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Abstract 

Spans for precast and prestressed concrete spandrel beams (or spandrels) are typically 

as long as 30 to 48 ft.  In the near future, precasters might begin to produce spandrels 

with longer spans (up to 60 ft) and thinner webs (as little as 8 in.), which facilitate more 

cost-effective parking garages and advance the competitiveness of the precast concrete 

industry. However, there are likely to be spandrel dimensions beyond which excessive 

deformations make such designs unfeasible. In particular, lateral deformations 

developing at the top and bottom of a slender spandrel beam need to be investigated for 

short-term and long-term loading effects. 

Spandrels in parking garages typically support double-tee beams (or double tees) on 

ledges, spot corbels, or pockets, all of which introduce lateral eccentricity as the double 

tee loads are transferred to the spandrels. Upon connecting the spandrels to the double 

tees using deck ties, these connections serve as lateral restraints for the spandrels due to 

the axial stiffness of the deck ties.  Thus, lateral deflection of the spandrel is prevented at 

the connection points. However, given that the deck ties are thin steel plates, they are 

unable to eliminate twisting of the spandrel section. Thus, subsequent deformation of the 

spandrel will include both vertical and lateral deflections. Excessive lateral deflections 

might cause undesirable serviceability problems in the structure or even collapse of the 

concrete deck.  For this reason the study of lateral deflections is the focus of the research 

presented in this dissertation. 

Two approaches are pursued to study the lateral deflection response of the slender 

spandrels under static loads: analytical and computational.  First, an approximate 

analytical solution for the lateral deflections of spandrels is presented. Next, the effects of 

various parameters on the results from finite element analyses are examined.  This is 

followed by a detailed discussion of modeling suggestions under which computational 

results can be sufficiently reliable.  The best possible modeling approach, deduced from 

such parametric studies, is used for a three-dimensional nonlinear finite element analysis 
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of spandrels.  Finally, time-dependent (long-term) lateral deflections in spandrels having 

various span lengths and cross sections are investigated.   
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CHAPTER 1 

Overview 
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1.1. Problem Definition 

Precast, prestressed concrete spandrel beams (or spandrels) have been widely used in 

the perimeter of precast concrete frame buildings, especially for parking ramps.  The 

spandrels in parking garages usually support precast, prestressed concrete doubles-tee 

beams (or double-tees, which are used as deck beams, and are connected to column 

corbels at their ends. The spandrels are linked to the double tees using deck ties (i.e., 

welded steel plates) which serve as lateral restraints for the spandrels at the connection 

points. As the double tee loads are transferred to the spandrels, torsional effects are 

introduced due to eccentricity of loading. Given the fact that deck-ties are thin steel 

plates, they are unable to prevent twisting of the spandrel section entirely. The torsional 

loading, defined here as the product of the vertical loads from the double tees, P, and the 

eccentricity, e, (Fig. 1.1), interacts with the flexural loading to generate a complex pattern 

of deformation that includes vertical and lateral deflections, as well as twisting of the 

spandrel section. The presence of prestressing forces creates an even more complicated 

deformation pattern, which is difficult to capture in a single analytical formula. 

Spandrel beam

Double tee beam

Bearing pad

Deck-tie plate

P

e

 
Fig. 1.1. Spandrel beam segment supporting a double tee beam 

To date, most research efforts have been focused on strength design considerations for 

precast prestressed concrete spandrels under the combined effects of shear, torsion and 
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bending.  Nevertheless, lateral deformation issues in these structural members have not 

been adequately addressed in the technical literature. Lateral deformations reduce the 

bearing length for the double tee supports as the bottom of the spandrel moves out 

(deflects laterally away from the double tee), leading to collapse of the double tees in 

extreme cases (Fig. 1.2). Under service conditions, unsightly distortion of the top of the 

spandrel might occur or the glazing assembly for the exterior of the building might be 

defected as the spandrel tilts inward (deflects laterally toward the double tee). Creep and 

shrinkage of the concrete further complicate the state of deformation, and after 

supporting dead loads for a sustained period of time, the magnitude of total deformations 

increases well above the values generated upon immediate loading.  A comprehensive 

assessment of such deformations, as well as the parameters that affect them, has been 

undertaken in this thesis.  
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(a) Partial collapse 

 
(b) Close-up of the failure  

Fig. 1.2. Parking ramp collapse (WCNC website, Charlotte Local News Station) 

1.2. Methods 

From the experimental and analytical data available in literature, no information on the 

lateral deflection response of prestressed concrete spandrel beams can be inferred. In this 

regard, finite element analyses might provide opportunities for better understanding the 

overall behavior of these members. However, in spite of huge progress in the area of 

computer analysis of concrete structures, it still appears dangerous to rely on computer 

models alone.  To study the behavior of spandrel beams relying solely on computer 
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simulations, it is essential to first calibrate and verify these simulations with experimental 

results and next have a detailed understanding of those models and their sensitivity to the 

parameters involved. Only then can computer simulations alone be the basis for studying 

behavior of concrete structures, including spandrel beams.   

A slender spandrel beam might develop large deformations that affect internal 

equilibrium under combined loading effects, as a result small deflection theory is likely to 

lead to inaccurate estimation of the maximum load and deflections. Therefore, due to the 

nature of the problem, the finite element model should incorporate geometric 

nonlinearity.  Material nonlinearity is another factor that needs to be considered in the 

finite element analysis. Concrete cracking reduces both torsional and flexural stiffness of 

the section and causes a significant increase in the deflections.  The prestressing forces, 

however, tend to keep concrete uncracked under flexure.  Still, the possibility of cracking 

cannot be excluded and a relatively accurate material model for concrete should be used 

to capture concrete cracking and corresponding deformations.  Including all of those 

features in the analysis can only be accomplished using a computational approach, as 

practicing engineers, as well as most researchers, have to rely on commercially available 

computer programs.  The ABAQUS finite element analysis software [1] is one of the 

programs capable of solving highly nonlinear problems. It provides a complex material 

model (damage-plasticity model) for concrete that includes crushing in compression and 

cracking in tension.  The behavior of concrete in this model is defined with various 

parameters such as dilation angle, fracture energy, and tension stiffening.  

  A recent experimental investigation on precast, prestressed concrete spandrel beams 

has been conducted at North Carolina State University to elucidate resistance 

mechanisms in the spandrels and investigate the detailing of torsional reinforcement [2]. 

This unique study of full-scale spandrels is quite comprehensive in terms of geometry 

and loading, but it primarily addressed the configuration of transverse reinforcement and 

it focused on the 45-ft long spandrels under short-term loading. There are a few research 

efforts that investigate the response of prestressed concrete spandrel beams through finite 

element simulations [3].  However, those efforts are fine-tuned to justify the 

accompanying experimental results, and are difficult to reproduce due to the large 
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sensitivity of the results to the values of the parameters used in the model.  Therefore, in 

spite of their importance, the conclusions from these valuable studies cannot be used 

directly to address lateral deformations in the spandrel beams.  

1.3. Study Objectives 

The major objectives of this study are to obtain realistic estimates of short-term and 

long-term deformations in the precast and prestressed concrete spandrel beams, to gain an 

understanding of the parameters that affect them, and to develop simplified methods of 

analyses that are potentially useful in design practice. To achieve these objectives, 

comprehensive finite element models were developed using a well-known software 

package, ABAQUS, which include realistic representation of spandrel geometry, loading 

configuration, material behavior and support conditions. 

1.4. Overview of Dissertation 

The dissertation is divided into five chapters describing analytical and computational 

studies related to the behavior of precast and prestressed concrete spandrel beams.  

Following this introductory chapter, approximate analytical solutions for predicting 

maximum lateral deflections in laterally restrained and unrestrained spandrel beams 

under eccentric loads are presented in Chapter 2.  An equivalent loading method is 

proposed in order to simplify the governing differential equations of the problem.  

Numerical results from three-dimensional finite element analyses are also presented and 

found to be in close agreement with those of the proposed analytical method. 

Chapter 3 investigates the major principles that should be incorporated for finite 

element modeling of concrete structures using the commercial software, ABAQUS.  For 

this purpose, several finite element models are generated with concrete models embedded 

in the program and verified with experimental results selected from literature.  The first 

verification study is related to the behavior of plain concrete under uniaxial tension. Next, 

the modeling of plain concrete under biaxial loading is discussed.  The final verification 

example concerns the pure bending of conventionally reinforced concrete beams.  
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Chapter 4 focuses on nonlinear three-dimensional finite element modeling of precast, 

prestressed concrete spandrel beams.  The numerical results obtained using ABAQUS are 

verified with experimental results available in the literature.  The sensitivity of the 

spandrel beam response to various modeling parameters such as finite element type, 

dilation angle, fracture energy, tension stiffening, bearing stress distribution and support 

representation is presented. 

In Chapter 5, the arc-length and explicit dynamic solution methods for nonlinear finite 

element analysis of prestressed concrete spandrel beams subjected to monotonically 

increasing loads are discussed. These two solution methods are arguably the best 

approaches for analysis of strongly nonlinear problems. They are compared in this 

chapter for numerical convergence properties, computational effort, and quality of the 

results.  A resulting set of recommendations for the modeling of prestressing forces in the 

explicit dynamic and arc-length solution procedures is given. 

In Chapter 6 the long-term deflection behavior of slender, percast and prestressed 

concrete spandrel beams is investigated.  A numerical study is conducted involving a 

series of nonlinear finite element analyses of L-shaped and pocket spandrels for different 

span lengths (48 and 60 ft) and web thicknesses (8, 9, and 10 in.). All spandrels are 

modeled using realistic reinforcement and prestressing strand details.  The sensitivity of 

long-term deflections in spandrels to various material and structural properties such as 

spandrel type, span length, beam width, concrete curing method, the level of long-term 

effects, loading eccentricity and magnitude is presented.  

1.5. Overall Conclusions 

The original contribution of this research to the overall knowledge of the behavior of 

prestressed concrete spandrel beams is the incorporation of lateral deflection issues to this 

topic, which is very important for the integrity of structures using spandrel beams and has 

not been addressed in previous research adequately. To this end, three-dimensional finite 

element modeling techniques for the prediction of lateral deflections in spandrels are 

employed. The sensitivity of the spandrel response to various modeling parameters is 
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extensively investigated. The findings and contributions can be listed as follows: 

• A simple closed-form approximate solution for the maximum lateral deflection and 

angle of twist in eccentrically loaded rectangular beams is proposed and found to be 

adequate in analysis of some designs. In particular, the results for spot-corbel and 

pocket type spandrels are in good agreement with those of proposed analytical 

solutions. 

• The results from three-dimensional finite element analyses of precast, prestressed 

concrete spandrels under vertical loading are found to be sensitive to several input 

parameters.  Those include the type of element, the dilation angle for the concrete, 

bearing stress distribution at the supports, and deck-tie stiffness.  For those reasons 

commercial computer programs have to be used with caution when employed in the 

analysis of problems with the material behavior as complex as those of concrete.  

• The arc-length and explicit dynamic methods, two viable approaches, are used for the 

finite element analysis of geometrically and materially nonlinear problems, such as the 

prestressed concrete spandrel beams. The arc-length method provides more accurate 

results, but experiences convergence problems depending upon the choice of mesh 

configuration and the selection of concrete post-cracking response parameters.  The 

explicit dynamic solution procedure provides acceptable solutions in cases when the 

arc-length approach fails, however solution accuracy may be slightly lower and 

computation effort may be significantly larger. Overall, the experience gained in the 

course of this research suggests that the arc-length method is preferable as long as the 

solution converges and required especially for the deflection responses including snap-

backs and significant strength degradation.  

• Three-dimensional finite element models of a series of prototype spandrels in various 

span lengths and thickness, including realistic reinforcement and strand details, are 

generated using ABAQUS for the long-term deflection study. The analysis results 

showed that the maximum lateral deflections in the long (60-ft) spandrel beams at the 

end of two years for total loads equal to the dead and fifty-percent of live loads are 

always less than L/500.  This conclusion should guide the design of the details 

necessary to safely support the double tees.   
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CHAPTER 2 

Elastic Solutions for Eccentrically Loaded, Slender, Rectangular 

Spandrel Beams 
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2.1. Introduction 

Spandrel beams in precast concrete buildings are widely used to support double-tee 

deck beams, particularly in parking garages.  Spandrel beams of deep cross sections, 

resisting eccentric loads from double-tee beams, can be susceptible to excessive lateral 

deformations and serviceability failures before reaching their strength limits.  However, 

closed-form solutions for estimating lateral deflections in such members are not available 

in the technical literature. In this chapter, approximate analytical solutions for the 

deflection of beams with thin rectangular sections are derived from second order elastic 

analysis, and they are proposed for use in estimating maximum lateral deflections in 

spandrel beams under eccentric and uniformly distributed loads.  Continuous lateral 

support is provided at the elevation of the floor deck in spandrel beams, thus two cases 

are considered, one for laterally restrained beams under typical service conditions, and a 

second for laterally unrestrained beams prior to the establishing the floor deck 

connections, or if those connections fail during extreme loading.  An equivalent loading 

method is proposed to obtain the approximate analytical solutions, in which the 

differential equations of equilibrium governing the problem are simplified by replacing 

the actual loading in the spandrel beams with a substitute loading.  Numerical solutions 

are also obtained from three-dimensional finite element analyses, and their results are 

found to be in close agreement with those of the analytical solutions for two of the three 

common types of load-bearing precast, prestressed concrete spandrel beams. 

2.2. Background 

Precast and prestressed concrete spandrel beams (Fig. 2.1) are usually used in the 

perimeter of precast concrete buildings, particularly in parking garages, to support precast 

double-tees serving as deck beams.  There are three common types of spandrel beams 

depending upon the manner in which the double tees are supported; spot-corbel spandrels 

(Fig. 2.1.a) with discontinuous ledges, L-shaped spandrels with continuous ledges (Fig. 
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2.1.b) and pocket spandrels (Fig. 2.1.c) with rectangular cutouts.  Of these types, the L-

shaped spandrel was the first to be used on a regular basis, but the next generation of 

longer spandrels (spanning up to 60 feet (18.3 m)), often utilizes the pocket or corbel 

types to minimize weight, and in the case of the pocket corbel, to minimize the 

eccentricity of vertical loads. The spandrel beam resists eccentric loading which stems 

from vertical double-tee loads acting through the horizontal offsets provided by corbels 

or pockets.  Simple vertical support is provided to spandrel beams at their soffits by the 

column corbels.  Torsional restraint is provided at the ends of the spandrels by an 

additional connection to the columns by means of threaded inserts (i.e., tie-back bolts) at 

two elevations above the column corbels and which prevent twisting of the spandrel ends.  

The load bearing spandrel beam is also laterally restrained along the mid-height level of 

its web by spandrel-to-double-tee connections (i.e., deck tie plates).  Given that these 

connections are made of thin welded steel plates, they cannot provide any restraint 

against twisting of the spandrel. 

(a)  Spot-corbel spandrel beam

Double-tee load

Tie-back bolt

Column

Bearing pad Spot corbel

Deck-tie plate

(b)  L-shaped spandrel beam  

(c)  Pocket-type spandrel beam   
Fig. 2.1. Precast and prestressed concrete spandrel beams 
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2.3. Previous research 

Study of the interaction of and design for combined shear, torsion and bending in 

reinforced or prestressed concrete flexural members is well-established [4]-[6].  

However, this work has focused on stress and strength design considerations, and 

mention is seldom made of lateral deflection and serviceability of these flexural 

members.  Only a limited amount of research on the stability of tall, slender ‘reinforced’ 

concrete beams is found in the technical literature, including experimental studies from 

the 1950s and 1960s conducted in the U.S. [7]-[9] and more recent ones [10]-[12].  

However, all of these studies aimed at exploring the lateral instability of concentrically 

loaded reinforced concrete beams.  Historically, lateral deflections have often been 

ignored in the design of precast and prestressed concrete spandrel beams, as well as many 

other concrete members, since they are assumed to be too stocky for lateral instability to 

supercede stress or force considerations.  However, due to technological improvements 

and industry needs, a new generation of longer spandrel beams (up to 60 ft (18.3m)) with 

thinner webs (as little as 8 in. (203mm)) are being introduced to the market.  Based on 

this current trend, lateral deflections for slender spandrel beams need to be evaluated.    

Analytical solution for maximum lateral deflections in elastic beams with thin 

rectangular sections requires the establishing of governing differential equations of 

equilibrium.   To this end, the differential equations for the lateral-torsional buckling 

problem in concentrically loaded elastic beams, which are homogenous, isotropic and 

prismatic, can be used.  The solution reported by Timoshenko in 1936 [13] is well known 

[14]-[17].  The differential equations of equilibrium can be easily extended to include 

torsional effects and solved to obtain expressions for lateral deflection and angle of twist. 

Linearly elastic material behavior is often assumed for prestressed concrete members 

under service loads, but the actual response of concrete to larger load regimes is highly 

nonlinear.  Prestress in concrete usually eliminates or significantly reduces tensile 

stresses in the members under service loads, thus enhancing the resistance to cracking.  

However, concrete exhibits a nonlinear stress-strain relationship for compressive stresses 

greater than about one-half of its compressive strength, so a reduced modulus of elasticity 

Er can be used to represent compression softening (i.e., plasticity) in concrete when using 
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linear, elastic material models. Sant and Bletzacker [8] recommend a reduced modulus Er 

equal to 0.687Ec to account for concrete compression softening in tall, slender reinforced 

concrete beams.  

In this work, second-order elastic analyses were conducted to evaluate lateral 

deflections and angle of twist in restrained and unrestrained rectangular beams subjected 

to eccentric vertical loading.  Finding the closed-form solution to the differential 

equations governing this problem was not possible.  Therefore, an equivalent loading 

procedure was proposed which simplified the governing differential equations to obtain 

approximate expressions for deflection and angle-of-twist.  Finally, analytical results 

were verified with those obtained from the nonlinear finite element analyses of typical 

spandrel beams.   

2.4. Lateral restraints with deck-tie plates 

Load-bearing spandrel beams typically have deck-ties placed discretely along its span 

length to provide a lateral connection between spandrel and double tees (Fig. 2.2).  

However, in practice, some engineers do not rely on the deck-ties to provide reliable 

lateral support for spandrel beams.  There are valid reasons for this; first, the ties are not 

proportioned to meet an engineering design goal (e.g., ensuring sufficient strength to 

avoid failure under expected maximum lifetime loads or accidental loads); second, deck-

tie stress/force or strain/displacements requirements are not computed; third, the 

influence of cyclic loading on fatigue life is not considered; fourth, adequate protection 

from corrosion may not always be provided; so the ability of these connections to provide 

reliable lateral connection between spandrel and double-tees is not known.   
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Spandrel beam

Double tee beam

Bearing pad

Deck-tie plate

P

e

 
Fig. 2.2. The spandrel-to-double-tee connection  

A typical deck-tie connection, as illustrated in Fig. 2.2, is built on site by welding a 

steel plate to two other steel elements (e.g., plates or angles) which are embedded into the 

spandrel web and the double-tee flange in the precast plant. Deck-ties connecting the 

spandrel web to the double-tees are often placed near the neutral axis elevation of the 

spandrel section, in which case they do not restrain twisting deformations.  However, 

once these connections are established, the pattern of lateral deflections changes since the 

beam cannot deflect laterally at the level of the double tee connections as long as the 

deck-tie welds are intact. Yet, the welding of the deck-tie plates does not take place 

immediately upon placing the double tees. So, there is a risk in relying on these 

connections while the structure is being erected if unexpected loading occurs.   Moreover, 

high-cycle fatigue (from vehicle loading), low-cycle fatigue (from extreme loading), 

stresses from volumetric effects (temperature, creep and shrinkage of concrete) and 

corrosion raise further doubts on the reliability of the deck-tie connections. Regarding the 

case of extreme loading, recent analytical and experimental research suggests that the 

deck tie connections would fail at early stages of seismic loading in a typical parking 

garage diaphragm [18]. Therefore, the lateral deflection of a spandrel beam should be 

investigated for two idealized cases (Fig. 2.3); (a) the unrestrained beam and (b) the 

restrained beam.  In the latter, lateral deformations are prevented by the deck-ties 

installed at the mid-height of the spandrel along its span length. 

In extreme cases of large twisting angles, the supports of the double tees can be lost, 
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leading to the collapse of the structure.  Fig. 2.3 shows the deformed shapes of spandrel 

webs of restrained and unrestrained beams.  If the lateral deflection at the bottom of the 

restrained beam is larger than the overlap distance at the bearing pad (Fig. 2.2), the 

double-tee beams can slip off the spandrel ledge (or pocket or corbel) and collapse.  

There is less likelihood of such collapse mechanism for laterally unrestrained beams 

since lateral deformations are often directed toward the double-tees.  Still, unrestrained 

beams can experience large lateral deflections before reaching their design capacities and 

fail to satisfy deflection serviceability requirements.  

y*

x*

y

x

y*

x*

y

x

(a) Unrestrained beam (b) Restrained beam  
Fig. 2.3. Deformations of laterally restrained and unrestrained beams (double-tee beams 

align in the positive x-axis and the positive deflections are inward) 

2.5. Laterally unrestrained and concentrically loaded beams   

In general, slender elastic beams with deep and narrow rectangular cross sections do 

not experience lateral deflections when concentric vertical loads (i.e., without lateral 

eccentricity producing torsion) are resisted.  At a critical load (buckling load), slender 

beams undergo sudden large lateral deformations through the phenomenon known as 

combined lateral and torsional buckling.  This type of instability likely occurs when the 

flexural rigidity of a beam in the plane of bending is significantly larger than that in the 

out-of-plane direction.  The theory of lateral-torsional buckling of slender beams under 

concentric loads is well known and has been extensively investigated for steel beams 

[14]-[17].  Before considering the behavior of eccentrically loaded beams, a short 
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discussion on concentrically loaded beams is necessary for several reasons; (a) 

differential equations of equilibrium derived for a concentrically loaded beam can be 

easily extended to the case of an eccentrically loaded beams, (b) the use of the buckling 

load parameter in the derivations will significantly simplify the analytical expressions, 

and (c) the influence of eccentric loading on the lateral response will be more meaningful 

when it is compared with the response of a concentrically loaded beam.   

A deep and narrow rectangular beam subjected to strong-axis bending-moment 

couples Mo at the ends becomes unstable, deforms laterally and twists, as depicted in Fig. 

2.4.a, when the moment Mo attains a critical value Mcr.  In order to determine the critical 

buckling moment, governing equilibrium equations are established for a slightly 

deformed shape (or buckled shape) of the beam.  The smallest value of Mo that maintains 

the equilibrium of the beam in such buckled shape is equal to the critical value of 

buckling moment Mcr. 

The global and local coordinate axes, x-y-z and x*-y*-z*, respectively, are selected, as 

shown in Fig. 2.4.a. The vertical deformation of the centroid of the beam cross section v, 

the lateral deformation u, and the angle of twist φ are defined in the buckled shape of the 

beam, as illustrated in Fig. 2.5.  The angle of twist φ is assumed to be positive when the 

cross section rotates from the x- to the y-axis, or when the rotation vector defined using 

‘right-hand rule’ is parallel to the positive direction of z.  The deformations, u, v, and φ, 

are very small and, thus, higher-order terms will be neglected. The governing differential 

equations of equilibrium are established in the buckled shape of the beam. Therefore, the 

curvatures of the centerline of the beam in y*z*- and x*z*- planes and the moments Mx*, 

My*, and Mz*, are required.  The positive directions of internal moments are shown in Fig. 

