. The direct degradation of average region homogeneity after 

adding SOM to both Max P and REDCAP regionalization is straightforward to 

explain: the smoothing action of SOM degrades the precision of the income 

variable thereby reducing income-based homogeneity. What is less clear, is by 

what means SOM impacts the other region characteristics. 

• Resolution. SOM impacts the variability of the region sizes the same for both 

Max P and REDCAP, reducing the variability of region sizes.  It is difficult to 

pinpoint with certainty a primary driver of this effect, but it would be reasonable 

to believe that, by degrading homogeneity in certain spaces, SOM helped to 

reduce the average region size. By changing the layout of the data (via SOM) we 

change the tendencies of the aggregation.  In this case, changing these tendencies 

happened to lead to configurations with more, finer units. Additionally, SOM also 

impacts the average region size of Max P and REDCAP, reducing the average 

region size (but this reduction is only statistically significant between Max P and 

MSOM).  SOM’s impact on resolution is more thoroughly discussed in a later 

section on the differences in local variation observed within each regionalization. 

This is to say that different areas on the map experienced greater changes to 

resolution after SOM than others.  

• Compactness. SOM affects compactness differently for REDCAP than for Max 

P, whereby adding SOM increased the average compactness of Max P and 

decreased the average compactness of REDCAP.  This is because Max P thrives 

on the precision of the underlying data, so disrupting the data with SOM reduces 

homogeneity and results in an indirect improvement in compactness. That is to 

say, with Max P, when the underlying data is blended, the lowest lows and the 

highest highs move towards the center of the distribution and the data is made to 
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be less disparate. This means that, in the final step of Max P regionalization (tabu 

search), regions are less apt to sprawl because nearest neighbors are made to be 

more similar and units that are farther away are made to be more disparate. 

RECAP, on the other hand, makes compactness a priority by the means of its 

hierarchical structure, so when SOM is applied to RECAP, compactness is 

degraded due to changes in the initial spanning tree (which would now rely on 

underlying data that does not reflect homogeneous areas as well).  This new 

spanning tree limits RSOM’s ability to make the most of preexisting highly 

homogenous compact base units. Because this is a factor of the layout of the 

underlying data, a more thorough discussion is provided in section 4.3 on the 

local variation. 

• Model-Fit (AIC). SOM also impacts the model-fit, whereby adding SOM 

improves the average AIC for Max P but does not improve model-fit for 

REDCAP to an extent that would be considered statistically significant. It is 

difficult to pinpoint with certainty a primary driver of this effect, but it would be 

reasonable to believe that, for Max P, changes in region compactness after SOM 

may have driven the increased model fit seen in MSOM. The AICs were derived 

from a model of greenspace and air quality on depression risk, and when we look 

at a map of depression risk, we notice that it appears to be concentrated in the 

center of the metro area with a projection of higher risk out east that closely aligns 

with a projection of low green space and poor air quality (Figure 4.9). It is 

possible that the heavily homogeneous spaces of Max P capture this model of 

depression well, and by smoothing our underlying data, SOM helps to capture 

depression risk even better.  This might be due to the increases in compactness 

seen in the inner city where depression is more heavily concentrated. 
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4. 9 A map of depression risk in the Twin Cities metro area (top left), green space (top right), and nitric 

dioxide exposure (bottom left). Depression data was masked using an unspecified smoothing function in 

addition to having its legend converted to a low-to-high scale. 

 
 

4.2.2 Parent vs parent: Heuristic vs hierarchical? 

In terms of comparing the two (non-SOM) parent strategies, REDCAP on its own 

provided the highest relative compactness and geosilhouette scores compared to all other 

regionalization strategies, while offering the second highest average homogeneity. 