2.4.b.  Since the angle of twist is very small, the curvatures in the y*z*- and x*z*- planes 

are assumed to be equal to the curvatures in the xz- and yz-planes (i.e., d
2
u/dz

2 and 

d
2
v/dz

2, respectively).  Likewise, only the dominant terms of the components of Mx (or 

Mo) in the local coordinate axes, x*-y*-z*, are retained in the transformation from x-y to 

x*-y* as seen in Fig. 2.6. 
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y

x

z

z*
y*

x*

y

z
x

My

Mz

Mx

(b)

(a)  
Fig. 2.4. (a) Global and local coordinate systems and (b) sign convention for positive 

internal moments  
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Fig. 2.5. Deformations in x-y, y-z and z-x planes  
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Fig. 2.6. Components of bending moment Mx along local axes, x*,y* and z* 
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This leads to the differential equations of equilibrium in the form: 

oxx MMvEI ≅=′′− *  (1) 

oyy MMuEI φ−≅=′′ *  (2) 

oz MuMGJ ′≅=′ *φ  (3) 

where E is the modulus of elasticity;  Ix is the moment of inertia of the beam section 

about the strong-axis of bending; Iy is the moment of inertia about the weak-axis; G is the 

shear modulus of elasticity; J is the torsional constant for the beam section. The warping 

torsional resistance is negligible for beams with deep and narrow rectangular cross-

sections and so the warping effect does not appear in Eq. (3).  Note that lateral torsional 

buckling involves torsion even though there is no torsional loading.  The internal 

torsional moment arises as a second-order effect (i.e., a component of the deformation 

pattern) and hence Eq. (3) is necessary.  Equations (2) and (3) are coupled through the 

angle of twist φ. After simplification, a second-order linear differential equation for the 

angle of twist φ with constant coefficient can be obtained.  The solution of this 

differential equation gives the critical buckling value (Mcr) of the end moments Mo: 

GJEI
L

M ycr

π
=  (4) 

Eq. (4) is derived for the loading case of equal and opposite end moments.  For cases 

with moment gradient, the critical moment can be adjusted using the bending coefficient 

Cb, based on approximate expressions [17].   The coefficient Cb is equal to unity for 

uniform bending (i.e., equal end moments) and 1.13 for uniformly distributed vertical 

loads.  Incorporating the Cb factor, the critical moment given by Eq. (4) becomes: 

GJEI
L

CM ybcr

π
=  (5) 

2.6. Laterally unrestrained and eccentrically loaded beams 

In order to investigate the influence of eccentric loading on the lateral deflection of 

spandrel beams, a simplified structural system (Fig. 2.7.a) comprising a slender beam 

with rectangular cross section is subjected to uniformly distributed load q with an 
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eccentricity e.  The bending moment Mx has a parabolic distribution along the span 

length, Mx=(qL
2
/2)[z/L-(z/L)

2
].  Due to the torsionally fixed supports, as well as the 

symmetry of the beam and loading pattern, the torsional reactions at the ends (MT=qeL/2) 

are equal, but in opposite directions.  The distribution of internal torsion along the length 

of beam is a linear function of z, Mz = MT(1-2z/L), with the left end of the beam 

undergoing positive torsion.  

Timoshenko’s solution does not explicitly address beams with torsional loading (i.e., 

lateral eccentricity), but the the governing differential equations can be extended to 

include torsional loading.  The components of the torsion along the x*, y*, and z* axes in 

the deformed position must be included in the three moment equilibrium equations, Eqs 

(1), (2), and (3).  As illustrated in Fig. 2.7.b, a positive beam slope du/dz in the horizontal 

x-z plane produces a torsional component Mz du/dz in the local x* axis which is negative 

according to the sign convention described in Fig. 2.4.b.  Thus, positive torsion Mz acting 

through a positive horizontal slope du/dz generates a negative moment contribution for x-

axis equilibrium in Eq. (1). Similarly, in Fig. 2.7.b, a positive beam slope dv/dz in the 

vertical y-z plane produces a torsional component Mz dv/dz in the local y* axis which 

opposes positive bending as indicated in Fig. 2.4.  

y

q

z

x

y

q

e

L

x

z

x*

z*
du/dz

MzMzdu/dz

≈Mz

y

z

y*

z*
dv/dz

MzMzdv/dz

≈Mz

(b)

(a)

 
Fig. 2.7. (a) Laterally unrestrained beam under eccentric loading and (b) components of 

moment Mz in the local axes 

Thus, positive torsion Mz acting through a positive vertical slope dv/dz produces a 

negative moment contribution for y-axis equilibrium in Eq. (2).   
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zxx MuMvEI ′−=′′−  (6) 

zxy MvMuEI ′−−=′′ φ  (7) 

zx MMuGJ +′=′φ  (8) 

The case of a laterally unrestrained beam under eccentric loading introduces a 

parabolic function of length z for bending moment Mx and a linear function of z for 

torsion Mz, which makes coefficients of Eqs. (6), (7), and (8) variable.  As a result, 

closed-form solution of Eqs. (6), (7), and (8) becomes difficult, if not impossible.  Still, 

an approximate closed-form solution can be found if the actual loading in the beam is 

replaced with an equivalent loading, shown in. Fig. 2.8  The actual loading (Fig. 8.a), 

uniformly distributed load q acting over an eccentricity e, is replaced by a substitute 

loading (Fig. 8.b), end moments Mo (=qoL
2/8) and a uniformly distributed torque mo 

modified by the load parameter qo, (qo=q/Cb where Cb is the bending coefficient 

mentioned above).  The assumed moment Mo in the substitute loading ensures the same 

maximum value for the actual loading condition. The substitute loading yields a 

differential equation of equilibrium with constant coefficients and enables an closed-form 

solution.  The accuracy of the substitute loading approach will be investigated later by 

means of numerical analysis.  

mo=eqo Mo=qoL
2/8Mo

y

z

(b)  Substitute loading

(qo=q/Cb)

x

y

q
e

y

q

z

L

(a)  Actual loading

y

mo

x

   
Fig. 2.8. Actual and equivalent loadings for laterally unrestrained beam  

The differential equations can be simplified by neglecting the last terms of Eqs. (6) 

and (7), (-Mzdu/dz and -Mzdv/dz), due to the fact that the torsional moment Mz is 
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generally very small relative to Mo. Under this condition, for the case of laterally 

unrestrained and eccentrically loaded beam (with the equivalent loading), the differential 

equations of equilibrium are: 

ox MvEI =′′−  (9) 

oy MuEI φ−=′′  (10) 
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Solving Eq. (10) for φ and substituting its derivative dφ /dz into Eq. (11), we find 
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Considering Eq. (4) 
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Eq. (12) is transformed into  

L
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L

e
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e
uu 222 84 ααα +−=′+′′′  

(14) 

The solution of equation (14) gives the following formula for the lateral deflection u as a 

function of the position z along the beam.  
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The constants, A1, A2 and A3, are obtained using the following boundary conditions; 

u(0)= φ (0)=0 and u'(L/2)=0. 

Considering that 
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the constants, A1, A2 and A3, can be determined:  
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From Eqs. (15), (16), (17), (18), and (19) the following formulas for u and φ are obtained.  
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Loading and geometry is symmetric with respect to the midspan of the beam.  Thus, in 

order to get the maximum lateral deflection parameter um for this laterally unrestrained 

beam, we substitute z=L/2 in Eq. (20), obtaining 
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Introducing the parameters in equations (13), into Eq. (22), maximum lateral deflection 

um of the centroidal section at midspan of the beam can be written as 
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while the maximum angle of twist φm is  
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The above expressions will be used later to reveal the relationship between the 

maximum lateral deflection and the bending moment for various values of eccentricity.  

2.7. Laterally restrained and eccentrically loaded beams 

Here we assume that regularly-spaced deck-ties along the length of a spandrel beam 

provide a nearly continuous support sufficient to prevent lateral displacements at the mid-

height level of the spandrel as long as the connections remain intact.  However, the beam 

is free to rotate around the horizontal line of the deck-ties.  In the case of a deep beam 
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subjected to eccentric loading, such twisting deformation may result in large lateral 

displacements at the top and bottom of the beam section, which may put the safety of the 

structure at risk.  Therefore, the maximum lateral deflection in a laterally restrained beam 

under eccentric load (Fig. 2.9.a) is analyzed herein.   

Unlike unrestrained beams, laterally restrained beams are subjected to horizontal 

reaction forces at their lateral supports, yielding a weak axis bending moment My along 

their span length.  The moment My is unknown at the beginning of the analysis and varies 

along the length of the beam.  To obtain the governing differential equations of 

equilibrium for this case, we first determine the components of the bending moment 

vector My in the x*, y*, and z* coordinate system, as shown in Fig. 2.9.b, and then add 

them to the differential equations of equilibrium Eqs (6), (7), and (8), previously derived 

for the case of laterally unrestrained beams.     
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Fig. 2.9. (a) Laterally restrained beam subjected to eccentric loading and (b) components 

of moment My in the local axes 

Thus the differential equations of equilibrium for restrained beams are 

φyzxx MuMMvEI +′−=′′−  (25) 

yzxy MvMMuEI +′−−=′′ φ  (26) 

vMMuMGJ yzx
′++′=′φ  (27) 

An approximate solution of this problem can be obtained by neglecting higher order 

terms; Mzu', Myφ, Mzv', and Myv'.  In general, My and Mz are relatively small compared to 
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Mx (or Mo) and their products with the slopes (i.e., du/dz and dv/dz) or the angle of twist φ 

are even smaller.  While these assumptions are introduced to obtain an approximate 

closed form solution (verified later by finite element analyses), their introduction can be 

also rationalized on physical grounds.  Namely, for laterally restrained beams, lateral 

curvature and thus lateral bending moment are small.  Also, the moment Mx is dominant 

in comparison with Mz.  Further simplification can be made using the substitute loading 

approach, which was previously described for the case of unrestrained beams.  The lateral 

deflection u disappears in the differential equations since it is fixed by deck-ties close to 

the centroidal axis of the beam (true only if deck ties are close to the centroidal 

elevation).  Under these assumptions, the differential equations become 

φyox MMvEI +=′′−  (28) 

φoy MM =  (29) 
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We emphasize here that My is an unknown function, which defines the variation of the 

weak axis bending due to the reaction forces at the lateral supports.   

  Integrating Eq. (30) with respect to z, and considering that φ=0 at z=0, we find 
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The angle of twist attains its maximum value φm at the mid-span of the beam and is equal 

to 
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With the notation specified in equations (13), one has 
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Assuming G=0.4E, J=hb
3/3 and Iy=hb

3/12 in the equation above, we find the approximate 

value of the maximum angle of twist 
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2.8. Bending moment-lateral deflection curves  

In the previous discussion of laterally unrestrained beams, the maximum lateral 

deflection um of the centroidal line of the beam was calculated.  However, the additive 

effects of lateral translation and twist create the largest lateral deflection, umt, at the top of 

the spandrel (see Fig. 2.3a),  For serviceability considerations, it is necessary to find the 

magnitude of the maximum deflection.  Considering that deformation of the analyzed 

beam involves twist, the lateral deflections vary linearly along the depth of the beam.  To 

describe this variation, the top (umt) and bottom (umb) deflections are computed  

22
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where h is the height of the cross section.  The maximum lateral deflection occurs at the 

top of the mid-span section and its magnitude can be calculated using the following 

equation, derived by substituting Eqs. (23) and (24) in Eq. (35). 
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However, in the case of restrained beams, lateral deflections at mid-height are not 

possible.  Therefore, due to twisting of the beam (Fig. 2.3), lateral deflections are 

developed at the top and bottom of the section (i.e., umt and umb).  These deflections are 

equal, but in opposite directions and computed as follows: 

22

h
uand

h
u mmbmmt φφ −==  (37) 

Using Eq. (34), derived for the angle of twist at the mid-span of the beam, the maximum 

lateral deflections at the top and bottom of the cross section of a restrained beam are: 
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Using Eqs. (36) and (38) with the height-to-length ratio h/L=0.11, relationships 

between maximum lateral deflections (umt and umb) and bending moment Mo for laterally 

unrestrained and restrained beams subjected to eccentric loading are shown in Fig. 2.10 

for values of eccentricity ratios e/L equal to 0.002, 0.007, and 0.015.  Positive deflections 

umt occur for laterally unrestrained beams, which means that beams move toward the 

double-tees.  These curves, on the positive region of the graph, illustrate the high 

sensitivity of the unrestrained beam to the eccentricity of the load, with lateral deflection, 

umt, growing in an unbounded manner as the critical value for bending moment Mcr is 

approached. However, Mcr, which corresponds to the horizontal asymptote for the family 

of curves shown in Fig. 2.10, is the same for all values of e/L.  The torsional effect due to 

the eccentricity, in fact, serves merely to perturb the relationship between Mo and umt in 

the same manner as would an initial imperfection (i.e., out-of-straightness). Thus, 

torsional loading only increases the lateral deflection of the beam prior to buckling (i.e., 

when it is still in a theoretically stable configuration).  



 27 

0.00

0.20

0.40

0.60

0.80

1.00

-0.01 0.00 0.01 0.02 0.03

u/L

Mo/Mcr

0.002

0.007

0.015

e/L Ratios
Unrestrained 

beam

umt
e

q

Unrestrained 

beam

umt
e

q

Restrained 

beam

umb

q

e

Restrained 

beam

umb

q

e

 
Fig. 2.10. Bending moment-maximum lateral deflection curves for rectangular beams 

with various values of eccentricity (h/L=0.11) 

In Fig. 2.10, negative deflections umb are noted for the laterally restrained beams.  The 

bottom of the mid-span section of the beam moves outward.  The relationships between 

lateral deflections umb and bending moment Mo are shown for different eccentricity ratios. 

With an increase of the eccentricity, magnitudes of lateral deflection increase for 

restrained beams, but remain much smaller than those for unrestrained beams with the 

same Mo/Mcr ratio.  Based on Eq. (38), it can also be concluded that lateral deflections are 

proportional to both the height-to-length ratio h/L and the eccentricity e.     

In order to compare lateral deflections at the centroid and top of the mid-span section 

of a laterally unrestrained beam, bending moment-lateral deflection curves for various 

eccentricity parameters are plotted in Fig. 2.11, using Equations (23) and (36), 

respectively. The figure shows that the centroid of the section undergoes slightly smaller 

lateral deflections than the top of the section due to the twisting of the beam.  Even 

though the lateral distance between these two points at the section increases with an 

increase of eccentricity, twisting of the beam contributes only slightly to the maximum 

lateral deflection. 
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Fig. 2.11. Lateral deflections at the top and centroid of the laterally unrestrained 

rectangular beams (h/L=0.11) 

The effect of slenderness ratio h/L on maximum lateral deflection (at the top) in a 

laterally unrestrained beam is also investigated. The slenderness ratio h/L of beams is 

assumed to vary from 0.08 to 0.24.  Fig. 2.12 shows bending moment-lateral deflections 

curves for various eccentricity parameters (e/L=0.002, 0.007 and 0.015).  Bending 

moment-lateral deflection curves for beams with small values of eccentricity parameters 

(i.e., e/L=0.002) are not significantly affected by different slenderness ratios. However, 

the lateral response of an unrestrained beam is more sensitive to its slenderness ratio if 

the eccentricity increases (i.e., e/L=0.015).          
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Fig. 2.12. The response of unrestrained rectangular beams for different slenderness ratios 

(h/L=0.08 and 0.24) 

2.9. Finite element analysis 

The lateral deflection response of eccentrically loaded concrete beams is a 

complicated problem that is not well represented in the technical literature.  Even though 

experimental and analytical studies in the pertinent literature and design codes provide a 

rational guidance to the designer for predicting vertical deflections, little, if any, attention 

is paid to the lateral deflections.  The approximate closed-form solutions presented in this 

paper for lateral deflection in laterally restrained and unrestrained rectangular beams 

subjected to eccentric loading are the only such available formulas.  Because of their 

applicability to two of the most common types of precast, prestressed concrete spandrel 

beams, the accuracy of the approximate closed-formed solution are investigated for 

eccentrically loaded rectangular beams and typical spandrel beams with finite element 

analyses using the commercial software package ABAQUS [19].  

Derivation of the preceding approximate closed-formed solutions for elastic 

rectangular beams required several simplifications as follows: 

(a) higher-order terms and some less important terms in the governing differential 
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equations were neglected, 

(b) modified loads (labeled as 'substitute' loads) were used, 

(c) rectangular beams were assumed instead of spot-corbel, pocket or L-shape 

spandrels, as shown in Fig. 2.1, 

(d) and material nonlinearity (i.e., concrete cracking and crushing), steel 

reinforcement and prestressing strands were ignored. 

Assumptions (a) and (b) were necessary to enable closed-form solutions for the 

differential equations governing the problem.  Assumptions (c) and (d) were used to 

transform the problem from the realm of precast, prestressed concrete spandrels to that of 

elastic, rectangular beams.    

The error introduced by assumptions (a) and (b) were evaluated by comparing the 

results of analytical method and finite element analyses.  Restrained and unrestrained 

rectangular beams were modeled in ABAQUS using quadratic beam elements, subjected 

to actual loads (uniformly distributed load acting eccentrically). Geometric and 

mechanical properties of the beam selected for this numerical study were: L=534 in. 

(13.56m); h=60 in. (1.52m); b=8 in. (203mm); e=4 in. (102mm); Ix=144,000 in4 

(5.994×1010mm4); Iy=2,560 in4 (1.066×109mm4); J=10,240 in4 (4.262×109mm4); E=4,800 

ksi (33.1GPa); G=1,920 ksi (13.2GPa). The beams consisted of simple supports at their 

ends for vertical loads and deflections, as well as fixed torsional constraints.  Lateral 

restraints were provided by fixing the horizontal displacements of the nodes along the 

centerline of the beam elements in the model for the case of the restrained beams.  The 

material model for prestressed concrete was assumed to be linearly elastic. Large 

deformations were included and solved using the Modified Riks Method (Arc-Length 

Method) [19] as a solution procedure for FE analyses.   

The critical buckling moment Mcr was calculated as 91,440 k-in (10,330kN-m) using 

Eq. (4) for the beam subjected to equivalent loading (end bending moments).  However, 

the critical buckling moment Mcr increased by the factor of Cb when the actual loads 

(uniformly distributed load) act on the beam, and it was equal to 103,330 k-in (11,670kN-

m) for Cb=1.13 which corresponds to uniformly distributed loads. From the finite element 

analysis, the buckling moment of the beam was found to be 103,787 k-in (11,730kN-m). 
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The critical moment Mcr (under uniformly distributed loads) is needed simply as a 

normalization factor for the moment data obtained from the finite element analysis, 

because it appears as a normalization factor for the deflection and twisting angle formulas 

obtained earlier. Seldom, if ever, will a spandrel beam be designed for moments Mo that 

approach the critical value Mcr. 

Fig. 2.13 shows the relationship between the moment ratio Mo/Mcr and the deflection 

parameter u/L for each of the analysis cases of restrained or unrestrained beams having 

two different values for normalized eccentricity, e/L=0.007 and 0.015 (these values 

correspond to e=4 in. (102mm) and 8 in. (203mm), respectively).  Analytical results 

obtained using Eqs. (36) and (38) are also shown as solid lines in this figure.  Lateral 

deflections at the top of the mid-span section of the laterally unrestrained beams are in 

the positive direction (toward the loads), whereas lateral deflections at the bottom of the 

mid-span section of the laterally restrained beams are in the negative direction. Results 

are presented using dimensionless parameters, the moment ratio Mo/Mcr where Mo is the 

maximum bending moment in the beam (i.e., qL
2/8) and the deflection parameter u/L.    

Fig. 2.13 indicates that numerical and analytical results are in very good agreement for 

both restrained and unrestrained beams. The analytical results for the substitute loading 

closely match the numerical results from the FE model under the actual loading, which 

proves that neglecting higher order terms when finding the analytical solutions does not 

lead to significant error.  For laterally unrestrained beams, Fig. 2.13 also shows that there 

are only minor differences between actual and substitute loading cases (the difference is 

less than 10%).  Consequently, the proposed analytical procedure, using ‘substitute’ 

loading, is seen to be a powerful tool for estimating the lateral deflections in laterally 

restrained and unrestrained slender rectangular beams under uniformly distributed 

eccentric loads.  Noted that the h/L ratio of the beam studied here was 0.11, and 

comparison of numerical and analytical responses observed for other e/L and h/L ratios, 

not shown here for the sake of brevity, indicate similar trends. 
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Fig. 2.13. Numerical vs. analytical results for maximum lateral deflections for rectangular 

beams (h/L=0.11) 

The proposed analytical method assumes that an eccentric load is applied along the 

centerline of the beam.  However, a typical spandrel beam (Fig. 2.1) carries loads at the 

corbels, pockets or ledges located below the beam mid-depth.  It is known that the 

buckling capacity and deformation response of a beam depend on the position of the 

loads. Therefore, it is necessary to study the applicability of the proposed analytical 

method to different loading positions.  Three-dimensional models of rectangular beams 

eccentrically loaded at different locations were generated using 20-node elements with 

reduced integration in ABAQUS.  The beam geometry and material characteristics were 

the same as those previously given. Due to symmetry, only one-half of the beam was 

modeled. In the first model, the beam was eccentrically loaded (e=b/2= 4 in.) at its mid-

height level, as shown in Fig. 2.14. In the next model, the same eccentricity was 

maintained, the point of load application was moved to the bottom of the beam.  The 

buckling moment of the beam for the case of mid-height loading was obtained from FE 

analyses as 103,089 k-in (11,647 kN-m), whereas the theoretical value from Eq. (5) is 

103,787 k-in (11,726 kN-m).  For the case of loading at the bottom of the beam, FE 

analysis resulted in the buckling moment of 109,256 k-in (12,344 kN-m).  Yet, the 
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theoretical capacity given by Eq. (5) should be modified by a coefficent Cy to reflect the 

influence of vertical location of load application. Park and Paulay [20] report a solution 

for Cy equal to ( ) LGJEIy.L yw741−  in which yw is the vertical distance of load 

application above the centroid of the section. This formula yields Cy=1.07728 and, 

consequently, a corrected critical Mcr=111,808 k-in. (12,632 kN-m).  Thus, the buckling 

capacity of the unrestrained beam increases when the load is applied at the bottom instead 

of the mid-depth. 

Fig. 2.14 shows the lateral-deflection results from FE analyses (for both mid-height 

and bottom loading) and analytical method (for mid-height loading only).  Even though 

the absolute values for bending moments and lateral deflections were different for two 

loading conditions, the normalized results are in very close agreement. They are also very 

close to the proposed approximate analytical solution.  For laterally restrained condition, 

for which the beams had lateral fixity in the mid-depth, the variation of the results from 

FE analyses and analytical method was negligible. 
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Fig. 2.14. Influence of the loading position 

Next, the elastic, three-dimensional models of spot corbel and pocket type spandrels 

were generated in ABAQUS by modifying the previous rectangular beam model.  Cube-
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shaped corbels were added with a side dimension of 8-in. (203mm), and were equally 

spaced (6-ft (1.83m)) along the spandrel beam, as seen in Fig. 2.15. Similarly, in the 

pocket spandrel model, pockets that are 9-in (229mm) long, 20-in (508mm) deep and 4-in 

(102mm) wide were located with the same equal spacing (6-ft (1.83m)), as shown in Fig. 

2.16.  Given the symmetry of the beams, only one-half of the beams were modeled. The 

loading eccentricity was defined as 8 in. (203mm) for the spot corbel spandrel, assuming 

the load acted at the middle of the width of each corbel. However, the eccentricity was 

defined only as 4 in. (102mm) for the pocket type spandrel, assuming the extreme 

condition of the double-tee loads acting on the outside edge of pockets. Both laterally 

restrained and unrestrained cases were considered. Finite element estimates of Mcr for the 

spot-corbel and pocket spandrels, respectively, were computed as 106,646 k-in (kN-m) 

and 98297 k-in (kN-m).  These differ somewhat from the theoretical value of Mcr for a 

rectangular section (103,787 k-in. (11,726  kN-m)) by virtue of the material that is added 

or removed, respectively, from the corbel and pocket.  

Fig. 2.15 indicates that the proposed analytical solution is in good agreement with the 

predicted response for spot-corbel spandrel obtained from FE analysis.  The spot corbel 

spandrel exhibits stiffer response and larger buckling capacity from the finite element 

analysis than the approximate solution for a rectangular beam.  However, the 

discrepancies between the solutions are not large.  Fig. 2.16 shows the results from the 

finite elements analyses of the pocket type spandrel. The discrepancies between FE and 

analytical results are larger, which is attributable to the significant effect of rectangular 

cutouts on the lateral deflections in the spandrel (30% difference). In this case the finite 

element model of the pocket type spandrel is more flexible than the approximate 

analytical solution for a rectangular beam.  The approximate solutions both the corbel and 

pocket spandrels can be improved by using a more accurate estimate of Mcr. 
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Fig. 2.15. Behavior of spot corbel spandrels 
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Fig. 2.16. Behavior of pocket-type spandrels  

The lateral response of eccentrically loaded L-shaped spandrel beams exhibits even 

more complicated behavior than that for rectangular beams or for the other types of 

spandrels discussed above.  L-shape spandrels are subjected to more significant amounts 

of asymmetric bending, which drastically affect the lateral deflection response. For this 
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reason, the proposed analytical solution is not valid for L-shapes.  Further study of such 

beams is necessary for the formulation of accurate deflection solutions.  

2.10. Conclusions 

Slender, precast and prestressed concrete spandrel beams under eccentric loading are 

susceptible to large lateral deformations and possible serviceability failure before 

reaching their strength limits.  Depending of the strength and reliability of deck-tie 

connections, spandrel beams may be treated as a laterally unrestrained beam (i.e., free to 

deform laterally), or as a laterally restrained beam (i.e., assumed to have continuous 

lateral support along the centroidal line of the beam).  In this study, approximate 

analytical solutions for maximum lateral deflections in laterally restrained and 

unrestrained rectangular beams under eccentric loading were derived using second-order 

elastic analysis with several simplifying assumptions.  

To obtain a simple closed-form approximate solution for the governing differential 

equations of the problem, a ‘substitute’ loading approach is proposed, in which the 

eccentric load (actual load) is replaced with end bending moments and uniform torque 

(substitute loads).  After finding the maximum angle of twist in restrained and 

unrestrained rectangular beams, the following observations were made: (a) the maximum 

lateral deflection was shown to occur at the top of the mid-span section of the laterally 

unrestrained beam, (b) all sections in laterally unrestrained beams under eccentric loads 

were shown to move laterally toward the loading side, (c) the laterally restrained beam 

was shown to undergo only twisting due to the eccentricity, or rotation about its 

longitudinal direction, (d) deflections of restrained beams are much smaller than those of 

unrestrained beams, and (e) the lateral deflection at the bottom of restrained beam moves 

outward, which can cause the double-tee beams to lose their supports. Additionally, the 

differences in lateral deflections between laterally unrestrained and restrained beams are 

so large that it seems necessary to pay increased attention to the analysis, design and 

durability of the deck-ties if they are going to be assumed effective over the life of the 

spandrel.    
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Numerical solutions were also provided from three-dimensional finite element 

analyses of laterally restrained and unrestrained elastic spandrel beams.  The results from 

spot-corbel and pocket type spandrels were found to be closely comparable with those of 

proposed analytical solutions.  

Finally, noting the lack of information in the technical literature regarding with lateral 

deflections in spandrels, the elastic deflection solutions proposed here represent a 

pioneering contribution on a topic  which is presently devoid of alternatives short of finite 

element analysis. As such, and the solutions can be used for deflection serviceability 

checks in design, but also to provide guidance in future research studies on this subject.  

2.11. Notation 

b = width of beam 
Cb = bending coefficient 
e = eccentricity 
E = elastic modulus 
Ec = elastic modulus of concrete 
Er = reduced elastic modulus of concrete 
G = elastic shear modulus 
h = height of beam 
Ix = moment of inertia about the strong axis 
Iy = moment of inertia about the weak axis 
J = torsional constant 
L = length of beam 
m = uniformly distributed torsion 
Mcr = critical bending moment 
Mi = moment in global axes for i=x,y,z; local axes for i=x*,y*,z* 
Mo = bending moment couples about strong-axis at the ends of beam 
mo = equivalent distributed torsion 
q = uniformly distributed load 
qo = equivalent distributed load 
u = lateral displacement 
um = maximum lateral displacement of beam centerline 
umb = maximum lateral displacement at the bottom of beam section 
umt = maximum lateral displacement at the top of beam section 
v = vertical displacement 
yw = vertical distance of load application above the centroid of the section 
φ = angle of twist 
φm = maximum angle of twist 
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CHAPTER 3 

Finite Element Modeling and Test Verifications 
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3.1. Introduction 

Recent improvements in the field of computer technology have offered an opportunity 

to implement numerical solution methods to increasingly more detailed and complicated 

engineering problems.  Even tough experimental methods still play a key role in research, 

and numerical methods are getting more attractive due to their lower cost and time 

comparing to experiments.  Highly nonlinear problems might be solved by using 

numerical methods such as finite element methods.  On the other hand, finite element 

methods require the knowledge of how various modeling parameters might affect the 

results and what values for these parameters should be used to properly describe a 

specific problem such as the response of a spandrel beam under various loading 

conditions.  Inadequate attention to these parameters might lead to worthless results. 

For this purpose, the results obtained from various experimental studies, reported in 

literature on concrete structures, were verified with those of finite element models 

generated with a commercially available computer program, ABAQUS [21].  At first, the 

response of plain concrete prism under uniaxial tension was studied to determine how 

accurately a tensile failure can be predicted with the concrete damage-plasticity model, 

an advanced material model for concrete in ABAQUS.  The next study included the 

modeling of concrete under biaxial loading and a discussion on the influence of various 

modeling parameters. The final verification example was associated with the pure 

bending of conventionally reinforced concrete beams, presenting the effects of finite 

element type and size, concrete-rebar interactions, and steel ratio.  

3.2. Behavior of Concrete 

Concrete is an inhomogeneous material which consists of aggregate and cement paste 

(cement, sand and water) in various ratios.  Experimental measurements show that 

fundamental properties of concrete such as elastic modulus, compressive strength and 

tensile strength vary in a broad range, which reduces the accuracy level of analysis and 
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design predictions.  The behavior of concrete under compression has a nonlinear 

ascending branch up to ultimate strength, f'c, followed by a pseudo strain hardening 

region as seen in Figure 3.1. However, in tension, concrete cracks under very low stress 

level (around 0.1f'c for normal strength and 0.05f'c for high strength concrete).  Cracking 

by itself has not been a well-understood phenomenon and is still a popular research topic. 

For reinforced concrete members, the concrete-rebar interaction, especially the so-called 

bond-slip, has to be taken into account.  Multiaxial stress states and corresponding failure 

modes in concrete are other difficulties and usually treated with the theory of plasticity.  

However, unlike metals, concrete experiences large volumetric changes under 

compression which is unique to granular materials.  Therefore, plasticity theory is usually 

employed with some modifications for concrete. 
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Figure 3.1 Uniaxial behavior of concrete  

The accuracy of computer analyses depends primarily on how precisely the material 

model is defined.  When material exhibits very complex behavior, as in the case of 

concrete, defining a material model with high level of accuracy can be a very difficult 

task. A simple linear-elastic material model is not adequate for most applications of 

concrete, particularly when the limit load on the structure is to be determined. To be able 

to perform more detailed analysis of concrete structures, the material model used in the 

finite element analysis should include various unique features of concrete such as 
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cracking, crushing, stiffness degradation, volumetric change etc. [24]. 

Even though micro- and macro-cracking properties of concrete under different loading 

conditions describe the behavior of concrete, predicting the initiation and development of 

such cracks is quite difficult.  Concrete under tension is relatively brittle, because the 

aggregate–mortar interface has a very small tensile strength.  Confined concrete however 

shows more ductile behavior than unconfined concrete under uniaxial stress state.  The 

ultimate strain capacity of concrete gets larger with increases in lateral stress. However, 

after a certain value of lateral stress (confining stress), strain at failure gets smaller.  

Volumetric expansion of concrete is also observed due to its composite nature when 

micro-cracks are observed to noticeably increase in the mortar [24]. 

Properly formulated plasticity theory can be used to define the behavior of concrete 

even though the theory was originally developed for metals.  This is so because both 

materials exhibit some similarities in overall response, such as irreversible deformation 

and ductile behavior assuming confined concrete.  Extensive experimental data is 

required to properly define the behavior of concrete with mathematical models.  Today, 

some types of experiments, for example uniaxial compression, can be conducted with 

sufficient accuracy and provide information for better understanding of concrete 

behavior.  Nevertheless, some tests such as triaxial loading are still difficult to perform 

and only a limited amount of data is available for the strength, stiffness and deformation 

characteristics of concrete under this loading state.  

Stress-strain curves of concrete under cyclic loading have an envelope which is similar 

to uniaxial stress-strain curve under monotonic loading. Biaxial compression strength of 

concrete is at least equal to the uniaxial compression strength.  This is valid for biaxial 

tension strength as well.  Towards the peak-stress value of concrete under compression, 

volumetric change increases.  Compaction of concrete under triaxial loading is the main 

reason for deformation. Confining compression stress leads to large deformation or 

ductility.  The tensile strain limit can be considered as a failure criterion of concrete 

under uniaxial or biaxial stress state [24]. 

Typical load-deflection curve of a reinforced concrete member consists of linear and 

nonlinear regions.  In the linear region, cracks are not observed and the member is elastic.  
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In general, the early stages of the nonlinear region include crack formation and 

propagation. In the next stage, nonlinear behavior is defined by plastic responses of 

concrete (crushing) and rebar (yielding). There are some other features of the reinforced 

concrete member, which contribute to the nonlinear response.  They can be classified as 

time-independent (e.g., bond-slip and aggregate interlock) and time-dependent factors 

(e.g., creep, shrinkage and temperature expansion/contraction). A generalized material 

model is necessary to describe the main characteristics of the reinforced concrete member 

mentioned above.  The generalized model might be defined in three steps: First, the 

reinforcement can be represented by one-dimensional element carrying axial load only 

and hence the behavior of steel can be defined with a uniaxial stress-strain relationship 

only.  Second, a model for the multidimensional behavior of concrete should be assumed. 

But this is the most difficult problem and one which is not completely solved. Finally, 

concrete-rebar interaction is defined by modeling the bond-slip phenomenon. In some 

cases, assuming perfect bonding and no slip provides reasonable results [24]. 

3.3. Damage-Plasticity Model of Concrete 

The behavior of concrete including cracking can be described using one of three 

material models in ABAQUS; the concrete damage-plasticity (CDP) model, the concrete 

smeared cracking (CSC) model and the brittle cracking model. Concrete models are 

differentiated based on the loading conditions (monotonic or cyclic) and controlling 

failure types (tensile cracking, compressive crushing).  The smeared cracking model in 

ABAQUS/Standard was essentially developed for concrete under monotonic loading, 

experiencing either tensile cracking or concrete crushing. The brittle cracking model in 

ABAQUS/Explicit emphasizes the tensile cracking of concrete rather than concrete 

crushing as an essential material behavior. The concrete damage-plasticity model is a 

constitutive model for concrete which is generally used in the analysis of reinforced 

concrete structures under cyclic loading.   

The damage-plasticity model is based on the limit states of concrete crushing in 

compression and cracking in tension.  In other words, concrete behaves in brittle manner.    
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High confining pressure causes concrete to respond as a ductile material.  In this case, the 

propagation of micro-cracks instead of large cracks determines the response of concrete.  

The concrete damage-plasticity model does not deal with such a ductile behavior of 

concrete.  The model is based on the assumption of scalar isotropic damage.  The plastic-

damage model in ABAQUS relies on the models proposed by Lubliner et al. [25] and by 

Lee and Fenves [26].  

In the incremental theory of plasticity, the total strain rate, ε&  is decomposed into the 

elastic and plastic parts, elε& and pl
ε& , respectively (3.1).  

pll
εεε

e
&&& +=  (3.1) 

Next, the stress-strain relationship can be established in the following form:    

)ε(ε:Dσ
plel −=  (3.2) 

where el
D represents the degraded elastic stiffness tensor which is of the fourth rank and 

σ is the stress tensor.  Based on the concept of the plastic damage theory, the degraded 

elastic stiffness tensor elD means that the effective load-carrying area reduces as the 

concrete reaches one of the failure mechanisms (compressive crushing or tensile 

cracking). In general, the isotropic degradation damage is assumed with a scalar variable 

d ranging from 0 to 1. 

el

o

el d DD )1( −=  (3.3) 

where el

oD is the undamaged elastic stiffness.  

Equivalent plastic strains in tension and compression, pl

t
~ε  and pl

c
~ε , which are the so 

called hardening variables, are used to describe damaged states of micro-cracking and 

crushing in concrete.  The evolution of the yield surface and the degradation of the elastic 

stiffness are controlled by these hardening variables, which can be described as follows: 












=

pl

c

pl

tpl

ε

ε
~

~
ε~  (3.4) 

and 

plplpl ε)ε~,σ(hε~ && =  (3.5) 

 A yield function, as seen in equation (3.6), can be expressed in terms of the effective 
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stress σ and the equivalent plastic strains, pl~ε . The yield function is defined in the 

effective stress space and is bounded by tensile cracking and compressive crushing. 

These two failure modes are taken into account using the equivalent plastic strains in 

tension and compression, pl

t
~ε  and pl

c
~ε .  

0)~,( <lF pεσ  (3.6) 

The flow rule is defined with a flow potential G, which ensures that the flow direction 

is always uniquely defined as in equation (3.7). The parameter λ&  is the non-negative 

plastic multiplier.  The concrete damage-plasticity model assumes that the flow potential 

G is defined with the non-associated Drucker-Prager hyperbolic function (ABAQUS). 

)(

)(

σ

σ
ε
p

∂

∂
=

Gl λ&&  (3.7) 

3.4. Smeared Cracking Model of Concrete 

Similar to the concrete damage-plasticity model, the smeared cracking model of 

concrete is valid for the case of low confining pressure.  However, this model is only 

applicable to concrete under monotonic loading.  Concrete cracking is assumed to be the 

governing failure mode.  Cracking develops when the stresses reach a failure surface, so-

called "crack detection surface" [21].  Rather than tracking micro-cracks in concrete, a 

smeared crack model is based on the idea that the presence of cracks reduces the stiffness 

and strength values associated with an integration point in the finite element model.    

When concrete is dominantly subjected to the principal compressive stresses, failure is 

defined with a simple yield surface based on the first two stress invariants.  The model 

assuming associated flow and isotropic hardening simplifies the actual response of 

concrete since the third stress invariant required to predict the inelastic volume strain is 

simply ignored in this model.  Even though there are limitations as noted above, the 

smeared cracking model still provides adequate prediction ability for various problems.  

The most important advantage of using this model is the reduction of the computational 

cost since the assumption of associated flow introduces symmetry in the material stiffness 

matrix [21].   



 45 

3.5. Uniaxial Tension of Plain Concrete 

3.5.1. Description of the Experiment 

In general, the resistance of cracked concrete is ignored in many design applications 

for the sake of simplicity.  However, neglecting the post-cracking behavior of concrete 

may not be accurate in the nonlinear finite element analysis of concrete structures.  Post-

cracking response of concrete plays an important role in predicting deflection, crack 

width, bond-slip, and shear transfer [27].  It is quite difficult to conduct uniaxial tensile 

tests of concrete, and the data obtained from different tests are often conflicting.  Testing 

difficulties are caused by several reasons; the failure of concrete due to multi-dimensional 

stress conditions around the grips and the unstable post-peak response of concrete.  

Gopalaratnam and Shah [27] developed a testing method to obtain more reliable test 

results of concrete in tension and investigated the load-deformation behavior of plain 

concrete in tension, including the post-peak softening branch.  They also proposed an 

analytical model to predict the response of concrete in tension. 

Rectangular direct tension specimens with different mix proportions and the 

dimensions of 3 x ¾ x 12-in. and 3 x 1½ x 12-in. were used.  They were subjected to 

monotonically increasing displacement at a rate of one micro-strain per second.  Total 

testing duration was generally around one half-hour.  Some specimen had notches with 

the depth of 0.5-in. and the width of 0.1-in.  Test results were also presented for the case 

of cyclic loading bounded by the monotonic envelope and zero stress.  Compression tests 

of 3 x 6-in. cylinders were also conducted and some material properties such as 

compressive strength, strain at the peak-stress, initial modulus were reported. Stress-

displacement curves with a gage length of 3.25-in. were provided based on the test results 

[27].   

The test results showed that the stress-displacement curve was independent of the 

notch presence.  Elastic modulus in the tension and compression were similar. Based on 

the strain values monitored at various locations on a specimen, it could be concluded that 

the ascending branch of the stress-strain curve was independent of the gage length and 

there was a unique stress-strain relation in this region. However, the post-peak response 
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did not show any unique stress-strain relation due to the localization of deformations. 

Instead an average stress-average crack relationship was used to uniquely define the post-

peak behavior [27].  

3.5.2. Description of the Finite Element Model 

One of concrete specimens tested by Gopalaratnam and Shah [27] was selected and 

modeled using ABAQUS/Standard and next analysis results were compared with test 

results.  A cubic eight-node brick element with reduced integration was used to model the 

test specimen.  The edge length of the brick element was assumed to be equal to 3.25-in 

which was the gage length used for the test measurements.  The damage-plasticity model 

was used to define the behavior of cracked concrete. Tension stress applied to one face of 

the cubic element was defined as pressure and the opposite face of the cube was 

restrained in the loading direction only.  Since the specimen was subjected to both 

loading and unloading during the test, displacement-controlled static analysis was 

performed.  

Major properties of the selected specimen are listed in Table 3.1. They were extracted 

from experimental data. However, the data listed in this table are not enough to fully 

define damage-plasticity model for concrete.  Therefore, it was necessary to make some 

assumptions for certain model parameters.  The elastic modulus of concrete varied in 

tension and compression, as seen in Table 3.1.  However, an elastic modulus value of 

4.853x106 psi based on the tensile test was used in the model for both compression and 

tension behavior. In fact, the compressive behavior of concrete had no effect on the 

uniaxial tensile response, and a linear stress-strain relation was used for concrete in 

compression.  Poisson's ratio was taken equal to 0.15.  The dilation angle was considered 

to be 30 degrees. Tension stiffening of concrete was defined (1) using the test data for 

stress-cracking displacement and (2) a fracture energy of 0.322 lb/in.   

Tension damage parameters used in the concrete damage-plasticity model were also 

determined using the test data. Using the stress-displacement response of the concrete 

specimen, the slopes of unloading response at various stress levels were approximately 

estimated.  Comparing the initial elastic modulus with unloading elastic modulus for a 
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stress value, the tension damage parameter dt were obtained.  Tension damage parameters 

for five cycles were tabulated in Table 3.2.  However, in concrete damage-plasticity 

model, tension damage dt must be defined in terms of cracking displacement of concrete.  

A stress-cracking displacement curve was used to determine the cracking displacement 

for a certain stress level and damage parameter.                

Table 3.1 Average concrete properties for mix proportions of 1:2:2:0.45 

(cement:sand:aggregate:water) [27] 

Strength Modulus Strain Fracture Strength Modulus Strain

f t E t x10
6 ε t x10

-6
G f' c E c x10

6 ε c x10
-6

psi psi - lb/in psi psi -
525 4.853 120 0.322 6364 4.41 1843

Tension Test Compression Test

   

Table 3.2 Tension damage parameters 

Cycle
1 0.54 0.18
2 0.32 0.52
3 0.23 0.68
4 0.16 0.80
5 0.12 0.85

Tension Damage 
Parameter d t

Stress / Tensile 
Strength ( σ /f t )

 

3.5.3. Results and Discussions 

The results of finite element analysis of pure concrete specimen were first compared 

with the test results for the study of mesh sensitivity.  Three different configurations; (1) 

a 3.25-in cubic brick element, (2) a 3.25-in cubic mesh subdivided into eight brick 

elements and (3) a 1.625-in cubic brick element were taken into account.  The tension 

stiffening region of the concrete in these finite element models was based on the test 

results of the specimen with the gage length of 3.25in.  In Figure 3.2, the results of Case 

(1) and test were plotted.  The results of the finite element analysis agree reasonably well 

with those of test.  The reduction in initial elastic modulus due to tension damage can be 

clearly observed in the response of model during loading and unloading.  However, 
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results were not obtained accurately for Case (2) as seen in Figure 3.3.  In the elastic 

region, the mesh configuration has no effect.  In the tension stiffening region, the 

cracking-displacement value at a certain stress level was approximately twice the value 

obtained in the test.  It means that each element in Case (2) follows the stress-cracking 

displacement curve that was defined for tension-stiffening region in concrete damage-

plasticity model.  Figure 3.4 shows the results of Case (3) in which the 1.625-in brick 

element closely followed the test results for large displacement values.  Even though the 

model maintained the fracture energy, the area under the stress-displacement curve, as in 

the Case (1),  the results for the small displacement values was quite different from the 

test results. This was due to the fact that the length of the brick element in Case (3) was 

no longer equal to the gage length of 3.25-in, which was used for experimental 

measurement.  These results also showed that smaller brick elements, Cases (2) and (3), 

had to undergo larger strain values than larger element, Case (1), to maintain the same 

tension-stiffening response.     

Tension stiffening of concrete can be defined using either stress-cracking 

displacement relation or fracture energy.  Figure 3.5 compares these two approaches for 

the cubic brick element with a length of 3.25-in, Case (1).  The fracture energy used in 

the finite element analysis was 0.322 lb/in, which was reported by Gopalarantnam and 

Shah [27]. The fracture energy approach yielded linear tensile strength reduction.  

However, the area under curves obtained with two approaches resulted in the same value 

of 0.322 lb/in. 
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Figure 3.2 Response of brick element (1) 
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Figure 3.3 Response of finite element mesh (2) 
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Figure 3.4 Response of brick element (3) 
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Figure 3.5 Comparison of tension stiffening assumptions         

Some other aspects of concrete behavior based on damage-plasticity model were also 

investigated with finite element analysis.  Results were independent of dilation angle 

which is typical of the response for concrete under uniaxial loading.  Tension damage 

slightly increased the net axial stress at a certain displacement value and decreased the 

slope of the unloading path. It might be concluded that stress-displacement envelopes in 

both damaged and undamaged cases were relatively close and defining damage for 

concrete might be useful in the case of cyclic loading.  

It could be concluded that when tension stiffening of concrete is defined with the 
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fracture energy approach, the value used for the fracture energy should be modified 

depending on the characteristic length of the finite element to remove mesh sensitivity of 

results.  The characteristic length of a brick element was assumed the cube root of the 

integration point volume in ABAQUS.  This is the reason why the element having a large 

aspect ratio can show differences in behavior depending on the cracking direction.   

3.6. Biaxial Loading of Plain Concrete 

3.6.1. Description of the Experiment 

Kupfer, Hilsdorf and Rusch [29] studied the behavior of concrete under various states 

of biaxial stress. One of the major technical difficulties in testing of concrete in biaxial 

stress state is caused by applying accidental stresses into concrete specimen.  This is the 

reason why there is a broad variation in the results reported by different researchers.    

Kupfer first had to develop suitable equipment for testing concrete under biaxial stress.  

Next, concrete specimens with dimensions of 7.9x7.9x2 in. were tested for the cases of 

biaxial compression, compression-tension and biaxial tension.  Four different stress ratios 

were applied in each loading case. They monitored load and concrete strains in the three 

principal directions.  Uniaxial compressive strengths of tested concrete specimens were 

2700, 4450 and 8350 psi.    

Test results showed that the compressive strength of concrete increases 16 percent in 

the case of equal biaxial compressive stresses, and tensile strength remains almost 

constant for the case of biaxial tensile stresses.  For the case of compression-tension 

stresses, compressive strength decreases due to the presence of tensile stress.  The elastic 

modulus and Poisson's ratio are not influenced by the biaxial stress ratios.  