REDCAP seems to strike a good balance between compactness and homogeneity and, for 

this reason it may potentially provide better representations of communities (by better 

taking into account populations and space).  Results from the geosilhouette models 

further the notion that REDCAP creates better representations of communities as 

REDCAP (and its offspring) provided on average much higher geosilhouette scores than 

Max P.  The differences are stark and can be seen in the map and scatter plot in figure 

4.6.  Max P’s overall low average geosilhouette scores can perhaps be somewhat 
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attributed to Max P’s preference for homogeneity over compactness. Max P maintains 

relatively loose compactness constraints, which allows it to “reach out” and grab similar 

(yet distant) populations that can be merged together, resulting in a final configuration 

with elongated or winding regions. This inability to maintain compactness contributes to 

the observed lower than average geosilhouette scores directly by the means of increasing 

distance to the next best fit cluster. Distance is a key component in computing path 

silhouette scores.  Per Tobler’s law “everything is related to everything else, but near 

things are more related than distant things” (1970). By using regionalization that values 

compactness, we acknowledge Tobler’s law and step closer to developing more realistic 

neighborhood units.  Regionalization that disregards compactness in favor of 

homogeneity can result in wonky regions that might appear to be products of 

gerrymandering or spatial p-hacking rather than suitable representations of 

neighborhoods.  

 

4.3 Local variability 

Even though there were clear distinctions between the four regionalization strategies in 

terms of their average region characteristics, we noticed that behind these means were 

some very interesting patterns of local variation.  The following paragraphs provide 

deeper insight into the differences in the local distributions of the various region traits. 

 

4.3.1 Compactness 

When we look at the local variation via the raster average map in figure 4.3, we notice 

the same thing across the board: less compact regions in the inner metro area and more 

compact regions in the outer suburbs, with some highly compact regions appearing as 

spots in the center of the metro (more often with REDCAP and RSOM). This pattern 

closely follows the layout of the underlying data (the distribution of income is shown in 

figure 4.10) which exhibits high homogeneity of income and education in the outer 

suburbs and in smaller spots in the center of the city with low homogeneous areas in 

between.  The pattern of compactness may also be tied to the average size of the building 
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blocks (which are much smaller in the center of the metropolitan area where population 

density is relatively larger). Here we would guess that smaller building blocks may tend 

to provide more freedom of motion by having more boundaries, and therefore more 

paths, that the regionalization can take which might exacerbate the sprawl of the regions. 

Max P was more apt to create winding regions in the outer suburbs and missed several 

opportunities to create highly compact regions from the pre-existing compact 

homogeneous centers in the suburbs (Waconia, Hugo, and Farmingham) as well as in the 

spots closer to the city’s center (South Minneapolis, the U of M campus, and South Lake 

Harriet). This is likely a factor of Max P’s optimization function working to balance the 

overall homogeneity for the configuration by sprawling out to achieve higher 

homogeneity in places that are more diverse in income and education. Because SOM 

reduces the sprawl of Max P, MSOM was able to capture a greater number of compact 

homogeneous areas. REDCAP was able to capture more of these pre-existing compact 

homogeneous spaces (Figure 4.11) than any other method. However, after SOM, the 

homogeneity of the underlying data was made less precise, and therefore RSOM missed 

several opportunities to find these pre-existing highly compact homogeneous regions in 

the center of the metro area which resulted in the global reduced average compactness 

observed. 

 
4. 10 Median household income of the base units (block groups) for the seven-county metropolitan area. 
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4. 11 A) Median household income of the base units (block groups). B) Compactness of the base units. 

Circled are two examples of highly compact and homogeneous spaces (North Minneapolis and South 

Minneapolis) that exist within the data at the base unit level. REDCAP and RSOM do a better job of 

finding these two spaces in addition to providing a number of moderately compact (dark blue) spots in the 

inner city area, while Max P only finds North Minneapolis. 

 

4.3.2 Homogeneity. 

When we look at local variation as seen from the raster maps in figure 4.4 we notice less 

homogeneous regions in the inner metro area and more homogenous in the outer suburbs. 

The northwest quadrant of the maps (around Rogers and Ramsey) has the highest 

homogeneity for all four approaches. This may be a factor of this area having some of the 

least diversity in terms of income and education. It is also the case that all four 

approaches provided low homogeneity in the Warehouse District where there is a 

clustering of block groups characterized by high income and high education that, when 

combined, have a population that does not meet the minimum threshold which means 

these units must be lumped with neighboring units. Because the surrounding units are 

those of low income and low education it is seemingly impossible for any of the four 

strategies to create a homogenous region in this center (Figure 4.12).  In terms of the 
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differences observed in the local variations among strategies we notice that, even though 

Max P had the highest average homogeneity, REDCAP seems to do a better job at 

maintaining high homogeneity within the city’s center in North Minneapolis, the U of M, 

and South Minneapolis, which is easily seen when comparing the green areas between 

Max P and REDCAP in the figure below. This is a factor of Max P’s tendency to sprawl 

as the areas just mentioned are made up of relatively compact base units.  