3.6.2. Description of the Finite Element Model 

To investigate the capabilities of ABAQUS/Standard in modeling of concrete behavior 

under biaxial loading, a finite element model was first generated and compared with test 

results reported by Kupfer et al. [29].  An eight node brick element with reduced 

integration was used with dimensions as shown in Figure 3.6.   The element was 
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subjected to pressure in the 1- and 2-directions.  Static, Riks analysis was performed for 

three loading cases such as uniaxial compression, biaxial compression and compression-

tension.   

The damage-plasticity model was first used to define the behavior of concrete. 

Compressive and tensile strengths of the selected concrete specimen were 4650 and 315 

psi, respectively.  The uniaxial stress-strain relation of concrete was defined based on test 

data reported by Kupfer et al. [29].  However, the behavior of concrete was assumed to 

be linear up to 45 percent of the uniaxial compressive strength (0.45f'c= 

0.45×4650=2093psi). The elastic modulus of concrete was obtained as 4500 ksi from the 

slope of the linear branch. The fracture energy was assumed to be equal to 0.3 lb/in.  The 

dilation angle was first considered to be 30 degrees, but the effect of various dilation 

angles was also investigated during finite element analyses. The ratio of equi-biaxial 

compressive strength to unixial compressive strength of concrete, σbo/σco was taken 1.15, 

which was a value measured during the experiment.  As no test data were available for 

the cyclic loading in this experiment, it was not possible to define compression damage 

parameters.  
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Figure 3.6 Specimen dimensions 

The smeared cracking model for concrete was also implemented in the finite element 

analysis. The behavior of concrete under uniaxial loading was taken from the 

experimental measurement as in the case of damage-plasticity model.  Other parameters 

required to define smeared cracking model are tabulated in Table 3.3.  Failure ratios are 

paramaters used to define yielding.  The ratio of equi-biaxial compressive strength to 

uniaxial compressive strength of concrete was taken equal to 1.15 and the ratio of 

uniaxial tensile strength to uniaxial compressive strength of concrete was taken as 0.068, 
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both which were measured during the experiment.  Other ratios represent typical values 

for concrete.  Shear retention is ignored for this example as it is generally used when 

loading and unloading is present. Finally, the maximum cracking displacement of 

concrete was defined to describe the post-cracking response.  To be consistent with the 

concrete damage-plasticity model, the maximum cracking displacement of concrete was 

determined by assuming linear tension stiffening.  The maximum cracking displacement 

was obtained as 0.0019 in. (=2×0.3/315) for a fracture energy of 0.3 lb/in and a tensile 

strength of 315 psi.   

Table 3.3 Parameters of concrete smeared-cracking model 

1.150 0.068 1.280 0.330

Failure Ratios

uniaxial

cu

biaxial

cu

σ
σ

cu

tu

σ
σ

uniaxial

pu

biaxial

pu

ε

ε
uniaxial

tu

biaxial

tu

σ
σ

 

3.6.3. Results and Discussions 

Finite element analysis for plain concrete under uniaxial tension showed that the 

results were sensitive to mesh configuration.  A similar study was performed for concrete 

under uniaxial and biaxial compression.  Two types of mesh configurations were taken 

into account.  Mesh (1) included a single eight-node brick element with reduced 

integration, whereas Mesh (2) included four brick elements. Figure 3.7 shows the results 

of uniaxial compression.  The stress-strain relation in the 1-direction followed exactly the 

curve obtained by test.  However, a small divergence from the test data was observed for 

inelastic strains in the 2- and 3-directions.  On the other hand, the results were not mesh 

sensitive. The response of concrete in equi-biaxial compression (σ1=σ2) is presented in 

Figure 3.8.  No mesh sensitivity was observed in this loading case either.  Finite element 

analysis yields slightly different response from the experimental measurements for 

inelastic strains in all directions.   

Responses of concrete damage-plasticity and smeared cracking models for the case of 

tension-compression (0.0052σ1=σ2) are plotted in Figure 3.9 and Figure 3.10, 
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respectively.  The model based on concrete damage-plasticity failed at a stress level 

which was almost one-half of the measured strength.  However, the smeared cracking 

model yielded very good agreement with test results.  Even though not presented herein, 

it should be noted that concrete smeared cracking model accurately predicted the 

behavior of concrete under uniaxial and biaxial compression, as well.  

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3 4
Strain, ε (0.001in/in.)

σ1
 /

 f
' c

 

Test

Mesh1

Mesh2

ε 1ε 2 , ε3

1

2

3

Mesh 1 Mesh 2

 
Figure 3.7  Mesh sensitivity in uniaxial compression-CDP 
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Figure 3.8  Mesh sensitivity in biaxial compression-CDP 
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Figure 3.9 Response of CDP model in tension-compression 
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Figure 3.10 Response of CSC model in tension-compression 

Dilation angle is an important parameter affecting the behavior of concrete especially 

in the unloaded directions. Finite element analysis results obtained for various dilation 

angles of concrete in uniaxial compression are compared with test results in Figure 3.11.  

The variation of the dilation angle was found to have no effect on the response in the 

loading direction (i.e., the 1-direction).  However, the response of model in the 2- and 3- 

directions depended upon the value of dilation angle.  An increase in the dilation angle 

made the inelastic response of concrete in 1- and 2- directions softer.  The influence of 

dilation angle of concrete in equi-biaxial compression is similar to that of uniaxial 
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compresison.  In this case, the response for strain values in the 3-direction varied 

depended on the dilation angle. However, in the loading directions (1 and 2), the 

variation of dilation angle did not produce any difference.   

Fracture energy is another parameter that might cause a variation in the response of 

concrete model. Finite element analysis (not shown here for brevity here) indicated that 

the behavior of concrete in equi-biaxial compression for various fracture energy values 

(0.3, 1.0, and 10.0 lb/in) was independent of the values used for fracture energy.  This 

was due to the fact that the failure mode in this case was the crushing of concrete and it 

was not related to the tension stiffening of concrete. 
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Figure 3.11  Effect of dilation angle 

3.7. Pure Bending of Reinforced Concrete Beam 

3.7.1. Description of the Experiment 

Janney et al. [28] investigated the flexural behavior and strength of rectangular beams 

with different types of tension reinforcement.  Beams were divided into five groups with 

respect to reinforcement type: (1) pre-tensioned reinforcement, (2) post-tensioned grouted 

reinforcement, (3) post-tensioned unbonded reinforcement, (4) post-tensioned unbonded 

reinforcement with additional conventional reinforcement, and (5) conventional 
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reinforcement.  Each group consists of beams with different tension reinforcement ratios.   

Janney et al. [28] tested 19 beam specimens with a cross section of 6x12-in. 

Longitudinal steel was located in such a way that the effective depth in all beams were 

approximately 8.3-in.  All beams had a length of 10-ft. and were subjected to third point 

loading.  Each beam had a 9-foot long clear span.  Prestressing strands were 3/8-in. 

seven-wire strand and pulled up to 120-ksi. The strands were not stress relieved and 

exhibit nonlinear behavior at very low load levels. Typical concrete compressive strength 

was 5500-psi.  As the main purpose of the experiment was to investigate the flexural 

strength of reinforced concrete beams, they attached clamp-on stirrups in the outer thirds 

of the beams to prevent the shear failure.  They monitored deflections and concrete and 

reinforcement strains. 

Test results showed that the behavior of beams were highly affected by the stress-

strain relationship of reinforcing steel and the bond properties between concrete and steel.  

Mid-span deflections tend to be small in the prestressed concrete beams for the service 

load conditions. However, conventionally reinforced concrete beams had larger 

deflections than prestressed concrete beams at failure. With an increase of the 

reinforcement ratio, mid-span deflections at failure tend to be smaller (Janney, Honestad 

and McHenry 1956).  
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Figure 3.12 Beam dimensions 

3.7.2. Description of the Finite Element Model 

A finite element model was first generated with ABAQUS/Standard for one of the 

beams tested by Janney et al. [28] consisting of conventional reinforcement and next, 

analysis results were compared with test results.  Eight-node brick elements with reduced 

integration were used to model concrete.  Reposted properties of the beam listed in Table 
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3.4 were not enough to describe the behavior of concrete using damage-plasticity or 

smeared cracking model.  Some assumptions were made for those parameters required by 

the concrete models, but which not measured during experiment.   

The Modified-Hognestad concrete model was used to define the uniaxial stress-strain 

relation of concrete under compression.  However, the stress-strain relation was assumed 

linear up to a stress level of 0.45f'c.  The slope of this line (4722ksi) was assumed to be 

equal to the elastic modulus of concrete.  The dilation angle required in the concrete 

damage plasticity model was taken equal to 30 degrees.  No damage parameters were 

taken into account in the analysis.   The tensile strength of plain concrete and the fracture 

energy of reinforced concrete were assumed to be equal to 440 psi and 0.01 k/in, 

respectively.  Fracture energy of reinforced concrete is generally larger than that of plain 

concrete due to the interaction between concrete and rebar.  Since no test data was 

available for the failure ratios of concrete smeared cracking model that were briefly 

mentioned in the previous verification example, the default values in ABAQUS were 

implemented.  The ratio of uniaxial tensile strength to compressive strength was taken 

0.081 (=440/5420).  The maximum cracking displacement was obtained as 0.045 in 

(=2Gf/ft ) with the assumption of linear post-cracking response.  

Longitudinal reinforcement, 3No8, was modeled as 2D truss element and was 

embedded into concrete.  No slip between concrete and rebar was allowed in the model.  

Elastic-perfectly plastic material model were used for steel with the yield strength of 56.1 

ksi.  As mentioned in the description of the experiment above, the outer thirds of the 

beams were fixed with clamp-on stirrups to prevent the shear failure. Instead, closely 

spaced stirrups were located in those regions of the beam for modeling purposes.  Static, 

Riks analyses were performed with the load increment and loads were distributed along 

the width at one-third locations of the beam.  

Table 3.4 Major properties of the selected specimen 

Beam
Group

Concrete 
Strength 

f' c

Effective
prestress, 

f se

Yield 
Strength

f y

Steel Percent psi ksi ksi
5-0.492 3No8 4.75 5420 0 56.1

Reinforcement
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3.7.3. Results and Discussions 

The sensitivity of finite element results to mesh configuration was first investigated by 

using 1.5-in. and 3-in. cubic brick elements for concrete.  In Figure 3.13 the finite 

element results obtained with two mesh configurations were compared with the test 

results for the applied moment normalized with respect to calculated moment capacity 

versus vertical deflection at the mid-span of the beam.  Analyses, which were based on 

the damage-plasticity model for concrete, were terminated when the longitudinal 

reinforcement began yielding.  As opposed to the tensile response of plain concrete, the 

analyses results showed that the response of reinforced concrete under tension was not 

mesh sensitive.  This is attributed to the dominant effect of reinforcing steel in the 

cracked concrete since concrete can carry much less tensile stress than reinforcing steel in 

the cracked zone. 

Figure 3.14 shows the comparison of the beam responses obtained with damage-

plasticity and smeared cracked model.  Both models provided results in good agreement 

with experimental results.  Even though finite element analyses seem to give a slightly 

stiffer response, the stiffness of the cracked member was still close to the test results.  

This might be due to the effect of the tensile strength of concrete that was assumed in the 

finite element model, as the cracking moment obtained by analysis was slightly larger 

than obtained by experiment.   
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Figure 3.13  Mesh Sensitivity (CDP model) 
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Figure 3.14 Comparison of concrete models 
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CHAPTER 4 

Nonlinear Finite Element Modeling of Prestressed Concrete 

Spandrel Beams 
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4.1. Introduction 

Nonlinear three-dimensional finite element modeling of precast, prestressed concrete 

spandrel beams is a challenging task and requires exploration of the effects of material 

parameters and modeling assumptions.  To this end, the numerical results obtained using 

the commercial software ABAQUS/Standard were compared with existing experimental 

data.  The sensitivity of the spandrel beam response to various parameters such as finite 

element type, dilation angle, fracture energy, tension stiffening, bearing stress distribution 

and support representation was investigated.  The behavior of precast, prestressed 

concrete spandrels under vertical loading was found to be sensitive to the type of 

element, the dilation angle for the concrete, bearing stress distribution at the supports, and 

deck-tie stiffness.  Many of the findings reported are believed to be applicable to other 

types of reinforced concrete structures. 

4.2. Background 

Precast, prestressed concrete spandrel beams have been widely used in the perimeter 

of precast concrete frame buildings, especially for parking garages.  The spandrels 

usually support precast, prestressed concrete doubles-tees, which are used as both deck 

beams and floor diaphragms, and are supported by column corbels at their ends.  

Spandrel beams are typically 1.5 to 2 m deep, and they have span lengths ranging from 9 

to 15 m, with recent trends focusing on spans as long as 18 m.  Web thicknesses are 

typically 0.2 to 0.3 m.  Spandrel beams are often categorized by the features of their 

configuration which serve to support the deck members.  For example, "L-shaped" 

spandrels have a continuous horizontal ledge (Fig. 4.1), "pocket" spandrels have 

rectangular cutouts, and “spot corbel” spandrels feature a discontinuous ledge.  The latter 

two configurations provide support only at the locations of the double-tee webs.   

The cross section of a spandrel beam is under the combined effects of shear, torsion 

and bending moment, the latter about the strong axis, which complicates the analysis and 
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design of these beams.  The asymmetric shape of L-shaped cross sections also introduces 

minor-axis bending moment under vertical loads.  The torsional effect stems from the 

eccentric transfer of vertical loads from the double-tees.  Thus, besides vertical 

deflection, lateral deformation due to the combination of eccentric loading and 

asymmetric geometry may develop in an L-shaped slender spandrel beam.  The lateral 

deformation has the potential to trigger lateral-torsional instability of the beam under 

flexure, if it is sufficiently slender, and the presence of prestressing forces further 

complicates the loading conditions. 

Double-tee load

Tie-back bolt

Column

L-shaped spandrel beam

Column

Double-tee load

Tie-back bolt

Column

L-shaped spandrel beam

Column  
Fig. 4.1. Double-tee loads, tieback forces and support reactions on an L-shaped spandrel 

beam 

To date, most research efforts have been focused on strength and design 

considerations for precast prestressed concrete spandrels under the combined effects of 

shear, torsion and bending [30]-[34].  Lateral deformation issues are seldom mentioned in 

the technical literature for reinforced concrete beams subjected to concentric loading 

[35]-[40], and no test data are available on the lateral-torsional instability in prestressed 

concrete beams.  In this regard, finite element analyses might provide opportunities for 

better understanding of the overall behavior of highly slender, L-shaped, prestressed 

concrete spandrel beams.  There are a few research efforts that investigate the response of 

prestressed concrete spandrel beams through finite element simulations [33].  However, 

those efforts were intended to verify the accompanying experimental results.  Moreover, 

the finite element simulations are difficult to reproduce given the high sensitivity of some 

of the spandrel responses to the values of the parameters used in the model.   
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Consequently, in spite of the huge progress in computer analysis of concrete 

structures, relying on computer models to predict the lateral deformations of precast, 

prestressed concrete spandrels can be risky because such models require validation with 

experimental data.  Therefore, this study contributes to the understanding of the models 

and their sensitivity to the parameters involved so as to enable computer simulation of the 

behavior of spandrel beams.  A three dimensional finite element simulation, which 

includes realistic material behavior, inherently introduces some numerical and modeling 

challenges.  Thus, the other contribution of the study presented herein is a discussion of 

the challenges and potential pitfalls associated with three-dimensional finite element 

simulation of prestressed concrete spandrel beams using the commercial software, 

ABAQUS/Standard [41] and to suggest some ways to avoid these problems. Although 

important in its own right, the conclusions reached in the analysis of spandrel beams have 

broader implications.  The experiences described here in the context of spandrel beam 

analysis by finite element should be equally applicable to other reinforced and prestressed 

concrete structures and they constitute the principal motivating factor to prepare this 

manuscript.  

4.3. Scope of the Study  

Due to the nature of the problem, the finite element model of a spandrel beam should 

incorporate both material and geometric nonlinearities.  ABAQUS/Standard is capable of 

solving extensively nonlinear problems, comprising both geometric nonlinearity and a 

complex material model for concrete that includes plasticity in compression and cracking 

in tension.  The geometric nonlinearity should be considered to not only to estimate 

deflections accurately, but also to predict changes in internal forces due to distortion of 

member geometry.  Linear analysis theory is based on the assumption that deflection 

remains small after loading and the equilibrium equations can be established in the 

undeformed shape of the member.  However, a slender spandrel beam might develop 

sufficiently large deformations that affect internal equilibrium under combined loading 

effects, and small deflection theory may lead to inaccurate estimation of deflections.  
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 Material nonlinearity is another essential factor that needs to be considered in the 

finite element analyses of concrete.  Concrete cracking reduces both torsional and 

flexural stiffness of the section and causes significant increase in the deflections.  

Although prestressing forces tend to keep concrete uncracked under flexure, this will 

occur only if the loading is sufficiently low.  A relatively accurate material model for 

concrete should be used to capture concrete cracking and corresponding deformations 

when the ultimate capacity is to be determined.  ABAQUS/Standard offers several 

concrete models defined with various parameters such as dilation angle, fracture energy, 

and tension stiffening.  The damage-plasticity model of concrete was implemented in this 

study and the sensitivity of spandrel response to the pertinent parameters for that model 

will be discussed. 

4.4. Description of the model problem 

The finite element modeling techniques investigated with ABAQUS/Standard were 

first compared with the results of full-scale tests found in literature [32].  The main 

objective of these experiments was not to evaluate the magnitude of lateral deflections in 

spandrel beams, but to investigate the influence of alternative transverse reinforcement 

schemes on the torsional resistance of spandrel beams.  However, data generated in this 

experimental study is useful to analyze the sensitivity of the spandrel beam deflections to 

various modeling parameters as well.  

Fig. 4.2 shows the test setup.  The 13.7 m (45 ft) long specimen (specified as SP4 in 

[32]) with a depth of 1.5 m (5 ft) and a web thickness of 0.2 m (8 in.) was chosen in the 

present study for verification of the finite element model. The cross section of the 

spandrel ledge was 0.2 × 0.2 m (8 × 8 in.).  The ledge was terminated at a 0.3 m (12 in.) 

distance from both ends of the spandrel web.  Low relaxation, 1860 MPa (270 ksi), 12.7 

mm (½ in.) diameter strands were used in this specimen, as seen in Fig. 4.3.  The cylinder 

strength for concrete in compression was measured as 49.6 MPa (7.19 ksi).  A 152 × 152 

mm (6 × 6 in) - W4 × W4 mesh of welded wire fabric was placed on both sides of the 

spandrel web.  The web also included 10M (No. 3) L-shaped bars at 0.15 m (6 in.) 
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spacing.  The ledge reinforcement was provided as 13M (No. 4) C-shaped bars with a 0.2 

m (8 in.) spacing.  The entire reinforcement assembly is not shown for brevity, but can be 

found in [32]. 

Test frame
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Fig. 4.2. Test setup, adapted from [32] 
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0.4m
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1.5m

12.7 mm dia. straight strand pulled up to 100 kN

12.7 mm dia. straight strand pulled up to 70 kN

0.2m

0.4m

0.2m

1.5m

12.7 mm dia. straight strand pulled up to 100 kN

12.7 mm dia. straight strand pulled up to 70 kN  
Fig. 4.3. Strand details, adapted from [32] 

The web of the spandrel beam was laterally connected to the vertical support at the 

ends with 25.4 mm (1 in.) diameter bolts.  The bolts were located 0.15 m (6 in.) away 

from the ends and 0.3 m (12 in.) away from the top and bottom.  Teflon-coated bearing 

pads were provided to reduce friction at the end supports, and the spandrel web was 
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connected to the double-tee deck by means of embedded steel plates.  The location of 

these plates corresponds approximately to the mid-height of the beam.  Due to the self 

weight of the beam and testing equipment, the support reaction was measured to be 98 

kN (22 kips) at the beginning of the test.  Except for three initial cycles of loading and 

unloading, monotonic loading was applied to the beam in increments.  Loading during 

the increments was kept constant for 5 to 10 minutes during testing for observations 

except for the third initial loading-unloading cycle during which there was an increment 

with a 24-hour duration when the spandrel was loaded at the estimated value of full 

factored loading.  There were nine loading points with 1.5 m (5 ft) spacing on the ledge 

and the first loading point was 0.5 m (1 ft 8 in) away from the ledge ends [32].  The test 

results showed that the maximum lateral deflection was approximately two times larger 

than the vertical deflections.  Even though lateral stability was not investigated in the 

experiments, based on these results, it might be concluded that slender spandrels may be 

prone to lateral stability problems [32]. 

The behavior of the L-shaped, precast, prestressed spandrels was also investigated 

through nonlinear finite element analysis in [33], an accompanying study to [32].  As 

with the experimental study, the main objective was to show the feasibility of open web 

reinforcement in L-shaped spandrels.  The model developed for the slender spandrels was 

used to evaluate compact spandrels for various configurations of web reinforcement.  The 

ANATECH Concrete Analysis Program (ANACAP) was used to model the nonlinear 

behavior of spandrel beams.  The concrete model provided in ANACAP is based on the 

smeared cracking approach.  Furthermore, the sensitivity of the lateral deflections in 

spandrel beams to various modeling parameters was not reported in [33].   

4.5. General description of finite element model 

In the present study, a finite element model of the spandrel beam tested at North 

Carolina State University was generated in ABAQUS/Standard using carefully selected 

geometric and mechanical properties.  The results of this analysis were required as a basis 

for investigation of optimal model parameters.  
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Due to the symmetry of the specimen with respect to the mid-span, only one-half of 

the spandrel was modeled using ABAQUS/Standard, as shown in Fig. 4.4.  Symmetry 

boundary conditions were assigned to the mid-span surface of the spandrel beam.  The 

end of spandrel beam was fixed at the mid-point of the bottom surface of the web against 

vertical displacements at the bearing pads.  However, since restraining only one point in 

such a three-dimensional finite element model may lead to singularity problems, the 

bottom surface 0.3 × 0.2 m (12 × 8 in.) of the web at the support region was forced to 

remain plane during analysis by defining constraint equations.  Lateral tiebacks were 

taken into account as spring elements.  They were provided at a distance 0.3 m (12 in.) 

away from the top and the bottom of the web, and 0.15 m (6 in.) from the end.  The value 

of spring stiffness was assumed to be equal to 100 kN/mm (570 k/in) after computing the 

axial stiffness (EA/L) for one-meter long tie-back bolts with a diameter of 25mm (1 in.).  

Also, deck-ties comprising steel plates 76 × 152 × 9.5 mm (3 × 6 × 3/8 in.) prevented 

lateral displacement at the mid-height of the spandrel.  Two deck ties were located at the 

mid-height of the front face of the spandrel as shown in Fig. 4.4.  To accommodate for a 

finite size of the connections, each deck-tie was modeled using two adjacent spring 

elements with an axial stiffness of 1900 kN/mm (10,875 k/in) each, corresponding to 

one-half of the steel plate stiffness (EA/L) value. 

Plane of 

symmetry

Tie-back springs

25.4mm dia. bolt

100kN/mm

Deck-tie springs

PL76x152x10mm

1900kN/mm
Double-tee load

Deck-tie 

spring

Tie-back 

springs

1.6m 1.6m 1.6m 1.6m0.3m 0.5m

0.3m

0.9m

0.3m

0.15m

Plane of 

symmetry

Tie-back springs

25.4mm dia. bolt

100kN/mm

Deck-tie springs

PL76x152x10mm

1900kN/mm
Double-tee load

Deck-tie 

spring

Tie-back 

springs

1.6m 1.6m 1.6m 1.6m0.3m 0.5m

0.3m

0.9m

0.3m

0.15m

 
Fig. 4.4. Finite element mesh  

The concrete was modeled using 8-node brick elements with reduced integration and 

hourglass control.  The maximum element size for concrete brick elements was around 
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100 mm (4 in.).  Two-node linear 3D truss elements were used to model both non-

prestressed reinforcement and prestressing strands.  Typical element size for 

reinforcement, welded wire mesh and strands were 50 mm (2 in.).  To properly model 

transfer length of strands in the end regions, the strands were divided into five segments 

whose cross sectional area gradually increased from the tip of a strand along the transfer 

length.  The transfer length was assumed to be equal to 0.51 m (21 in.) and loss of 

prestressing force was assumed to be 15%, which was reported in [33].  The prestressing 

forces were introduced by defining initial stresses in the 3D truss elements representing 

the strands, which is an option available in ABAQUS/Standard.  Rebar and prestressing 

strand were embedded into the concrete solid, assuming perfect bond between strand and 

concrete [41].  The interaction between cracked concrete and reinforcement that is known 

as ‘bond-slip’ was indirectly included by modifying the post-peak behavior of concrete 

(i.e., the so-called ‘tension stiffening’ effect for concrete in tension).  The concept of 

tension stiffening will be discussed in more detail in Section 4.7.   

Elastic modulus of concrete was determined as 33.1 GPa (4800 ksi) according to Sec. 

8.5.1 of the ACI Committee 318 building code document [42] for the reported concrete 

compressive strength of 49.6 MPa (7.19 ksi).  The damage-plasticity model for concrete 

was preferred in this study to take into account the behavior of cracked sections (see 

Section 4.7 for details).  The dilation angle was taken as 55 degrees.  Default values were 

used for the rest of the parameters required by ABAQUS/Standard to define the damage-

plasticity model. These parameters are 1.16 for the ratio of initial equibiaxial compressive 

yield stress to initial uniaxial compressive yield stress and 0.667 for the ratio of the 

second stress invariant on the tensile meridian to that on the compressive meridian [41].  

The stress-strain relationship for concrete under uniaxial compression was assumed as 

shown in Fig. 4.5.  Post-peak behavior of concrete in tension was described by means of 

concrete fracture energy of 1.75 kN/m (0.01 k/in) and a tensile strength of 3.5 MPa (0.51 

ksi).  Fracture energy defines the energy to form a unit area of crack.  For example, for 

plain concrete with a compressive strength of 40 MPa (5.8 ksi), the value of the fracture 

energy is around 0.12 kN/m (0.0007 k/in) [41].  However, reinforced concrete involves 

much higher fracture energy than plain concrete due to the influence of the 
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reinforcement. A detailed discussion of fracture energy for plain and reinforced concrete 

will be presented in Section 4.7  
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Fig. 4.5. Stress-strain relationship for concrete 

The yield strengths of mild steel, welded-wire-mesh reinforcement and prestressing 

strands were taken 445 MPa (64.5 ksi), 675 MPa (98 ksi) and 1689 MPa (245 ksi), 

respectively.  The material model for all steel elements was based on elastic-perfectly 

plastic behavior.  The elastic modulus was assumed to be 200 GPa (29,000 ksi). 

Concrete damage due to loading and unloading of the specimen during the experiment 

was not considered in the model and monotonic loading was applied. At some level of 

loading, concrete weakens after crushing in compression or cracking in tension.  Thus, 

when unloading occurs in the tension or compression softening regions, concrete damage 

results in a degradation of initial elastic stiffness.  This is of particular importance for 

cyclic loading.  But such effect is generally insignificant for monotonic loading and was 

neglected in this study by assuming constant properties for the elastic component of 

concrete material model. 

Finally, the spandrel beam was first analyzed with a general static procedure for the 

self-weight and the initial conditions due to the prestressing forces.  The subsequent 

analysis was performed with Riks procedure in ABAQUS/ Standard for double-tee loads 

acting at the spandrel ledge. 

The Riks (arc-length) method allows evaluation of the load-deflection path of a 

nonlinear structural response including descending branches.  The method can efficiently 

account for material and geometric nonlinearity and detect unstable postbuckling 
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behavior, and an additional equation is necessary for the solution of simultaneous 

equations governing the problem. Both the magnitude of the load and displacements are 

unknown in the Riks method.  This equation describes the arc length of the load-

displacement path.  The load magnitude Ptotal is defined with equation (4.1) in which Po is 

the dead load, which is applied to the structure at the beginning of the Riks analysis and 

remains constant, Pref is the reference load vector and λ is an unknown load magnitude 

factor [41].  Nonlinear equilibrium equations are typically solved iteratively using 

Newton's method at each Riks step.  As this method is neither displacement nor load 

controlled, a maximum value for the load proportionality factor or the displacement value 

is necessary to specify the end of the procedure.  

)PP(PP orefototal −+= λ  (4.1) 

4.6. Geometric description 

4.6.1.  Element sensitivity 

For three dimensional applications, the element type selected for the concrete plays an 

important role in the finite element analysis, particularly if both geometric and material 

nonlinearity are present.  Isoparametric elements in three-dimensions of the first and 

second order were used in this work.  First order elements maintain constant strain and 

the 8-node element in three dimensions is one of the elements in this class.  However, 

second-order elements include some or all linear strain components and the 20-node 

element in three dimensions represents this class of elements.  For this reason, the 20-

node elements provide smoother deformed shape in bending.  However, both elements 

inherently introduce shear locking for bending of thin members and result in very stiff 

response.  To solve this problem, reduced integration is employed and the number of 

integration points reduced from 8 to 1 for the 8-node brick element and from 27 to 8 for 

the 20-node brick element [43].  On the other hand, the 8-node brick element with 

reduced integration method exhibits the so-called kinematic modes since it uses only one 

integration point.  However, this problem can be overcome using hourglass control.  

Similar difficulties plague the 20-node element with reduced integration.  But, in this 
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case, kinematic modes disappear for an assembly of elements.    

The spandrel beam model described above was analyzed using three different element 

types for the concrete, the 8-node brick with reduced integration, the 8-node brick with 

full-integration and the 20-node brick with reduced integration.  Results for these three 

models were compared with the experimental results for lateral deflections at the top and 

the bottom of the mid-span section, the vertical deflection at the mid-span and the 

rotation at the quarter span (Fig. 4.6).  The bottom of the mid-span section deformed in 

the outward direction (shown as negative) and the top went inward (shown as positive).  

In this figure and all subsequent figures, the horizontal plateaus in the force-deformation 

responses obtained from the tests correspond to increasing deflections at sustained 

constant loads, and the finite element model developed for this study did not include the 

effect of creep in concrete [32].  Additionally, initial deflections and support reaction of 

98 kN (22 kips) due to gravity and prestressing were excluded from all force-deformation 

curves. 
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Fig. 4.6. Effect of finite element type 
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The arguments mentioned above, related to element type, were clearly observed in the 

response of spandrel beam model for the three different element types of the concrete 

solid.  The model based on the 8-node brick element with full integration was prone to 

shear locking and resulted in very stiff response for lateral displacement.  This 

phenomenon occurs because the web of spandrel beam is quite thin and has smaller 

stiffness, but is more prone to shear locking in the lateral direction than in the vertical 

direction.  The shear locking effect was not observed in the vertical direction supporting 

the argument that shear locking occurs most prevalently in the bending of thin members. 

The 20-node brick element with reduced integration also resulted in slightly stiffer 

response than the 8-node brick with reduced integration.  This behavior seems to indicate 

that, for this element, reduced integration does not eliminate shear locking completely.  

Furthermore, CPU time required for the analysis with 20-node brick element was 

considerably longer than for the 8-node brick element with reduced integration.  Thus, 

the 8-node brick element with reduced integration was found to give the most accurate 

results with the least computational cost.   

4.6.2.   Mesh sensitivity 

The sensitivity of the spandrel beam response to various mesh configurations was also 

investigated.  Two different meshes were generated in ABAQUS/Standard, as shown in 

Fig. 4.7.  The maximum element sizes in Meshes-1 and -2 are 100 mm (4 in.) and 200 

mm. (8 in.) respectively.  In both configurations, the web and ledge of the spandrel 

consist of 100 mm (4 in.) thick elements.  The 8-node brick elements with reduced 

integration were implemented for these mesh sensitivity analyses. 
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Mesh 1

Mesh 2

 
Fig. 4.7. Mesh configurations 

The results of mesh sensitivity analyses, as seen in Fig. 4.8 show that mesh refinement 

in the longitudinal direction of the spandrel beam has negligible effect on the response for 

rotation, lateral and vertical deflections.  In some cases, using a finer mesh results in 

narrower crack bands and cracked region with numerically negligible stiffness gets 

localized.  Hence, singularity in the system of equations might occur during the analyses.  

To avoid such problems, it is essential to ensure that each concrete solid element is 

connected to at least one rebar element, so the concrete elements cannot be defined too 

small.  This will allow the cracked concrete elements to be restrained by the interacting 

rebar and to associate its stiffness with a broader region rather than to get localized.  Such 

meshing approach of concrete solid elements can be easily performed in highly 

reinforced concrete members.  The finite element mesh should also be assigned in such a 

way that elements maintain reasonable aspect ratios.  Large aspect ratios might lead to a 

change in the material behavior in the different directions.  These recommendations are 

valid for not only precast, prestressed concrete spandrel beams, but also other types of 

prestressed or reinforced concrete structures. 
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Fig. 4.8. Mesh sensitivity 
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4.7. Mechanical properties 

Concrete, an inhomogeneous material consisting of aggregate and cement in various 

ratios, exhibits very complex material behavior.  Defining a material model representing 

the real response of concrete can be a quite difficult task.  Such material model should 

include various unique features of concrete such as cracking, crushing, stiffness 

degradation, volumetric change, concrete-rebar interaction etc.  Unfortunately, some of 

these aspects of concrete have not been well-understood yet.  Experimental 

measurements show that even fundamental properties of concrete such as elastic 

modulus, compressive strength, and tensile strength vary over broad ranges.  Concrete 

also experiences large volumetric changes under compression, which is unique to 

granular materials.  Predicting the initiation and development of cracking in concrete is 

also challenging [44], [45].   

Before presenting the influence of various material parameters on the response of 

spandrel beams, we will first shortly describe "concrete damage-plasticity model", which 

is a material model for concrete provided in ABAQUS/Standard.  The model comprises 

concrete crushing in compression, cracking in tension and "dilation angle", which is a 

term defining inelastic volumetric change in granular materials.  In this model, the tensile 

behavior of concrete after cracking, that is, the so-called "tension stiffening", simulates 

the interaction between reinforcement and cracked concrete.  In ABAQUS/Standard, one 

way of defining the tension stiffening is to apply a cracking criterion based on "fracture 

energy".  In this section, detailed descriptions of dilation angle, tension stiffening and 

fracture energy will be presented, and subsequently the sensitivity of the spandrel beam 

response to these parameters will be investigated. 

4.7.1.  Concrete damage-plasticity model 

Properly adapted plasticity theory can be used to define the behavior of concrete even 

though the theory was originally developed for metals.  It is so because it has been found 

that irreversible deformations of concrete due to micro-cracking might be described by 

plasticity theory [44].  Most of the plasticity models are incremental in the sense that the 
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total strain rate is the sum of elastic and plastic strain rates and specification of the latter 

is a part of the theory.  A flow rule sets the relationship between the stress and plastic 

strain rate, and a yield surface defined in stress space describes the condition for the 

initiation of yielding.  A hardening rule shows how the yield surface and the flow rule 

change with an increase of deformation.  Unlike classical plasticity models, the concrete 

damage-plasticity model also includes a scalar damage parameter which represents 

degradation of stiffness with plastic deformations.  This feature is particularly important 

when the structure is subjected to cyclic loading [41].  The concrete damage-plasticity 

model in ABAQUS/Standard relies on the models proposed by Lubliner et al. [46] and by 

Lee and Fenves [47], [48].  The model is based on the limit states of concrete crushing in 

compression and cracking in tension.  The model assumes non-associated potential 

plastic flow which is based on the Drucker-Prager function [41].  The model requires 

definition of parameters related to plasticity, compressive and tensile behaviors of 

concrete. 

4.7.2.   Fracture energy sensitivity 

When cracking is present, the tensile strength and the elastic modulus are not enough 

to characterize the behavior of concrete in tension.  To describe the post-peak behavior in 

tension the fracture energy, Gf, which is a concrete material property, defined as the 

energy needed to form a unit area of crack, is used.  In general, fracture energy values for 

pure concrete vary with respect to the aggregate size and the compressive strength of the 

concrete [49].  The presence of reinforcement drastically increases the concrete fracture 

energy [50].  Being dependent on the amount and details of reinforcement, fracture 

energy values for reinforced concrete may vary over a broad range and there is no 

commonly accepted value.  Thus, it is important to understand how different values of 

fracture energy affect the overall response of spandrel beams. 

For plain concrete, the uniaxial tension test and the three-point-bend notched beam test 

are typically used methods to measure the fracture energy.  In the uniaxial tension test of 

concrete, fracture energy, Gf, can be computed by integrating the area under the stress-

cracking displacement curve as follows:  
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where σt is tensile stress as a function of displacement , δt is cracking displacement and 

δmax is the maximum cracking displacement [51].  However, uniaxial tension tests are 

quite challenging and require sophisticated testing apparatus. A simpler method to 

measure the fracture energy relies on the total work of fracture in the three-point bend 

notched beams. The fracture energy is equal to the work required to fracture the notched 

beam, Kf  divided by the area of the fracture surface b(d-ao) where b and d are the width 

and the depth of the specimen and ao is the notch size. 
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Proper values for fracture energy play an essential role in the convergence of analyses 

for applications in ABAQUS/Standard.  If the fracture energy is assumed to be too small, 

the solution cannot converge immediately after the member cracks.  The influence of 

fracture energy on the response of the spandrel beam was studied using three different 

values, 17.5 kN/m (0.1 k/in), 1.75 kN/m (0.01 k/in) and 0.175 kN/m (0.001 k/in).  The 

vertical and lateral displacements at the mid-span and rotation at the quarter span 

obtained with each analysis were plotted in Fig. 4.9.  When the fracture energy of 

concrete was assumed to be equal to 0.175 kN/m (0.001 k/in), corresponding to the case 

of pure concrete, the solution was unable to converge immediately after concrete 

cracking.  When the fracture energy was increased to 1.75 kN/m (0.01 k/in), convergence 

of the solution was maintained. In addition to this, using even larger value such as 17.5 

kN/m (0.1 k/in) introduced only small variation in the results.  This observation means 

that the contribution of the concrete in tension to overall capacity of the spandrel beam 

was relatively small, in comparison to those of the reinforcement and concrete in 

compression.  
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Fig. 4.9. Effect of fracture energy 
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4.7.3.  Tension stiffening sensitivity 

Plain concrete subjected to tension exhibits softening behavior in the post-peak 

regime.  However, concrete in a cracked reinforced concrete member displays different 

characteristics than does plain concrete.  By means of local bond-slip behavior, the 

concrete between cracks becomes stiffer than plain concrete due to the effect of 

reinforcement [50].  As mentioned in Section 4.5, reinforcing bars were modeled using 

one-dimensional truss elements which were embedded into continuum elements of 

concrete.  Thus, translational degrees of freedom for this one-dimensional element were 

restrained at a bar node by those of the continuum element.  The implication is that the 

interaction between cracked concrete and reinforcing bar, such as load transfer and bond-

slip behavior, was ignored.  Even though this implicit behavior contradicts the real 

situation, this interaction can be introduced into the concrete model approximately by 

means of "tension stiffening".  The term of “tension stiffening” might be considered 

misleading, because it is used to define the softening regime of reinforced concrete in 

tension.  However, the softening regime of reinforced concrete is stiffer than that of plain 

concrete.  

ABAQUS/Standard provides a couple of ways to define tension stiffening for the 

damage-plasticity model of concrete.  One way is to specify a post-cracking stress-strain 

relation for concrete in tension, and the other way is to apply a fracture energy criterion.  

In the first method, cracking strains and stresses are provided to model the tensile stress-

strain curve beyond the elastic region.  The cracking strain is calculated as the total strain 

minus the elastic strain.  In the second method, the fracture energy model can be 

expressed in the form of either a failure stress-fracture energy relation or a failure stress-

cracking displacement relation.  Assuming a constant value for the fracture energy 

generally means that there is a linear loss of tensile strength with displacement after 

cracking, and this phenomenon follows because the fracture energy is equal to the area 

under the failure stress-displacement curve.  Tension stiffening can also be defined with a 

multilinear relationship between cracking displacement and stress in such a way that the 

fracture energy remains the same as in the linear case. 

The effect of tension stiffening with linear and bilinear relationships was investigated 
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through finite element analysis. The 8-node brick element with reduced integration was 

used for the concrete solid.  Concrete fracture energy of 1.75 kN/m (0.01 k/in) and tensile 

strength of 3.5 MPa (0.51 ksi) give a maximum cracking displacement of 1 mm (0.04 in.) 

for the linear case and 2 mm (0.08 in.) for the bilinear case, as seen in Fig. 4.10.  The area 

under each line yields the same value for concrete fracture energy, namely 1.75 kN/m 

(0.01 k/in).  Linear and bilinear assumptions for cracking displacement-stress relation 

were compared with the assumption of fracture energy of 1.75 kN/m (0.01 k/in).  The 

results of the finite element analyses are not presented here for brevity since the 

variations in results for the different tension stiffening assumptions are negligible.  

Tension stiffening defined with fracture energy and linear cracking displacement-stress 

relation provided the same results.  However, the bilinear cracking displacement-stress 

assumption slightly reduced the stiffness of the spandrel beam in both vertical and lateral 

directions in the post-cracking region.  Therefore, linear relationship for cracking 

displacement-stress relation with the fracture energy of 1.75 kN/m (0.01 k/in) was 

selected as the most appropriate assumption for concrete in the analyses. 
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Fig. 4.10. Assumptions for tension stiffening 

4.7.4.  Dilation angle sensitivity 

In contrast to metals, a brittle material like concrete tends to change its volume beyond 

its elastic limit due to cracking and slip along cracked surfaces.  This change in the 

volume is generally called as "dilation".  The dilation characteristic of concrete 

drastically affects the confinement pressure activated in a reinforced concrete member.  
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Therefore, the axial stress-strain behavior of concrete in compression greatly depends on 

the dilation characteristic.  An increase in the dilation leads to more confinement and 

eventually a stiffer stress-strain relation [52].  In the concrete-damage plasticity model for 

concrete, the dilation angle represents plastic distortion.  With an increase of the dilation 

angle, the concrete behaves in a more ductile manner. 

The dilation angle is one of the parameters required for ABAQUS/Standard to define 

the plastic flow potential.  To investigate the sensitivity of the spandrel beam response to 

the dilation angle, a series of finite element analyses were performed for three different 

dilation angles (55, 45 and 35 degrees).  The 8-node brick element with reduced 

integration was used for concrete in these models.  As shown in Fig. 4.11, lateral and 

vertical deformations at the mid-span of the spandrel beam depend heavily upon the 

value used for the dilation angle.  As expected, the dilation angle has no impact on the 

response of the spandrel beam in the elastic regime.  The stiffness of the cracked beam, 

however, reduces with the decrease of dilation angle.  Lateral deformations at the mid-

span and rotation at quarter span are more sensitive to the value of dilation angle than the 

vertical deformation at the mid-span.  The dilation angle of 55 degrees should be used to 

describe the behavior of confined concrete in the spandrel beam deforming in the lateral 

direction since both reinforcement and prestressing provides confinement for the 

concrete. 
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Fig. 4.11. Effect of dilation angle 
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4.8. Distribution of bearing stress  

A spandrel beam carries vertical loads transferred from double-tee webs resting over 

the spandrel ledge.  Both spandrel beam and double-tee beams deform and, depending on 

the relative angle of rotation in their contact area, the manner in which loads are 

transferred by the double-tees might vary.  For example, for low load magnitudes the 

relative angle along the spandrel beam is small and, in this case, double-tee loading might 

be defined as uniform pressure over the spandrel ledge.  However, large sectional 

deformations of the spandrel beam relative to the double-tees might cause double-tee 

loads to be transferred by means of a triangular bearing stress distribution.  The 

distribution can approach concentrated loading for very large sectional rotations, as 

depicted in Fig. 4.12.   

The distribution of bearing stresses at the supports of the double tees can be simulated 

by finite element analysis, as long as the double tees are modeled as deformable members 

and contact elements are defined over the support surfaces.  Otherwise, a priori decision 

must be made regarding the distribution of these bearing stresses.  Moreover, the stress 

distribution also changes the magnitude of loading eccentricity.  The larger the 

eccentricity, the more rotation and lateral displacement the spandrel beams undergo. 

Finite element simulations were performed to evaluate the sensitivity of the spandrel 

beam model to various patterns of bearing stress distribution, as depicted in Fig. 4.12.  

The results of the finite element analyses are plotted in Fig. 4.13 for reaction at the 

support vs. rotation at the quarter span and lateral and vertical displacements at the mid-

span of the spandrel beam.  Rotation and lateral displacements of the spandrel beam are 

highly sensitive to the pattern of bearing stress distribution.  Nevertheless, vertical 

deflection at the mid-span was not significantly affected by the change in bearing stress 

distribution.  Triangular bearing stress distribution was adopted throughout this study as 

it appears to provide the most accurate pattern for a deformed spandrel beam.  
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Fig. 4.12. Double-tee bearing stress distribution; (a) uniform, (b) triangular, (c) 
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Fig. 4.13. Effect of bearing stress distribution 
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4.9. Boundary conditions 

The response of the spandrel beam was highly dependent upon the boundary 

conditions.  As seen in Fig. 4.4, the bottom web surface at the end of the spandrel beam 

was fixed against vertical displacements only.  Two tie-back bolts at each end of the 

spandrel beam were modeled using spring elements, which restrain only lateral 

displacements at these locations.  Lateral restraints were also provided by deck-ties at the 

mid-height of the interior face of the spandrel web, which can affect measurably the 

lateral displacements. 

4.9.1.  End supports 

The spandrel web rests on frictionless bearing pads at both ends, which introduces 

vertical restraint to the bottom surface of the web.  The supported surface at the bottom of 

the web end might be modeled in various ways and the comparison of two supporting 

approaches was made here.  One way is to fix the entire surface against vertical 

displacements (i.e., "surface restraint").  The other way is to fix a single point in the 

supported surface (i.e., "point restraint") and to let the beam rotate around it.  To avoid 

singularities caused by concentrated reactions, the second method requires adding a 

constraint equation that forces the entire contact area to remain flat and prevents large 

distortions of the bearing surface from the concentrated reaction force.  Fig. 4.14 shows 

the effects of point and surface restraints on the overall response of the spandrel beam.  

Entire surface restraints provided constraint on end rotation and introduced additional 

moment resistance at the support.  Such restraint led to concrete damage around the 

support zone and resulted in stiffer response for spandrel rotation and deformations than 

did point restraints.  In terms of numerical cost, point restraints provided faster 

convergence for solution than did surface restraints since no tensile cracks developed at 

the support.   

4.9.2.   Tie-back springs 

The axial stiffness of spring elements for tie-back bolts was assumed to be equal to 
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100 kN/mm (570 k/in) as mentioned in Section 4.5.  To evaluate the sensitivity of 

spandrel beam response to this stiffness value, finite element simulations were performed 

for fixed and spring connections.  The results of these analyses are not shown for brevity 

because the axial stiffness of tie-back bolts had no effect on the spandrel beam behavior 

even for the loads approaching ultimate capacity.  Small increases in rotation and lateral 

deformations were observed in the elastic region, which shows that the torsional stiffness 

of the uncracked spandrel beam depends on the stiffness value of the tie-back springs.  