 

 
 
4. 12 A cluster of five high income block groups in the Warehouse District surrounded by low income units 

(left). These units have a combined total population of less than 20,000 people and therefore all four 

regionalization strategies fail to create a homogeneous region in this area (right). 

 
 

4.3.3 Resolution 

When considering local variation we notice the smaller regions in the inner city and 

larger in the outer suburbs. This is what we’d expect given that the size of our input units 

(block groups) varies by population density.  Smoothing the data with SOM enabled 

regionalization to aggregate units into smaller regions for certain areas of the map. For 

example, the SE quadrant of the metro area experienced a noticeable reduction in region 

size after applying SOM.  By reducing the size of the regions in this corner (which had 

the largest region sizes in Max P and REDCAP) we cut out the high end of the range and 

reduced the overall variability in region sizes.  Furthermore, we notice that this reduction 
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was more noticeable in MSOM than RSOM (Figure 4.13). For this reason, we believe 

that SOM’s action in the SE quadrant is what drove the significant improvement in 

resolution that we observed when comparing MSOM to Max P. RSOM’s reduction of 

region size in the SE corner was subtle and, although it reduced the variability in size—it 

was not enough to bring down the average region size to a statistically significant degree.  

 

 
4. 13 A cluster of regions in the south east metropolitan region with the highest average region size for 

parent regionalizations is reduced after the addition of SOM.  This reduction is more apparent when 

comparing Max P to MSOM. 

 

4.3.4 Geosilhouettes.  

In terms of the local variation of geosilhouette scores, we notice very different patterns of 

geosilhouette scores between the two parent/offspring regionalization pairs (Figure 4.6). 

Here we see that even though adding SOM to Max P resulted in a slight (but not 

statistically significant) decrease in geosilhouette scores, it did not decrease the scores 
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evenly across all regions.  For MSOM, it seems that scores worsened in the lower 

southeast quadrant, the north, and the northwest, with not too much change to the center 

of the map. These areas of change are characterized by smaller farm towns beyond the 

outlying suburbs. Adding SOM to REDCAP did not result in noticeable local variation—

but for perhaps a slight worsening in the southeastern quadrant.  In terms of the 

statistically significant difference in geosilhouette scores between Max P and REDCAP, 

we could easily imagine that REDCAP’s dramatically higher average geosilhouette 

scores comes from its greater relative compactness.  Geosilhouette scores are computed 

using a path dissimilarity metric which could theoretically penalize elongated regions by 

increasing the distance of, and difference observed along, the path that separates a block 

group and its next best connected region. This would also explain why we see a slight 

decrease (which was not statistically significant) in geosilhouette scores when going from 

REDCAP to RSOM (which has less compact regions than REDCAP).  The quandary is 

that we observed a relative decrease (which was not statistically significant) in 

geosilhouette scores when going from Max P to MSOM even though MSOM is 

significantly more compact than Max P.  This would suggest that there is something more 

than compactness at play. Geosilhouette scores are composed of both spatial and attribute 

similarity metrics which means that the homogeneity of the area plays an important role 

as well.  MSOM’s average homogeneity is dramatically less than that of Max P in terms 

of income, and income has been tied to depression risk (Patel et al., 2018). For this 

reason, it is not outside of the realm of possibility that Max P would have higher 

homogeneity in terms of depression risk as well. Compactness is likely the primary driver 

of the results (as exemplified by the differences between Max P and REDCAP) however 

homogeneity might be the reason for the reduction of scores observed in MSOM. 

 

5 Conclusion 

There is a real need for finding ways to work with and share neighborhood-level health 

data. This project addresses this need by presenting regionalization as a strategy for 

creating custom fine-scaled units for sharing PHI without breaching patient privacy 

regulations.  Without regionalization, investigators would continue to rely on the present 
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standard for sharing PHI, the county or ZCTA, which has repeatedly been deemed 

insufficient for neighborhood-level studies of health. By sharing data at finer resolutions 

and in more meaningful forms than ZCTAs, we provide more accurate depictions of 

neighborhood health. This project explores four different regionalization strategies, each 

having its own strengths and weaknesses in terms of the neighborhood configuration it 

creates. Investigators are encouraged to use the strategy that best suits the needs of the 

project to be visualized and shared, however, the current project showed that REDCAP 

proves to be a superior approach to regionalization for the analysis and display of PHI, 

providing relatively high scores on characteristics most important for neighborhood 

health (compactness, homogeneity, and model-fit), as well as providing much finer 

regions than the standard approaches we rely on today. Additionally, MSOM—which 

provided the finest grained units—stands to offer an improved version of Max P for those 

who require a bottom-up procedure or can’t access REDCAP. 