However, the impact of tie-back spring stiffness decreases as spandrel deformation 

increases, and both models converge to the similar results once torsional cracks 

developed at the end zone of the spandrel.  The vertical deformation at the mid-span was 

not affected by the axial stiffness value assumed for the tie-back springs. 
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Fig. 4.14. Effect of support representation  



 91 

4.9.3.  Deck-tie springs 

Deck-ties are steel plates embedded into the spandrel web, and they connect the 

double tees to the spandrel beam.  As mentioned in Section 4.5, each steel plate was 

modeled with two spring elements and the axial stiffness value was assumed as 1900 

kN/mm (10,875 k/in) per spring.  Even though the deck-ties were defined with spring 

elements throughout the sensitivity analyses discussed above, the spring stiffness of 1900 

kN/mm (10,875 k/in) turned out to be relatively large in comparison to the overall 

stiffness demand of the spandrel.  As a result, the spandrel beam behaved as if it was 

fixed at the locations of the deck-ties, because the spandrel beam twisted around an axis 

that was located approximately at its mid-height.  However, there is a threshold value for 

the spring stiffness of deck-ties under which the response of the spandrel beam becomes 

unstable. 

Fig. 4.15 shows the results of finite element simulations for different values of deck-

tie stiffness.  The spring stiffness of 1900 kN/mm (10,875 k/in) produced spandrel 

behavior as if the connection was fixed.  Negligible variations were observed in the 

response of the spandrel beam when the spring stiffness reduced from 1900 kN/mm 

(10,875 k/in) to 17.5 kN/mm 100 (k/in).  For the spring stiffness of 1.75 kN/mm (10 

k/in), even though the top and bottom points at the mid-span of the spandrel beam 

initially moved outward and twist of the spandrel became dominant for higher load 

levels, the spandrel beam still showed stable response and reached its ultimate strength.  

For the spandrel beam considered here, the threshold value of deck-tie spring was 

approximately 1.75 kN/mm (10 k/in).  Fig. 4.15 also shows the response of the spandrel 

beam for the deck-tie stiffness of 0.175 kN/mm (1 k/in).  For that value, once the end 

reaction reached a critical value of 550 kN (124 kips), the spandrel beam showed laterally 

unstable response.  The beam experienced very large deformations and failed 

prematurely.  The presence of deck-ties is noted here as being crucial to prevent 

excessive lateral deformations of the spandrel beam and maintain the stability of 

structure.  However, the analysis results showed that the stiffness of deck-tie springs, 

beyond a minimum threshold value 0.175 kN/mm (1 k/in), had no appreciable influence 

on the magnitude of vertical deformations at the mid-span. 
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Fig. 4.15. Effect of deck-tie stiffness  
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4.10. Conclusions 

This paper presents the observations and the modeling guidance resulting from the 

application of finite element analysis techniques in the simulation of the load response of 

precast prestressed concrete spandrel beams. In particular, the combination of three-

dimensional discretization, large deflection theory and advanced material models 

(concrete damage-plasticity) has been applied to the simulation of full load-displacement 

response of concrete spandrel beams.  These features are not commonly used in the 

analysis of concrete structures, but they are necessary if one attempts to analytically 

estimate the ultimate load carrying capacity, as well as the full range of displacement 

response to loading.  Thus, it is believed that knowledge and experience gained from this 

comprehensive research should provide guidance to those undertaking finite element 

modeling of concrete structures in order to develop rational analysis tools and design 

criteria.  Prestressed concrete spandrels are subject to very complex load conditions and it 

is believed that the conclusions reached at the end of the analyses reported here are 

applicable to a wide range of concrete structures. 

The effects of various modeling parameters on the computed response of concrete 

spandrel beams differ quite significantly, and the following recommendations are offered 

to enhance the accuracy and reliability of the computational results: 

• Element type dramatically influenced the finite element results for lateral 

deformations due to shear locking of the slender web of the spandrel beam for the 

weak axis bending.  The 8-node brick element with reduced integration is 

recommended for modeling concrete because of both higher accuracy and 

computational efficiency.  The 8-node element with full integration and the 20-node 

element with reduced integration exhibit unnaturally stiff response for the lateral 

deformations due to shear locking. 

• The assumption of bearing stress distribution over the spandrel ledge, transferred from 

double-tees, has a great influence on the lateral displacement at the mid-span and 

rotation at the quarter-span of the beam.  A triangular stress distribution appears 

appropriate for slender spandrel beams. 
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• The value of dilation angle defined for the concrete damage-plasticity model 

drastically changed the spandrel lateral response.  With an increase of the dilation 

angle for concrete, more confinement pressure becomes activated and the spandrel 

beam model exhibits stiffer response.   

• The response of the precast, prestressed concrete spandrel beam is slightly sensitive to 

the mesh configuration.  It is important, however, for the element dimensions to be 

sufficiently large to include at least one rebar. 

• Variations of tension stiffening and fracture energy for concrete had negligible impact 

on the response of the prestressed concrete spandrel beam although such parameters 

affect the performance of the numerical algorithm. 

• Deck-ties embedded into the spandrel web play an important role on the lateral 

deformation and rotation responses of the spandrel beam. A threshold value can be 

defined as the minimum value for the spring stiffness of deck-ties required for the 

stable response of a spandrel beam.  The absence of deck-ties can lead to large lateral 

deformations and stability problems. 

• The axial stiffness of tie-back bolts only changes the initial torsional stiffness of the 

uncracked spandrel beam.  The ultimate load capacity is not affected by the tie-back 

stiffness. 
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CHAPTER 5 

Comparison of Arc-length and Explicit Dynamic Methods for the 

Finite Element Static Analysis of Prestressed Concrete Members 
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5.1. Introduction 

This paper compares the arc-length and explicit dynamic solution methods for nonlinear 

finite element analysis of prestressed concrete members subjected to monotonically 

increasing loads.  The investigations have been conducted using an L-shaped, prestressed 

concrete spandrel beam, selected from the literature, as a model problem to give an 

insight into the advantages and disadvantages of these two solution methods.  

Convergence problems, computation effort, and quality of the results were investigated 

using the commercial finite element package ABAQUS.  We have shown that a static 

analysis procedure, based on the arc-length method, provides more accurate results if it is 

able to converge to the solution. However, it experiences convergence problems 

depending upon the choice of mesh configuration and the selection of concrete post-

cracking response parameters.  The explicit dynamic solution procedure appears to be 

more robust than the arc-length method and provides acceptable solutions in cases when 

the arc-length approach fails, however solution accuracy may be slightly lower and 

computation effort may be significantly larger.  Furthermore, prestressing forces must be 

introduced into the finite element model in different ways for the explicit dynamic and 

arc-length solution procedures. 

5.2. Background 

Even though experimental methods still play a key role in research, numerical 

methods are increasingly replacing experiments due to their lower cost and time 

requirements comparing to experiments.  Highly nonlinear problems can be solved by 

using commercially available computer finite element software.  Nevertheless, finite 

element analysis requires the knowledge of how various modeling techniques might 

affect the numerical results.  For example, a three-dimensional finite element simulation 

of a prestressed concrete beam inherently introduces some numerical and modeling 

challenges since the model needs to describe the complex material response of concrete, 
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which includes crushing in compression and cracking in tension.  

ABAQUS [53] is a popular finite element program which offers solution techniques 

for such highly nonlinear problems.  ABAQUS/Standard solves a system of nonlinear 

static equations iteratively to provide the solution of a problem at each load increment 

whereas ABAQUS/Explicit solves equations of motion by stepping forward in time and 

using very small increments without solving a system of algebraic equations at each 

increment [54].   

The explicit dynamic solution procedure provided in ABAQUS/Explicit is generally 

used to solve dynamic problems.  However, a static solution can also be obtained by 

using this procedure provided that the rate of loading is very low to minimize inertial 

effects in the structure.  The analysis of metal forming process is a good example for the 

application of the explicit solution procedure to static problems [55].  Such analysis 

method, the so-called quasi-static analysis, is also very useful for solving highly 

nonlinear problems such as those resulting from stiffness reductions due to concrete 

cracking, but is unable to trace the descending (unstable) part of the equilibrium path. 

The arc-length method (or Modified Riks method) [56] and [57], available in 

ABAQUS/Standard, is used to solve static nonlinear problems.  The arc-length method 

can efficiently capture material and geometric nonlinearity including the unstable post-

buckling behavior.  However, the peak load, which is often the most important result for 

engineering purposes, can be determined using both approaches.  It is the purpose of this 

work to evaluate advantages and disadvantages of these two approaches in determining 

the response of the prestressed concrete members.  

Concrete is a strongly nonlinear material and causes many numerical difficulties in 

finite element analysis.  The stress-strain relation of concrete under uniaxial tension 

features a peak value for the tensile strength followed by a sudden drop with negative 

stiffness.  In uniaxial compression, the stress-strain relation contains a strain hardening 

branch up to the compressive strength of the concrete and a strain softening regime 

thereafter.  Cracking in tension and crushing in compression are irreversible processes 

that can be defined as damage.  The only concrete model supported by both 

ABAQUS/Standard and ABAQUS/Explicit is the concrete damage-plasticity model 
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which incorporates most of the concrete properties such as cracking, strain softening in 

tension, dilation, damage, compression hardening, stiffness degradation, etc. [55]. These 

characteristics of concrete constitute the sources of nonlinearity and numerical challenges 

for finite element analysis.  Such challenges have been reported by other researchers [58], 

[59]. 

In this work we will illustrate that the arc-length method in ABAQUS/Standard 

experiences convergence problems in solution for some combinations of concrete 

material properties and mesh configurations.  The explicit dynamic method in 

ABAQUS/Explicit overcomes such numerical problems in the solution due to stabilizing 

effects of inertia.  However, the time increment used in the explicit method has to be very 

small and the time of load application must be sufficiently low.  Thus, the overall 

computation effort of explicit dynamic procedure can be quite significant.  Furthermore, 

prestressing forces cannot be treated in the same manner with arc-length and explicit 

dynamic methods.  In the explicit dynamic method, prestressing forces must also be 

introduced to the system slowly to prevent dynamic effects which creates the need for an 

additional quasi-static analysis before application of the load.   

The fundamental advantages and disadvantages of the arc-length and explicit dynamic 

analysis are well known [60], [61].  But the manner in which they are manifested in the 

analysis of nonlinear problems typical for prestressed concrete structures does not appear 

to be documented.  In particular, even though nonlinear finite element analysis of 

prestressed concrete members has been reported by many researchers [62], [63], [64], and 

[65], we have found no information in the literature that would advocate use of one 

method over the other in the analysis of prestressed concrete structures.  Thus, in this 

study, the arc-length and explicit dynamic solution procedures were compared for the 

nonlinear finite element analysis of prestressed concrete members under monotonically 

increasing loads in order to evaluate the efficiency of these methods.  By efficiency we 

understand here not only computational effort but also quality of the results obtained 

which we assess by comparing with available experimental results.  To this end, a three-

dimensional finite element model of an L-shaped, prestressed concrete spandrel beam 

was generated and analyzed with arc-length and explicit dynamic solution procedures in 
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order to give a better understanding of the overall advantages and disadvantages of these 

procedures. 

5.3.  General aspects of 3D finite element modeling of prestressed 

concrete members 

In three-dimensional applications of finite element analysis, concrete is usually 

modeled using eight-node brick elements with reduced integrations.  The element library 

of ABAQUS/Explicit for brick elements is confined to eight-node brick elements with 

reduced integrations whereas ABAQUS/Standard supports both eight- and twenty-node 

elements.  Conventional reinforcement is represented by truss elements, which carry axial 

load only.  Therefore, a uniaxial stress-strain relationship such as the elastic-plastic 

material idealization is sufficient to define the behavior of reinforcement.  Using the 

embedded element option in ABAQUS, an assembly of reinforcement (i.e., embedded 

element) is located in the concrete solid (i.e., host element).  In this case, translational 

degrees of freedom at a node of a reinforcing bar are constrained by the corresponding 

degrees of freedom in the concrete solid.  This approach assumes that there is perfect 

bonding between rebar and concrete interfaces.  However, this method neglects the load 

transfer in the cracked concrete element around the rebar.  The behavior of cracked, 

reinforced concrete element is generally represented by introducing an additional 

ductility to the post-peak branch of concrete model in tension, the so-called “tension 

stiffening” effect.  

Prestressing strands are also modeled using truss elements embedded in the concrete 

solid and perfect bond between concrete/strand interfaces.  A proper model for the 

transfer length of strands becomes essential in the analysis of prestressed concrete beams, 

otherwise the beam fails in the end regions where the stress level in the concrete can be 

very high, depending upon the transfer of prestress force.  The simplest modeling 

approach is to divide the transfer length of a strand into a number of segments and 

gradually decrease the cross sectional area of each segment to the beam ends [66].  When 

the prestressing force is defined as a constant initial stress along a strand, a strand 
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segment with reduced cross sectional area will be subjected to lower prestressing force 

and hence lower stresses are transferred to the concrete. 

5.4.  Arc-length method  

The arc-length method is a static solution procedure that allows evaluation of the load-

deflection path for a nonlinear structural response including descending branches.  The 

method can efficiently account for material and geometric nonlinearity.  Unlike the force-

control approach, in which the magnitude of the load is specified, or the displacement 

control approach, in which the magnitude of a selected displacement is specified and the 

corresponding load magnitude computed, the arc-length method does not require 

specification of either.  Instead, as seen in Fig. 5.1, the advancement from point (n-1) to 

point (n) on the equilibrium path (specified by unknown values of the displacement and 

force) is achieved by the definition of the distance ln between these two points.  To this 

end, in addition to the governing equation, a constraint equation, specifying ln, is 

necessary for the solution of the simultaneous equations governing the problem in which 

the magnitude of the load is an additional unknown.  

The constraint equation describes the arc length, ln, of the load-displacement path.  

The load magnitude Ptotal at the new point on the equilibrium path is defined as:  

reftotal PP λ=  (5.1) 

where Pref is the reference load vector and  λ is the load proportionality factor, which is 

an unknown representing the load.  Nonlinear equilibrium equations are solved together 

with the constraint equation using Newton's method defining one arc-length step.  The 

result is the nodal displacement vector and the load proportionality factor, λ.   
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Fig. 5.1. Arc-length procedure 

 

5.5.  Explicit dynamic method 

The static response of a prestressed concrete beam can also be investigated by using 

the explicit dynamic procedure.  Since we are interested in the static solution of the 

problem, inertial effects produced by the structural mass should be minimized in explicit 

dynamic analysis.  By either increasing the mass density of concrete or decreasing 

loading rate, the oscillation of the beam can be limited and inertial forces made negligible 

(Fig. 5.2).  In practice, if the loading time T over which the load is increased to its final 

value, is of the order of an integer number of periods of the lowest frequency vibration, 

the inertial effect is usually negligible.  The figure also illustrates that dynamic response 

initiates when the load reaches a local maximum in the static equilibrium path.  So, even 

though the descending part of that path cannot be traced when using dynamic explicit 

analysis, one can still determine the peak load.  

The time increment, ∆t, used in the explicit dynamic analysis is automatically 

determined by the numerical stability limit of the explicit method implementation used in 

ABAQUS.  There is a close relationship between the stability limit and the time required 

for a stress wave to cross the smallest element dimension in the model.  When the model 

consists of elements with very small dimensions, a small time increment has to be used 
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and total computation effort will increase, given a fixed loading time, T.  The number of 

increments, m, required to complete the analysis is m=T/∆t.  Computational effort for the 

explicit dynamic analysis is proportional to the product of the number of time increments, 

m, and the total number of degrees of freedom.   

An optimum value for the loading time, T, can be easily found if the longest period of 

natural vibration, Tn, is known (or estimated).  As a starting point, the explicit dynamic 

analysis has been performed here for a loading time, T, which is a value in the range of 

ten to fifty times larger than that period of the lowest frequency of vibration, Tn (i.e., 

T=10Tn to 50Tn) [54].  For such a loading time, inertial effects are generally negligible, 

but computation effort might be high.  In the subsequent analyses, the loading time has 

been gradually reduced until a significant variation due to inertia is observed in the 

analysis results.  The magnitude of inertial forces can be evaluated by monitoring the 

ratio of kinetic energy to total strain energy during the analysis.  That ratio should be less 

than 0.5 percent if the quasi-static response is desired [67]. 

Furthermore, the natural period does not remain constant during the analysis and 

increases when the structural stiffness reduces due to concrete cracking or steel yielding.  

Therefore, the loading time initially determined based on the fundamental period of the 

elastic structure is likely to be inadequate to ensure that inertial effects are minimized. 

Explicit dynamic method 

Load-displacement path

Load

Displacement

Explicit dynamic method 

Load-displacement path

Load

Displacement  

Fig. 5.2. Explicit dynamic procedure  
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5.6. Modeling of prestressing force 

Concrete cracking reduces both torsional and flexural stiffness of prestressed concrete 

beam and causes significant increase in deflections.  However, prestressing forces delay 

cracking under flexure.  Therefore, prestressing strands should be modeled properly in 

order to capture concrete cracking at the appropriate load level, as well as the 

corresponding deflection of the beam with sufficient accuracy.  A significant modeling 

aspect of prestressed concrete beams is to appropriately create the initial stress state due 

to prestressing at the beginning of the analysis.  Using the arc-length method in 

ABAQUS/Standard, the prestressing force in a strand can be defined as an initial stress 

that is assumed to be constant along the truss element of the strand in the model.  Then, in 

the first increment of the arc-length analysis, the structure will reach the equilibrium state 

for this initial stress condition.  If the same modeling approach for prestressing forces is 

applied in the explicit dynamic procedure, the initial stress state creates an impact loading 

in the beam and the transient response includes oscillations with amplitudes that can be 

large.  Therefore, prestressing forces in the explicit dynamic analysis must be modeled in 

an alternate manner, utilizing either a direct or an indirect procedure.   

In the direct modeling approach, the geometry and material states of the beam, when 

subjected to prestressing effects only, are obtained using the static analysis procedure in 

ABAQUS/Standard and transferred to ABAQUS/Explicit as an initial condition.  Since 

the beam is already in equilibrium at the end of the static analysis, the initial condition 

defined at the beginning of the explicit dynamic analysis does not lead to impact loading.  

However, ABAQUS/Standard and ABAQUS/Explicit process data in different ways and 

the forces transferred from ABAQUS/Standard may not be in perfect equilibrium in 

ABAQUS/Explicit, which causes minor oscillation of the beam.  These oscillations, 

however, will become negligible in the rest of the explicit analysis. 

In the indirect modeling approach, the prestressing force in a strand is introduced via 

an artificial reduction in strand temperature.  Without transferring any data from 

ABAQUS/Standard to ABAQUS/Explicit, the response of prestressed concrete beam is 

evaluated with two consecutive explicit analyses.  In the initial analysis, temperature 

change is slowly applied to the prestressing strands to generate the intended prestressing 
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effect, after which the temperature remains constant.  It should be noted that temperature 

change does not affect the physical properties of concrete or steel in ABAQUS, and it is 

used solely as a way to create the desired initial stresses in the strands.  The required 

temperature change, ∆Tst, can be obtained using equation (5.2), in which αst represents 

the thermal expansion of the strand, Est is the elastic modulus of strands and fpe is 

effective prestress after losses.   

stpestst E/fT. =∆α  (5.2) 

5.7.  Modeling of concrete 

Concrete is an inhomogeneous material and exhibits properties that vary broadly from 

one experiment to another.  The stress-strain relation of concrete in compression has a 

nonlinear ascending branch up to ultimate strength, followed by a strain softening region.  

Concrete in tension, however, cracks at very low stress levels.  The behavior of concrete 

under multi-axial stress states is even more complex.  Consequently, defining a material 

model for concrete that represents its response with a high level of fidelity is a very 

challenging task, [68],and [69].  The concrete damage plasticity model was implemented 

in this study for both the arc-length and the explicit dynamic analyses because it is the 

only concrete model offered in both ABAQUS/Standard and ABAQUS/Explicit.  In a 

previous study [70], this model was shown to offer the flexibility needed to represent 

various property of concrete.  The concrete damage-plasticity model in ABAQUS relies 

on the ideas proposed by Lubliner et al. [71] and by Lee and Fenves, [72] and [73].  The 

concrete damage-plasticity model brings together isotropic damage elasticity and 

nonassociated multi-hardening plasticity.  The concrete damage-plasticity model assumes 

two failure modes; cracking in tension and crushing in compression and isotropic damage 

elasticity represents the elastic stiffness degradation of concrete due to cracking.   

In general, the resistance of cracked concrete is often ignored in design for simplicity.  

However, neglecting the post-cracking behavior of concrete may lead to significant error 

in the nonlinear finite element analysis of prestressed concrete structures.  The post-

cracking response of concrete plays an important role in deflections, crack width, bond-
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slip, and shear transfer, etc. [74].  Cracking initiates once the stress level at an integration 

point in a concrete brick element reaches the concrete tensile strength, cracking initiates.  

Cracking introduces gradual strength decrease at this integration point in accordance with 

the post-peak response of concrete model in tension.  However, the cracked reinforced 

concrete element can still transfer load through the rebar.  Interaction between cracked 

concrete and rebar such as stress transfer, bond-slip, etc., is not directly taken into 

account with the reinforcement modeling approach mentioned above.  This interaction 

effect, the so-called “tension stiffening” behavior, is approximated in the concrete model 

by modifying the tension softening region relative to that for plain concrete as seen in 

Fig. 5.3, [75].   

tε
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tf Plain concrete

Reinforced concrete

tε

tσ

tf Plain concrete

Reinforced concrete

 
Fig. 5.3. Tension stiffening of concrete due to concrete-rebar interaction 

Defining proper tension stiffening behavior plays an essential role in the quality of the 

results and the performance of the algorithm used.  Numerical solution of a model 

generated with ABAQUS/Standard might be unstable if a relatively small amount of 

tension stiffening effect is introduced into the concrete model.  It is commonly suggested 

that numerical stability can be achieved for the solution of an arc-length analysis when 

the ultimate tensile strain of concrete, including the effect of tension stiffening, is equal to 

a value ten times larger than that of plain concrete [54].  However, due to stabilizing 

effect of inertia, the explicit dynamic procedure does not experience numerical instability 

even if the post-cracking response of plain concrete is used in the concrete model and 

tension stiffening effect is ignored.   
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Tension stiffening can be introduced as the fracture energy used in the cracking 

criterion.  The fracture energy, Gf, is a material property indicating the energy required to 

open a unit area of crack in a plain concrete specimen, [76] and [77].  The interaction 

between concrete and steel is generally taken into account by using a fracture energy 

value for reinforced concrete, which is larger than that for plain concrete.  The total 

cracking displacement, wt, can be found using equation (5.3) where ft is the tensile 

strength of concrete. 

t

f

t
f

G
w

2
=  

(5.3) 

5.8.  Modeling an L-shaped, precast, prestressed concrete spandrel beam 

We use a finite element model for an L-shaped, precast, prestressed concrete spandrel 

beam, which was investigated experimentally [78], to get better understanding of the 

relative merits of two approaches: the arc-length method and explicit dynamic solution 

procedure.  Such beams were suited for this study since they exhibit a complex structural 

response to loading and thus constitute a good test for various aspects of the model.  

There is also a practical reason for this choice: spandrel beams have been widely used in 

the perimeter of precast concrete frames.  They support deck beams and are connected to 

column corbels at their ends.  The cross section of an L-shaped spandrel beam is under 

the combined effects of shear, torsion and bending.  The vertical loads acting on the beam 

ledge create biaxial bending due to the asymmetric shape of the cross section.  The 

eccentricity of the vertical loads also causes a torsional effect, which leads to twisting of 

the member.  Prestressing forces further complicate the behavior of a spandrel beam.  

5.8.1. Description of the experiment 

An L-shaped, prestressed spandrel was tested at North Carolina State University and 

the results of this test were reported by Lucier et al. [78].  The behavior of L-shaped 

spandrel specimen was also modeled by using Anatech Concrete Analysis Program [66].  

The specimen had a length of 13.7 m (45 ft), a depth of 1.5 m (5 ft) and a web thickness 
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of 0.2 m (8 in).  The cross section of each spandrel ledge was 0.2 × 0.2 m (8 × 8 in).  The 

ledge was terminated at a 0.3 m (12 in) distance from both ends of the spandrel web (Fig. 

5.4).  Low relaxation, 1860 MPa (270 ksi), 12.7 mm (½ in) diameter seven-wire steel 

strands with initial prestressing forces of 100 kN (Type A) and 68.5 kN (Type B) were 

used in this specimen (Fig. 5.5).  The cylinder strength for concrete in compression was 

measured as 49.6 MPa (7,190 psi).  A 152 × 152 mm (6 × 6 in) - W4 × W4 mesh of 

welded wire fabric was placed on both sides of the spandrel web.  Reinforcement details 

can be found in Lucier et al. [78]. 
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Fig. 5.4. Specimen dimensions (mm) 
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Fig. 5.5. Prestressing strand details 

 

The web of the spandrel beam was laterally connected to the vertical support at the 

ends with 25.4 mm (1 in) diameter bolts.  The lateral tie-back bolts were located 0.15 m 

(6 in) away from the ends and 0.3 m (12 in) away from the top and bottom.  Teflon-

coated bearing pads were provided to reduce friction at the end supports, and these pads 
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enabled the test spandrels to undergo a significant out-of-plane deflection and hence the 

most severe loading case was obtained.  The spandrel web was connected to the double-

tee deck by means of embedded steel plates.   

The self-weight of the spandrel specimen with testing equipment resulted in a vertical 

reaction of 22 kips at the bearing support.  Hydraulic jacks were attached to 3 m wide (10 

ft) double tees, resting on the spandrel ledge.  Before testing, three load levels, service 

(DL+LL), service with snow (DL+LL+S) and fully factored (1.2DL+1.6LL+0.5S), were 

determined for the spandrel supporting an 18.3-m (60-ft) span double-tee.  The load was 

applied until each of these load levels and then released.  Finally, the spandrel was loaded 

up to failure.  During the experiment, the vertical and lateral displacements at the top and 

bottom of the spandrel mid-span, and the rotation of the spandrel quarter-span and the 

vertical reaction at the bearing support were also monitored.  

5.8.2.  Description of the finite element model 

The specimen described in the preceding section was chosen in the present numerical 

investigation due to availability of the experimental results, as well as its complex 

nonlinear response which is challenging from the computational standpoint.  Due to the 

symmetry of the specimen with respect to the mid-span, only one-half of the spandrel 

was modeled.  The end of spandrel beam was fixed at the mid-point of the bottom surface 

of the web against vertical displacements at the bearing pad.  However, since restraining 

only one point in such a three-dimensional finite element model may lead to singularity 

problems, the bottom surface 0.3 × 0.2 m (12 × 8 in) of the web at the support region was 

forced to remain plane during analysis by defining planar constraint equations.  This 

eliminates singularity and bypasses a need for much more complex contact analysis.  The 

tie-back spring stiffness was assumed to be equal to 100 kN/mm (570 k/in) after 

computing the axial stiffness for one-meter long bolt with a diameter of 25 mm (1 in).  

Deck ties comprising steel plates with 76 × 152 × 9.5 mm (3 × 6 × 3/8 in) dimensions 

were used in the experiments to reduce lateral displacement at the mid-height of the 

spandrel.  These ties were modeled by two spring elements located at the mid-height of 

the front face of the spandrel.  To accommodate the finite size of the connections, each 
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deck-tie was modeled using two adjacent springs with an axial stiffness of 1910 kN/mm 

(10,900 k/in), each corresponding to one half of the steel plate stiffness value.      

The concrete was modeled using 8-node brick elements with reduced integration and 

hourglass control.  The concrete solid was analyzed with three different mesh 

configurations defined as coarse, intermediate and fine with the maximum element size 

of 203 mm, 102 mm and 51 mm (8 in, 4 in and 2 in) respectively.  The elastic modulus of 

concrete can be estimated as 33 GPa (4,800 psi) according to the ACI Committee 318 

building code document, [79], for a concrete compressive strength of 49.6 MPa (7,190 

psi).  The uniaxial stress-strain relation of the concrete under compression was assumed 

as in Fig. 5.6.  Post-peak behavior of concrete in tension was described by means of a 

concrete fracture energy of 1.75 kN/m (0.01 k/in) and a tensile strength of 3.5 MPa 

(0.509 ksi).   
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Fig. 5.6. Uniaxial stress-strain relation for plain concrete in compression 

Two-node linear 3D truss elements were used to model both non-prestressed 

reinforcement and prestressing strands.  Typical element size for reinforcement, welded 

wire mesh and strands was 50 mm (2 in).  The material model for all steel elements was 

based on elastic-perfectly plastic behavior.  The elastic modulus was assumed to be 200 

GPa (29000 ksi).  The yield strengths for mild steel, welded-wire-mesh reinforcement 

and prestressing strands were taken as 445 MPa (64.5 ksi), 675 MPa (98 ksi) and 1675 

MPa (243 ksi), respectively.  The transfer length was assumed to be equal to 510 mm (20 

in) and a 15% loss in prestressing force was assumed [66].   

Prior to arc-length analysis, the spandrel beam model was first analyzed with load-
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controlled static procedure for self-weight and prestressing forces.  Stresses in stands 

after losses were introduced as an initial stress state and the self-weight of the spandrel 

was defined with body forces so that the resulting spandrel end reaction was 100 kN (22 

kips).  Response to subsequent load transferred by the double-tees was analyzed using 

arc-length approach.  This load was distributed linearly over the bearing pads (starting 

with zero at the connection of the spandrel ledge and the web).  The assumption on 

bearing stress distribution was made considering the potential for relative movement of 

the spandrel ledge with respect to double tees.  The initial arc length increment was taken 

quite large, 0.01 out of a total arc length of 1.0, since severe nonlinearity was not 

expected in the solution for low load levels.  This allowed for a faster advancement along 

the equilibrium path at early stages of loading.  The subsequent arc length increments 

were automatically determined by ABAQUS, based on the number of iterations needed to 

converge.   

In the explicit dynamic approach, prestressing was introduced by defining an artificial 

temperature change in strands.  The temperature change was different for different 

strands to achieve varying prestressing force.  The strands of Type A had prestressing 

force of 85 kN after losses while Type B strands had 58.3 kN.  Following the prestressing 

stage, explicit dynamic analysis was continued to analyze the response due to load 

transferred by the double-tees.  The bearing stress distribution was assumed as in the case 

of the arc-length approach.   

5.8.3.   Duration of the explicit analysis 

A frequency analysis was performed to determine the largest period of vibration, Tn.  

For the spandrel beam considered here, the fundamental period of 0.075 sec was found.  

Thus, a loading time between 0.75 sec and 3.75 sec (i.e., T=10Tn and 50Tn) should be 

used to minimize dynamic effects in the spandrel response.   

The vertical end reactions versus the lateral deflections at the top and bottom of the 

mid-span were plotted in Fig. 5.7 for the loading times of 1 sec, 0.5 sec and 0.25 sec for 

the intermediate mesh.  The displacements toward the inner face of the spandrel (the face 

that is connected to the double-tee beams) were assumed positive.  Therefore, the top of 
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the spandrel web moved inward at the mid-span.  The self-weight of the specimen (100 

kN) were excluded and hence the end reactions begin with zero value as shown in the 

figure.   

The results in Fig. 5.7 showed that when the end reaction reached the value of 

approximately 400 kN (90 kips), concrete cracking occurred.  The results in the elastic 

region (i.e., end reaction < 400 kN) were the same for all loading times.  Moreover, 

loading times of 0.5 sec and 1 sec yielded a similar response in the inelastic regions.  

Except that for the loading time of 0.25 sec, the spandrel model exhibited stiffer response 

in the inelastic region which can be attributed to dynamic effects.  After concrete 

cracking, the stiffness of the spandrel decreased and the natural period of vibration 

increased.  Thus, the minimum loading time leading to the quasi-static response also 

increased and the loading time of 0.25 sec became inadequate to prevent dynamic effects 

in the inelastic region. 
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Fig. 5.7. The sensitivity of the explicit dynamic analysis to the loading time 

The effects of loading time variation on the vertical deflections at the mid-span were 

less pronounced than on the lateral deflections.  It is attributed to the fact that the 

spandrel examined here is quite slender and much more flexible in the lateral direction 

than vertical.   

Another way to evaluate the magnitude of dynamic effects is to find the maximum 
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ratio of kinetic energy to strain energy of the entire model.  Fig. 5.8 shows the ratio of the 

kinetic energy to the strain energy for the spandrel as a function of time for different 

loading times and mesh configurations.  For the loading time of 0.25 sec, the maximum 

energy ratio was greater than the limit of 0.5 percent, which supports the finding, 

discussed earlier, that the dynamic effects were significant in this case.  The loading time 

of 0.5 sec for which the maximum energy ratio was around 0.5 percent was the minimum 

value to ensure negligible dynamic effects.  
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Fig. 5.8. Energy ratios for various loading times and mesh configurations  

5.9. Comparison of the solution procedures for the spandrel beam 

example 

5.9.1. Robustness  

The results of arc-length and explicit dynamic analyses of the spandrel beam with the 

fine mesh were plotted for the lateral displacements at the mid-span versus the vertical 

end reactions in Fig. 5.9. A loading time of 1 sec was used to minimize the dynamic 

effects noted the preceding section for explicit dynamic analysis.  The arc-length analysis 

showed a severely nonlinear zone around the region where the tie-back springs were 

located.  The horizontal reaction force in the spring can be large and the element in the 
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concrete solid, associated with this reaction force, experienced large inelastic 

deformations.  Thus, the arc-length method failed to converge to the solution for the fine 

mesh (Fig. 5.9).  It should be noted that such localized inelastic strain had not been 

observed for the arc-length analyses with coarse and intermediate meshes as the tie-back 

forces were distributed over a larger volume.  As seen in Fig. 5.9, the explicit procedure 

overcomes the problem in the fine mesh observed for the arc-length method.  Large 

inelastic deformation still appeared around the tie-back springs, but they had a negligible 

effect on spandrel response and they could be handled effectively by the explicit 

algorithm. 
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Fig. 5.9. Comparison for the mesh refinement 

In addition to the case of the fine mesh, the arc-length method cannot converge to the 

solution when the concrete model in the post-cracking regime includes a relatively small 

amount of tension stiffening.  The results of the explicit dynamic and the arc-length 

analyses were compared for the intermediate mesh with and without the tension stiffening 

(Fig. 5.10).  Both the arc-length and the explicit dynamic methods provided numerical 

solutions when the tension stiffening effect was introduced in the concrete model.  

However, the arc-length analysis without the effect of tension stiffening could not 

converge to the solution and failed right after concrete cracking initiated in the spandrel 

while the explicit dynamic procedure continued without interruption.  
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Fig. 5.10. Comparison for the effect of tension stiffening 

As mentioned above, the tension stiffening effect for the concrete is closely related to 

the amount of steel distributed along the member.  Therefore, it is not appropriate to 

ignore the tension stiffening for the spandrel beam since the steel ratio for a typical 

prestressed concrete spandrel beam is relatively high and tension stiffening must exist.  

However, this effect posses problems for the analysis of lightly reinforced concrete 

beams. 

In the analyses shown in Fig. 5.10, the effect of tension stiffening was introduced in 

the concrete model by increasing the fracture energy of plain concrete.  Fig. 5.11 shows 

the stress-strain relationships for concrete in tension based on different values for the 

fracture energy.  The fracture energy of 1.750 N/mm represents the case with tension 

stiffening and the value of 0.175 k/in is used to represent the case with virtually no 

tension stiffening, or the case of plain concrete.  The strain softening region of the plain 

concrete is steeper than that for reinforced concrete, which makes it harder for the arc-

length method to achieve convergence in the former. 
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Fig. 5.11.  Stress-strain relationships for concrete in tension     

5.9.2. Computational accuracy  

In the preceding section, we compared the ability of the arc-length and explicit 

dynamic methods to provide a solution and documented that the explicit dynamic method 

yielded a solution while the arc-length method failed in the analysis of concrete structures 

modeled with a small amount of tension stiffening or a refined mesh.  The small 

discrepancies in load-deflection behavior present in cases that were successfully solved 

by both approaches stems from several reasons.  First, when solving a static problem, the 

explicit procedure inherently introduces computational error since the static equations of 

equilibrium are not exactly satisfied.  Second, to advance the solution in time, numerical 

time integration is performed and this is associated with an additional error.  Third, for 

the arc-length method, the static equations of equilibrium are also satisfied within a 

prescribed tolerance, and the resulting errors may be of opposite sign than those in the 

explicit dynamic approach.   

Fig. 5.12 compares the results of two solution methods with the test result of the 

spandrel specimen for rotations at the quarter span.  Explicit dynamic analyses were 

performed for a loading time of 1 sec.  The arc-length tends to give closer results to the 

test measurements than the explicit dynamic method for the spandrel example considered 

here.  The results of the explicit dynamic analysis were more sensitive to the mesh 

refinement than those of the arc-length method.  While mesh refinement from coarse 

mesh to intermediate mesh configuration had a minor effect in the results of the arc-
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length analysis, the explicit procedure provided the results in better agreement with the 

test results for the intermediate mesh.  However, from the practical viewpoint, one can 

say that all of the simulations in Fig. 5.12 were acceptable. 

0

150

300

450

600

750

900

0 1 2 3 4 5
Rotation at quarter span, deg.

E
n
d
 R
e
a
c
ti
o
n
, 
k
N

Test

Arc length-Intermediate

Arc length-Coarse

Explicit-Intermediate

Explicit-Coarse

 
Fig. 5.12. Comparison for the rotations at the quarter span 

5.9.3. Computational effort  

To obtain an insight about how the computation effort changes with respect to the 

solution procedure and the size of the problem, CPU time required for the analysis of the 

spandrel model was studied.  CPU time for the explicit analysis, using loading times of 2, 

1, and 0.5 sec, was compared with that of the arc-length analysis for coarse and 

intermediate meshes (Fig. 5.13).  Since the arc-length procedure did not converge to the 

solution for the fine mesh, there was no basis for comparison with the explicit method.  It 

should be noted that these results were obtained by excluding CPU time spent for the 

initial analysis of prestressing and self weight load.  The highlighted columns in Fig. 5.13 

indicate the minimum loading times, ensuring negligible dynamic effects, for explicit 

dynamic analyses.  The results show that the arc-length procedure used less CPU time 

than the explicit method for both mesh configurations.  However, when the number of 

solid elements increased approximately threefold by changing the mesh configuration 

from coarse to intermediate, the CPU time increased for the arc-length procedure whereas 

the CPU time decreased for the explicit procedure using the minimum loading time.  
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Thus, it may be concluded that the explicit dynamic procedure can be more efficient than 

the arc-length method in some cases.  This reduction was made possible by use of a 

smaller loading time for the intermediate mesh than for the coarse mesh and still ensure 

negligible dynamic effects.   
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Fig. 5.13. Comparison for CPU time 

5.10. Conclusions 

In this study, the arc-length and the explicit dynamic finite element approaches were 

compared for three-dimensional, non-linear finite element analysis of prestressed 

concrete beams under monotonically and quasistatically increasing loads.  The 

advantages and disadvantages of using these two methods were investigated in the 

context of strongly nonlinear structural response.  It included the damage-plasticity model 

for concrete, resulting from concrete crushing in compression and low strength in tension, 

as well as from a combination of structural response modes formulated within a large–

strain theory.  All those features are present in the analysis of L-shaped, prestressed 

concrete spandrel beam, which has been used as a model problem in this work.  The 

findings are as follows: 

The most significant finding is that when the effect of tension stiffening for concrete is 

small, the arc-length approach fails while the explicit method still yielded a solution.  
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Thus, in the analysis of lightly reinforced concrete structures, for which the tension 

stiffening for concrete is expected to be small, the arc-length method is likely to fail 

converge to a solution.  When both methods yield solutions, those solutions are close to 

each other provided that prior to the explicit dynamic analysis of a static problem, the 

loading time over which the load is increased to its final value is determined so as to 

make the dynamic effects negligible.   

The explicit method requires somewhat more computational effort than the arc-length 

method.  However, as indicated above, it is less sensitive to various model parameters 

and, consequently, more robust.  The computational cost of the explicit method can be 

minimized by careful selection of the loading time over which the load is increased to its 

final value.  In conclusion, a loading time (T) equal to fifty times the fundamental period 

(Tn) of a concrete structure is probably too long even assuming that when the stiffness of 

the structure decreases due to concrete cracking, the fundamental period of the structure 

increases and hence the influence of dynamic effects increases as well.  However, since 

the spread of inelastic zones is somewhat different for different mesh configurations, the 

minimum loading time ensuring negligible dynamic effects depends to some extent on 

the mesh, even though the fundamental period of a linear-elastic structural model is 

virtually independent of the mesh configuration.  The present investigation indicates that 

a loading time (T) equal about 10-15 times the fundamental period (Tn) is adequate.  

Even for the coarse mesh, the results of the arc-length method are in good agreement 

with the experimental results.  However, a finer mesh should be used for the explicit 

dynamic method in order to obtain results that are close to experimental measurements.   

Based on these findings, it may be concluded that from the viewpoint of 

computational efficiency, the arc-length method should be preferred over the explicit 

dynamic analysis for three-dimensional, nonlinear finite element analysis of prestressed 

concrete beams under monotonically increasing loads so long as convergence to a 

solution is achieved.  Furthermore, unlike the explicit dynamic approach, the arc-length 

method allows the tracing of the complete equilibrium path, including any descending 

branches.  However, the explicit dynamic analysis is a robust technique which is able to 

provide a solution in cases when the arc-length method fails. 
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5.11. Notation 

n = a point on the equilibrium path 

ln = arc length 

Ptotal = load magnitude 

Pref = reference load  

λ = load proportionality factor 

T = loading time 

∆t = time increment 

m = number of increments 

Tn = the longest period of natural vibration 

∆Tst = temperature change for strands 

Est = elastic modulus of strands 

fpe = effective prestress in strands 

Ec = elastic modulus of concrete 

αst = thermal expansion coefficient for strands 

ft = tensile strength of concrete 

Gf = fracture energy for concrete 

wt = total cracking displacement of concrete 
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CHAPTER 6 

Long Term Deformations of Precast and Prestressed Concrete 

Spandrel Beams 



 121 

 

6.1. Introduction 

The use of high strength concrete and prestressing steel has allowed the production of 

more material efficient precast and prestressed concrete structural members.  In the last 

few years, a new generation of spandrels (thinner spandrels spanning longer distances) 

has begun to emerge in the precast market. They have been introduced so as to construct 

more cost-effective buildings and to advance the competitiveness of the precast concrete 

industry due to their efficiency as they reduce the number of columns required in a 

building.  However, such slender spandrels require refinements in design and analysis 

methods to allow efficient utilization of these members, in particular, the influence on 

long-term spandrel deformations.  However, comparing to the “current generation” of 

spandrels, slender spandrels have less sectional stiffness and larger deflections.  Both 

vertical and lateral deflections should be considered in design since spandrels are 

generally subjected to eccentric loads transferred from deck beams.  Consequently, it is 

possible that serviceability requirements rather than stress limitations may control the 

design of some slender spandrels. Thus, it is important to accurately estimate short-term 

and long-term deflections in these members. For this reason, this paper aims to provide 

realistic estimates of long-term deformations for the ‘next generation’ of longer and 

thinner spandrels and to gain an understanding of the parameters that affect it.  A 

numerical study has been conducted involving  a series of nonlinear finite element 

analyses of L-shaped, pocket and spot corbel spandrels for different span lengths (48 and 

60 ft) and web thicknesses (8, 9, and 10 in.), including realistic reinforcement and 

prestressing strand details.  The sensitivity of long-term deflections in the spandrels to 

various material and structural properties such as spandrel type, span length, beam width, 

concrete curing method, long-term effects, loading eccentricity and magnitude is 

presented. 
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6.2. Background 

Precast and prestressed concrete spandrel beams (Fig. 6.1) are widely used in the 

perimeters of precast concrete buildings, especially parking ramps.  The spandrels 

typically support double-tees on ledges, corbels or pockets, all of which introduce lateral 

eccentricity as the double tee loads are transferred to the spandrels.  The torsional loading 

interacts with the flexural loading to generate a complex pattern of deformations that 

include vertical and lateral deflections, as well as twisting of the spandrel section.  Creep 

and shrinkage of concrete further complicate the state of deformation, and after 

supporting dead loads for a sustained time, total deflections will include a nontrivial long-

term component.  To date, such deformations under full service loads have not been 

identified as a performance problem for the current generation of spandrels (i.e., with 

span lengths up to 45 ft).  However, the ‘next generation’ of longer (up to 60 ft) and 

thinner (as little as 8 in.) spandrels may require detailed investigation of long-term 

deformations due to the combination.  

Double-tee load

Tie-back bolt

Column

Bearing pad Ledge

Deck-tie plate

(a)  L-shape spandrel beam

(b)  Pocket-type spandrel beam  
Fig. 6.1. Precast spandrel beams 

Spandrels serve to support the precast concrete double-tee beams, which are used as 

combined deck beams and diaphragms in a precast building (Fig. 6.1).  The soffit of the 
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spandrel typically rests on column corbels at both ends. The web of the spandrel is bolted 

to the column above each corbel by means of tie-backs. Upon initial placement of double 

tees during the erection process, when the spandrels are resisting only dead loads, they 

behave as simply-supported beams with no lateral restraints. Some distortion takes place 

in the form of lateral deflection combined with twisting as the spandrels respond to the 

dead loads. However, industry experience has shown that these distortions are unlikely to 

pose a problem at this loading stage for typical spandrel spans up to 45 ft.  Moreover, the 

authors’ experience studying the short term deflection behavior of members 

representative of the ‘next generation’ of longer, thinner spandrels suggests that short-

term deflections are unlikely to be pose a problem at this loading stage. Upon connecting 

the spandrels to the double tees using deck ties (Fig. 6.2), these connections serve as 

lateral restraints for the spandrels due to the axial stiffness of the deck ties and the in-

plane rigidity of the double-tee deck. Thus, lateral deflection of the spandrel is prevented 

at the connection points.  However, given that the deck ties are thin steel plates, they are 

unable to constrain twisting of the spandrel section, and subsequent deformation of the 

spandrel will include both vertical deflection and twisting. The current generation of 

spandrels (i.e., with span lengths up to 45 ft) have not experienced serviceability 

problems due to such deformations under full service loads.  Moreover, even for the ‘next 

generation’ of spandrels, these deformations are most likely not to cause any problem 

under short-term loadings.   

Undeformed

Spandrel 

Beam

Deformed 

Spandrel 

Beam

Deck tie

Bearing pads

Double tee 

beam

 
Fig. 6.2. Interaction between spandrel beam and floor diaphragm (double tee) 

However, long-term loading is known to increase the magnitude of deformations in 
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concrete members well above the values generated upon immediate loading.  There are 

likely to be spandrel dimensions beyond which excessive long-term deformations renders 

such design unfeasible.  Although the next generation of spandrels leads to greater 

efficiency in construction arising from fewer column lines at a greater spacing, long-term 

deformations of longer and thinner spandrels have the potential to (a) reduce the bearing 

length for the double tee supports as the bottom of the spandrels kicks out (deflects 

laterally away from the double tee as shown in Fig. 6.2), and (b) produce unsightly 

distortion of the top of the spandrel as it tilts inward (deflects laterally toward the double 

tee, Fig. 6.3).  

Double tee beams

Top of the 

spandrel

Bottom of the 

spandrel
Column Column

 
Fig. 6.3. Deformed shape of a spandrel beam under gravity loads 

Therefore, this study aims (a) to provide realistic estimates of long-term deformations 

for the ‘next generation’ of longer and thinner spandrels, and (b) to gain an understanding 

of the parameters that affect it.  To achieve these objectives, comprehensive finite 

element models of spandrels having various span lengths (45 and 60 ft) and web 

thicknesses (8, 9 and 10 in.) were generated using a well-known software package 

ABAQUS [19].  The FE models included realistic representation of spandrel geometry, 

loading configuration, material behavior of concrete (i.e., creep and shrinkage) and 

support conditions.  The sensitivity of long-term deflections in spandrels to various 

material and structural properties are investigated.  