In terms of limitations and future research considerations, our results were conditioned by 

a number of choices relating to data. First, we relied on regionalization methods that 

optimized on median household income and education (proportion of population with 

bachelor's degrees or higher). The arrangement of income and education weighs heavily 

on the performance of the regionalization (especially for Max P regions), and therefore it 

is unclear whether our results would hold true for other study sites with different spatial 

arrangements of income and education. Second, the results obtained from this study may 

not generalize across health outcomes. For instance, it is possible that different results 

could have been obtained for our model-fit metrics if we used a different disease 

(infectious disease instead of depression). Third, like many cases studies, ours is affected 

by the boundary problem; that is, the units at the edge of the study site have fewer 

neighbors compared to inside units, which means some aggregations almost necessarily 

end up having the same set of blocks.  It is possible that the boundary problem may have 

impacted some or all of the region characteristics including compactness, homogeneity, 

and resolution. In order to avoid this problem, future studies could carry out 

regionalization while including the units from surrounding counties and then clipping the 

regions to the seven-county metro area at a final step. Given these potential limitations, 

future research could focus on the impacts of a different data set or study area. For 
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example, it would be interesting to repeat the study using other health and disease 

outcomes, within other metropolitan areas in the US, or within various sets of simulated 

data—perhaps with varying degrees of spatial autocorrelation. 

 

The study also reflects choices around methods. First, we explored the use of SOM to 

smooth multidimensional data to be inputted into two different parent regionalization 

procedures. It is possible that other (simpler) smoothing methods than SOM may serve 

the same purpose. Future research exploring the impacts of preprocessing input data with 

various smoothing methods and comparing and contrasting these outputs with those from 

MSOM might provide more insight into how to improve Max P regionalization. Second, 

since our focus was on assessing the use of regionalization for PHI, we chose the most 

commonly used or standard setting for our methods, but we recognize that there is room 

to experiment with modifying any of our chosen approaches.  With our exploration of 

REDCAP in particular, we examined just one of the six approaches under the REDCAP 

banner.  We chose average-linkage clustering with full-order constraining which is the 

approach that offers to provide the greatest number of units as determined by Kugler et al 

(2017).  Other families may provide different results—especially given that the SOM 

effect was heavily dependent on the regionalization procedure. Full-order single-linkage, 

for example, has been shown to outperform average-linkage in certain scenarios and 

therefore might improve REDCAP resolution without severely degrading compactness 

(Kugler et al, 2017). In sum, future research into the other families of REDCAP would be 

advantageous. 
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Chapter 5. Conclusions and Future Directions 

 

Over the course of three papers, this dissertation has shed light on the scarcity of maps 

and spatial analyses published within the literature on neighborhood health and pointed to 

a potential cause being the ambiguous rules that guide how researchers can share 

geographic data. By providing a thorough examination of the safe harbor provision 

specific to geographic data, this dissertation helped elucidate the ambiguity within the 

law to encourage safe and effective sharing of mapped patient data.  Finally, this 

dissertation also presented a number of regionalization strategies that offer to help 

investigators work within the bounds of privacy provisions to share maps and spatial 

data. 

 

1 Understanding the value of maps in public health. 

Although this project hoped to undercover easily resolvable barriers to sharing maps and 

spatial analyses, the survey results indicated a more complex barrier stands in the way.  

The primary barrier identified by survey respondents was the belief that a map would not 

add further insight beyond that of which was provided by statistical models.  This is to 

say that many neighborhood health investigators did not see the value in spatial data 

visualization. Unlike other barriers, such as time constraints or lack of resources which 

can be resolved by updating technical and teaching tools, the belief that maps do not add 

value to neighborhood health research is more difficult to address. Future research should 

attempt to gain a better understanding of the specific ways in which geovisualization is 

valued, or not valued.  This kind of research can help further awareness while at the same 

time demonstrate the value of spatial data visualization by providing illustrative examples 

of the advantages of maps in neighborhood health. Over time, as maps and spatial 

analyses appear more frequently within the literature, the success of these studies will 

help encourage others to follow suit.  With luck, sometime in the near future spatial data 

exploration will become common practice in neighborhood health research. 
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2 Having separate privacy regulations for maps and tables. 

 

Despite ongoing examples of misinterpretation, the safe harbor rule stands as the primary 

guidance for those interested in sharing maps. This privacy provision is overly 

conservative and alternative methods have potential to do a better job at sharing protected 

health information in ways that keep the data useful and safe.  However, with rapidly 

evolving technology and the amount of individual-level data collected by companies ever 

increasing, it becomes more and more difficult to foresee policy makers comfortably 

loosening data protection guidelines. One way forward might be to focus on the 

differences between the level of information shared within tables linked to aggregated 

map units and tables of individual-level microdata. It is not possible for aggregated map 

units to provide individual level information such as gender or birth date and therefore 

map tables are much less vulnerable to the dangers of identity attacks from linked tables. 

For this reason, it is foreseeably possible to loosen the geographic constraints of the safe 

harbor rule in instances where aggregated geocodes and aggregated risks, and nothing 

else, are shared. Future research should focus on determining the identification risk 

involved when sharing aggregated geocodes of 20,000 people or greater. Although it is 

not likely to find a one-size-fits-all strategy, it is possible that aggregations of 20,000 

people may provide sufficient data protection in most instances. 

 

 

3 Augmenting regionalization and finding better evaluation methods. 

 

 If it were determined to be acceptable under the safe harbor rule to share aggregated 

geocodes with populations of 20,000 people, our results offer four different easy-to-use 

methods that can help researchers design finer-grained units for displaying and sharing 

mapped health data. The present study recommends two of these approaches in particular 

(REDCAP and MSOM). Going forward, due to the relative better performance of 

REDCAP on a number of measures, it would be advantageous to consider testing the 

other REDCAP families and assessing the SOM-variants of each. SOM, and perhaps 

even other smoothing methods, should be further explored as they offer to potentially 
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improve compactness, resolution, and model-fit for bottom-up regionalization processes. 

Improvements to these region characteristics could be useful for more than just the 

display and analysis of patient data.  Regionalization in particular has the potential to be 

useful for helping maintain compactness in the context of political redistricting—a 

problem that researchers have been grappling with for many years. Further research into 

finding ways to augment regionalization processes could help a broad array of domains 

trying to tackle zoning problems which can be computationally intensive when managing 

a vast number of units over a large spatial extent. Additionally, a greater amount of time 

and effort should go into finding stronger ways to evaluate neighborhood representation. 

The current project offers a broader range of measures and serves as a proof of concept 

for two recently offered methods that have specific advantages for use in regionalization 

studies (Pinzari’s homogeneity index and Wolf et al’s geosilhouettes). Research should 

focus on continuing the development of new and innovative assessment measures that 

integrate space because these kinds of measures are highly valuable to the field of 

neighborhood health. 

 

There are several ways in which future research can build upon the various threads of the 

research discussed in this three-paper dissertation. First, investigators should continue to 

examine the state of the literature on neighborhood health and push for a spatially aware 

research agenda until the use of mapping and spatial analysis becomes common practice. 

Second, there is a need to assess the extent to which maps can be safely shared when 

geocodes are aggregated to contain populations of at least 20,000 people; this could help 

lead to the development of separate regulations for maps and microdata. Finally, 

investigators should explore ways in which regionalization can be augmented with SOM 

and other data smoothing methods so to make it more useful for research in public health 

and a variety of other domains. 
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5. 1 Pairwise comparisons of adjusted linear predictions of regionalization approach with 95% confidence 

intervals for mean homogeneity, compactness, region size, region variability, AIC, and path silhouette 

score. Note that error bars reflect one way ANOVA with a Bonferroni correction. 
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Figure 5.2. Scatter plots and standard error bars for the 30 runs of Max P, MSOM, REDCAP, and RSOM 

for the 6 different assessment measures.  Significance is taken from Games-Howell post hoc test or, for 

path silhouettes, Dunn’s test. Alpha levels were adjusted according to the Bonferroni correction.  