Finally, a note is made here regarding the large variability in the properties of the 

material and structural parameters considered here. Concrete is a non-homogeneous 

material, and is mechanical properties (i.e., modulus of elasticity, modulus of rupture, 

compressive and tensile strengths, and creep and shrinkage parameters) scatter over a 

broad range depending on various factors; environmental conditions, loading features, 

water and cement contents, aggregate properties etc.  Therefore, in some cases, the 
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estimated values of short- and long-term deflections in spandrels significantly diverge 

from the actual values observed in the field or in the precast plant.  Better results for 

estimated deflections can be obtained if material and structural properties similar to those 

expected in the field are used in the calculations.    

6.3. Literature Review 

Only a limited amount of research on precast concrete spandrel beams is found in the 

technical literature.  Most studies, [80] and [81], have been concerned with design criteria 

for prestressed or reinforced concrete spandrel beams subjected to combined effects of 

bending, shear and torsion.  In 1986, an experimental study by Cleland [82] was directed 

towards short-term lateral deflections of reinforced concrete ledger beams (i.e., L-shaped 

spandrels).  In this study, the ledger beams were tested in the elastic range of behavior 

and the experimental results are only relevant to reinforced concrete beams under short-

term loading.  A more recent experimental and analytical investigation on precast and 

prestressed concrete spandrel beams with lateral eccentricity of vertical loads was 

reported by Lucier et al. [83] to elucidate resistance mechanisms in the spandrels and 

investigate the detailing of torsional reinforcement.  Nonlinear finite element models of 

spandrels calibrated based on the results from these full-scale tests were used to 

investigate the response of compact, precast and prestressed concrete  spandrel beams 

with open web reinforcement [84].  Both of these experimental [83] and analytical [84] 

studies are quite comprehensive in terms of geometry and loading, but they addressed 

primarily the configuration of transverse reinforcement and they focused on the current 

generation of spandrels (with span lengths up to 45 ft) under short term loading.  The 

conclusions from these valuable studies cannot be extrapolated to address long-term 

deformations in the ‘next generation’ of longer and thinner spandrels.   

In a previous study, Mercan et al. [85] presented three-dimensional, nonlinear finite 

element modeling techniques for precast, prestressed concrete spandrel beams using 

commercial software ABAQUS.  The sensitivity of the short-term lateral deflection 

response of spandrels to various modeling parameters such as finite element type, dilation 
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angle, fracture energy, tension stiffening, bearing stress distribution and support 

representation was presented.  The long-term deformations in prestressed or partially 

prestressed concrete members have been studied by many researchers, [86]-[89], but all 

of these studies have been concerned with vertical deformations in rectangular beams 

subjected to concentric loads.  A comprehensive assessment of ‘lateral’ long-term 

deformations in precast and prestressed concrete spandrels subjected to eccentric loading 

has not been undertaken. 

6.4. Short-term Response of Concrete 

The instantaneous response of concrete in compression or tension is affected by many 

factors such as the magnitude of the applied load, loading rate, concrete age and 

composition.  For this reason, only empirical equations are available to predict the 

fundamental characteristics of concrete. The modulus of elasticity Ec for a normal weight 

concrete with a compressive strength up to 6000 psi (42 MPa) can be estimated using an 

empirical equation,  Eq. (6.1), given in ACI 318-08. It gives the secant modulus 

corresponding to the intersection of concrete stress-strain curve at 0.45f’c.  Thus, concrete 

can be modeled as a linear elastic material for compressive stresses less than 0.45fc’, as 

given in Eq.(6.2).  Beyond this limit value, the stress-strain relationship for concrete 

becomes nonlinear.  Popovics [122] summarized empirical formulas available in 

literature for predicting the short term response of concrete. Equation (6.3) is one of such 

empirical formulas.  The concrete strain εo corresponding to the compressive strength f’c 

is approximately equal to 0.002.  

'000,57 cc fE = , psi or '800,4 cc fE = , MPa (6.1) 

ccc Ef ε= for '45.0 cc ff ≤  (6.2) 
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The deflection response of concrete is influenced highly by cracking and post-cracking 

properties of concrete.  ACI 318-08 recommends Eq. (6.4) for estimating the modulus of 



 127 

rupture fr for normal density concrete, 145 to 150 pcf (2325 to 2400 kg/m3).  For high 

strength concrete for which the compressive strength f’c at 28 days is greater than 6000 

psi (42 MPa), the modulus of rupture can increase up to the value of 12√f’c in psi.  

'5.7 cr ff = , psi or '623.0 cr ff = , MPa (6.4) 

  Hillerborg et al. [123] proposed a brittle fracture concept using fracture energy in 

order to define the post-cracking behavior of concrete.  Fracture energy Gf is a material 

property which defines the energy required to open a unit area of crack.  Its magnitude is 

equal to the area under the stress-displacement curve, in the post cracking regime of a 

concrete specimen in a direct tensile test.  For example, the fracture energy for a high 

strength concrete with a compressive strength of 6000 psi (42 MPa) is approximately 

equal to 0.67 lb/in (120 N/m).  During the test, cracks generally localize in a process 

zone, leading to a non-unique stress-strain relationship in tension. Therefore, the post-

cracking response is usually represented by the relationship between stress and 

displacement (or crack width), rather than stress and strain.  Displacement depends on the 

opening at the crack regardless of the specimen length.  The ultimate cracking 

displacement utu at which the concrete stress attains zero value can be found in terms of 

the fracture energy Gf and the tensile strength fr as in Eqs.(6.5) and (6.6).  It assumes that 

concrete exhibits linearly descending post-cracking regime. If the characteristic crack 

length Lo is known, Eq. (6.5) can be rearranged for predicting the ultimate tensile strain 

εtu as given in Eq. (6.6).  
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G2
=ε  (6.6) 

A summary of the discussion above is presented in the tension side of the stress-strain 

behavior of concrete under uniaxial compression and tension shown in Fig. 6.4.  For the 

prestressed concrete spandrel beams under service load conditions, the maximum 

compressive stress in concrete is typically less than 0.45fc’ and the assumption for 

concrete behavior in the inelastic compressive regime affects slightly spandrel 
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deflections.   
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Fig. 6.4. Uniaxial stress-strain behavior of concrete 

The accuracy of the results from the finite element analysis depends highly on how the 

concrete material model has been defined for both short- and long-term effects.  The 

concrete damage-plasticity model provided in ABAQUS is used in this study for 

modeling the short-term response of concrete.  The detailed description of the concrete 

damage-plasticity model and the effect of various modeling parameters on the short term 

deflection response of spandrel beams were previously reported by Mercan et al. [85].  A 

short summary of this material model for concrete is herein presented.   

The finite element model in ABAQUS requires a linear elastic and isotropic behavior 

of concrete when the concrete strain εc is less than the cracking strain in tension (εt ) or 

the compressive strain (εp) at which the irreversible deformations initiate in concrete.  

Inelastic behavior of concrete, mainly influenced by micro-cracking, includes strain-

softening in tension and stress hardening followed by strain softening in compression.  In 

the damage-plasticity model, such inelastic characteristics of concrete are represented by 

the combination of two concepts: (a) damage in which the unloading response of the 

concrete specimen in the inelastic regime exhibits stiffness degradation; and (b) plasticity 

in which, a flow rule, a yield function and a hardening rule are defined as in the classical 

metal plasticity. 

The concrete damage-plasticity model uses tension stiffening approach in order to 

distinguish the behavior of reinforced concrete from that of plain concrete.  Reinforced 
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concrete exhibits a “stiffer” strain softening regime in tension than does plain concrete 

since cracked reinforced concrete continues transferring stress through the rebar. In 

general, tension stiffening is defined by (a) a post failure stress-displacement curve or (b) 

a post-failure stress-fracture energy curve.  The amount of tension stiffening effect that 

needs to be introduced to the model is not easy to determine due to the fact that tension 

stiffening depends highly on the reinforcement details, rebar size and concrete aggregate 

size.  In the modeling of highly reinforced concrete members (i.e., prestressed concrete 

spandrels), the tension stiffening effect can be introduced by simply increasing the 

fracture energy of plain concrete by a factor of ten [19].    

6.5. Long-term Response of Concrete 

6.5.1. Overview 

Time-dependent volume changes of concrete such as shrinkage and creep always 

occur in concrete members and they are of particular importance in prestressed concrete 

members because they affect the magnitude of effective prestress. Creep is the time 

dependent increase of strain in hardened concrete subjected to sustained stress and 

defined as a strain per unit stress.  Shrinkage is a volumetric change due to changes in the 

moisture content of the concrete and physico-chemical changes, which occur without 

stress attributable to actions external to the concrete. The magnitude of strains in concrete 

due to creep and shrinkage is affected by many factors such as relative humidity, volume-

to-surface area ratio and the composition of concrete (e.g., cement paste, aggregate, 

water-cement ratio, and cement content).  

Fig. 6.5 illustrates an idealized variation of the compressive strain in a concrete 

specimen subjected to a constant stress. Before applying the load, the concrete specimen 

experiences only shrinkage strain with a reducing rate in time. When the specimen is 

subjected to the constant stress, an immediate increase occurs in concrete strains, which 

may exceed the elastic range for concrete (approximately equal to the strain 

corresponding to 45 percent of the compressive strength for concrete).  Even though the 

load is kept constant, the compressive strain in concrete continues increasing in time due 
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to both creep and shrinkage effects and there is a nonlinear relationship between the total 

strain and time. Unloading the specimen leads to an elastic strain recovery of concrete, 

but the specimen may still experience a slight increase in strain due to shrinkage.  

t, time

Shrinkage

Stress, σc

Strain, εc

t, time

Shrinkage
Elastic & Inelastic

Creep & Shrinkage

Elastic

 
Fig. 6.5. The variation of concrete strain in time 

Thus, ignoring the interaction between creep and shrinkage effects and assuming 

elastic deformations only (no cracking or crushing in concrete), the total strain εc(t) in 

concrete at time t can be defined as the sum of the instantaneous elastic strain εins due to a 

constant stress σc applied at time to, creep strain εcr(t,to) and shrinkage strain εsh(t). 

)(),()( tttt shocrinsc εεεε ++=  (6.7) 

Even though there is a nonlinear relationship between the creep strain and the 

sustained load, it is assumed that the creep strain εcr(t,to) is proportional to the stress σc 

when it is less than 40 percent of the compressive strength of concrete f’c.  So, instead of 

using the creep strain, the effect of creep is introduced into equation (6.7) as a factor for 

the instantaneous elastic strain εins and hence equation (6.7) is given in the form of  

)()],(1[)( tttvt shinsoc εεε ++=  (6.8) 

where v(t,to) is the creep coefficient representing the ratio of the creep strain at time t to 

the instantaneous strain that occurred at time to.   

Numerous models for predicting creep and shrinkage behavior of concrete have been 

proposed [119]-[121].  The ACI 209R-92 model [119], which has been widely used in 

research and practice, was adopted in this study.  It is an empirical model for predicting 

creep and shrinkage strains in concrete, developed by Branson and Christiason, and first 

introduced in the ACI 209R-82 report.  The model has a hyperbolic curve which is 

defined as a function of time and asymptotic to the ultimate value for creep coefficient vu 



 131 

or shrinkage strain εshu.  The shape of the curve and ultimate values are affected by 

several factors such as concrete composition, initial curing, environment, geometry, 

loading history and stress conditions etc.  These factors are considered in the model by 

referring to “standard conditions” and “correction factors other than standard conditions”. 

Correction factors, γsh and γc, are used to modify ultimate values for shrinkage and creep.  

In the absence of specific creep and shrinkage data for concrete mixed using local 

aggregates and cured under specific conditions, the ACI 209R-92 model recommends 

using the following equations for predicting creep and shrinkage for concrete in standard 

conditions listed in Table 6.1: 

Creep coefficient at time t in days: 

uv
t

t
tv

6.0

6.0

10
)(

+
=  (6.9) 

cuv γ35.2=  (6.10) 

It should be noted that for standard conditions the creep coefficient is not defined as a 

function of loading time to.  There is a correction factor for loading ages later than 7 days 

for moist cured concrete and later than 1-3 days for steam cured concrete.   

The shrinkage equation at time t after age 7 days for moist cured concrete: 

shush
t

t
t εε

+
=

35
)(  (6.11) 

The shrinkage equation at time t after age 1-3 days for steam cured concrete: 

shush
t

t
t εε

+
=

55
)(  (6.12) 

And, the ultimate shrinkage strain: 

shshu γε 610780 −×=  (6.13) 

where the factors of γsh and γc are the product of the applicable correction factors in ACI 

209R-92. 
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 Table 6.1. Factors affecting concrete creep and shrinkage considered in ACI 209 Model 

1 to 3 daysSteam cured

7 daysMoist curedConcrete age at load 

application

Load history

Load (creep only)

Sustained loadSustained loadDuring of loading period

__Duration of unloading period

__Number of load cycles

150 mm (6 in.)

Axial compressionCompressive stress
Type of stress and 

distribution across the 

section
Stress 

conditions

23.2 ± 2 °C

(73.4 ± 4 °F)
Concrete temperatureConcrete temperature

Environment
Member geometry and 

environment 

(creep and shrinkage)

40%Ambient relative humidityConcrete water content

1 to 3 daysSteam cured

7Moist cured
Length of initial curing

Initial Curing
23.2 ± 2 °C

(73.4 ± 4 °F)
Moist cured

Curing temperature

≤ 100 °C (≤ 212 °F)Steam cured

≥ 95%Relative humidityCuring humidity

V/S= 38 mm (1.5 in.)Volume-surface ratio

or minimum thickness
Size and shapeGeometry

≤ 6%Air contentMixture proportions

50%Fine aggregate percentageAggregate characteristics

279 to 446 kg/m3

(470 to 752 lb/yd3)
Cement contentDegree of compaction

≤ 0.5Stress/strength ratioStress/strength ratio

70 mm (2.7 in.)SlumpWater-cement ratio

Type I and IIIType of cementCement paste content

Concrete 

Composition

Concrete 

(creep and Shrinkage)

Standard ConditionsVariables considered Factors

 

6.5.2. Finite Element Modeling  

For finite element analysis of spandrels using ABAQUS, shrinkage strains in concrete 

can be introduced by varying the coefficient of thermal expansion α and temperature T as 

a function of time t.  In other words, solid continuum elements of concrete are subjected 

to a temperature change so that thermal strains replace shrinkage strains.  The main 

advantage of such modeling procedure for shrinkage strains is that the problem can be 

solved by using static finite element procedures without any additional thermal analysis 

methods.  The thermal strain εth at time t is computed by multiplying the coefficient of 

thermal expansion α(t) by the temperature change T(t) –T(0),  as given in Eq. (6.14).  

Thermal expansion (or contraction for shrinkage effect) results in isotropic response so 

that the strain increment remains the same in all directions. For simplicity, the initial 
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temperature T(0) is assumed to be zero.  Such assumption can be made since the main 

objective of FE analysis is not to investigate the thermal response of spandrels. Thus, 

thermal strain equation can be reduced to Eq (6.15).  By setting the thermal strain εth(t), 

in Eq. (6.15), to be equal to the shrinkage strain εsh(t), in Eq. (6.11) or Eq. (6.12), the 

expressions for the coefficient of thermal expansion α(t) are obtained for moist cured or 

steam cured concrete as seen in Eq. (6.16). The negative signs represent the case of 

contraction (shrinkage) in concrete with an increase of time or temperature. The variation 

of temperature T in time t (in this case, assume T=t for simplicity) is defined by 

introducing a predefined field variable into the solid continuum elements of concrete. 
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For creep analysis, ACI 209R-92 recommends the use of two different methods; the 

Effective Modulus Method (EMM) when the gradual time change of stress due to creep 

and shrinkage is small and the Age-adjusted Effective Modulus Method [119] when the 

gradual time change of stress is significant. The latter method is not employed in this 

study since (a) the constant sustained loads (i.e., double tee loads) are assumed to 

instantaneously act at the beginning of the time-dependent analysis (or drying), (b) the 

redistribution of internal forces in spandrels due to concrete cracking is negligible under 

service load conditions.   

Effective Modulus Method (EMM) in the creep analysis is treated as an elastic 

analysis with a time-dependent reduced modulus that replaces the elastic modulus [119]. 

The creep strain is calculated using the final stress distribution and depends on the 

previously accumulated creep strains.  The EMM method provides sufficiently accurate 

results when the concrete stress does not vary significantly.  The load-dependent strain, 

the sum of the instantaneous strain εins and the creep strain εcr(t) due to the sustained load 

σo  is computed using Eq. (6.17).  The elastic modulus of concrete Ec, which has a 
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constant value, equal to modulus of elasticity of concrete at the time of initial load, can be 

estimated using Eq. (6.1).  Rearranging Eq. (6.17) with the creep equation (6.9) gives Eq. 

(6.18), where the effective elastic modulus for concrete Eeff as a function of time t, Eq. 

(6.19), is obtained.  
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The time dependent behavior of concrete in tension is also considered in the model. In 

general, the tensile creep is three times larger than the compressive creep [94]. 

Implementing the EMM combined with the concrete damage-plasticity model leads to the 

use of the same creep coefficient for tension and compression. However, such assumption 

does not produce significant error in the results [126]. Furthermore, the model assumes 

that the initiation and propagation of cracks in concrete are not influenced by the creep 

effect, but the shrinkage can still create cracking in concrete since spandrel beams are 

statically indeterminate. Test results show that the tension-stiffening effect for concrete 

reduces to its ultimate value in 20 days after loading [125], and hence does not need to be 

modified for long-term effects.    

6.5.3. Experimental verification for reinforced concrete beams 

The reliability and accuracy of the EMM for estimating creep deformations and the 

thermal expansion method for shrinkage deformations of reinforced concrete beams were 

discussed in this section by comparing the results of finite element analysis with those of 

experiment.  For the purpose of verification, an experimental study conducted by Corley 

and Sozen [91] was selected. The details of beams tested are shown in Fig. 6.6.  Time 

dependent deflections of the beams were monitored over a period of two years.  Three 

beams (1, 3 and 4) were loaded up to P= 2,240 lb (9.96 kN) and kept constant for two 

years.  However, Beam 2 was first subjected to the same load, resulting in cracking, and 

then unloaded.  Additionally, one 4×6-in (100x150 mm) cylinder specimen was tested 
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under the sustained compressive stress of 1,350 psi (9.3MPa) whereas another cylinder 

specimen was not subjected to any load. All beams and cylinders were kept in the same 

environmental conditions [70ºF (21ºC) and %50RH].  The material properties for 

concrete used in the damage-plasticity model are as follows: Ec= 2,265x103 psi (15.6 

MPa), ν= 0.15, f’c= 3,000 psi (20.7 MPa), εcu= 0.0038, ft= 329 psi (2.27 MPa), Gf= 5 lb/in 

(876 N/m), Lo=1 in (25.4mm). It should be noted that the compressive strength of 

concrete was the only parameter known. The initial elastic modulus, Ec was obtained 

from the test results for loaded cylinder specimen. Other parameters used in the concrete 

damage plasticity model were estimated using the empirical equations previously 

discussed as described below.    

First, ACI creep and shrinkage equations (6.9) and (6.11) were calibrated against the 

cylinder test results by adjusting the values of the ultimate shrinkage strain εshu and the 

ultimate creep coefficient vu.  The unloaded specimen was under the shrinkage effect 

only, whereas the loaded specimen was subjected to both creep and shrinkage effects.  

The shortening of the unloaded cylinder specimen was approximately 0.0003 at the end 

of two years.  Therefore, the value of the ultimate shrinkage strain εshu was calculated as 

314× 10-6 by Eq. (6.11) as follows: 
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A brick element in ABAQUS was subjected to thermal expansion in order to analyze 

the shrinkage response of unloaded cylinder specimen tested. The specimen was free to 

deform in transverse directions.  Short-term behavior of concrete was defined with 

concrete damage-plasticity model and parameters described above. Shrinkage strains 

determined based on the ACI equation (εshu =314×10-6) were defined with equivalent 

thermal strains in ABAQUS, which were introduced into the model by changing 

temperature and thermal expansion coefficient for the concrete. The results of the finite 

element analysis and test for unloaded specimen were in good agreement as seen in Fig. 

6.7.   

For the calibration of the finite element model for the creep response of concrete, the 

brick element previously used for the unloaded case (or shrinkage) was subjected to the 
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sustained stress of 1,350 psi (9.3 MPa) in one direction over the period of two years.  The 

EMM, discussed in detail above, was used for modeling the creep behavior of concrete.  

When the ultimate creep coefficient vu was taken as 2.5, finite element analysis provided 

a very good estimation for long term deformations in the loaded cylinder specimen, as 

seen in Fig. 6.7.  

Finally, three-dimensional finite element models of rectangular reinforced concrete 

beams were generated based on the beams details and loading conditions described 

above. In the finite element simulation of these beams, concrete was defined using 8 node 

brick elements and the concrete damage-plasticity model, whereas reinforcement was 

defined using truss elements and the elastic-perfectly plastic material model based on the 

elastic modulus of 29000 ksi (200 GPa) and the yield stress of 60 ksi (413 MPa). Even 

though reinforcement was embedded into the concrete solid and fully restrained, the 

rebar-concrete interaction was introduced to the model through the tension stiffening 

effect.  Creep and shrinkage characteristics of concrete in beams were in accordance with 

the results from the finite element analyses of cylinder specimens (εshu =314×10-6 and vu= 

2.5).  Fig. 6.8 shows the time-dependent mid-span deflections of the beams. The results 

from the finite element analyses are in very good agreement with those measured during 

the tests.  Thus, it is concluded that the EMM and concrete damage plasticity model 

predicts the long-term behavior for reinforced concrete beams with an acceptable 

accuracy.      
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Fig. 6.6. Details of beams (1 in= 25.4 mm, 1 ksi=6.89MPa, 1 kips= 4.448 kN, 1 

lb/in=175 N/m) 



 137 

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0 200 400 600 800
Time t  in days

C
o
n
c
re
te
 C
o
m
p
r.
 S
tr
a
in
, 

εc
 

Test

FEA

Unloaded cylinder specimen

Loaded cylinder specimen

 
Fig. 6.7. Strains of loaded and unloaded cylinder specimens 
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Fig. 6.8. Deflections at mid-spans (1 in=25.4 mm) 

6.5.4. Experimental verification for prestressed concrete beams 

Branson and Shaikh [127] tested a series of 15-ft long, simply supported, prestressed 

concrete beams (6 in. by 8 in.) in order to investigate the effect of non-tensioned steel on 

the time-dependent behavior of prestressed concrete beams. All test beams and cylinder 

specimens were moist-cured for 7 days. The temperature in the laboratory was around 72 

ºF.  Two beams with pretension steel only, Beam-1 and Beam-2, were analyzed herein.  

The 7 day and 28 day concrete compressive strengths of the beams were 4830 psi and 

6570 psi, respectively. Beam-1 included three 5/16-diameter prestressing strands 

(As=0.173 in2), located at the effective depth of 6.5 in. and subjected to the initial 
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prestressing force 30.5 kips.  Beam-2 included three 3/8-diameter prestressing strands 

(As=0.240 in2), located at the effective depth of 6.5 in. and subjected to the initial 

prestressing force 29.8 kips.  Short-term mid-span camber occurring at the release of 

prestress and long-term camber due to creep and shrinkage were measured during three 

months. 

The instantaneous elastic shortening εins in the cylinder specimens (Ac=28.27 in2), 

subjected to the sustained load of 55 kip, was measured as 465×10-6.  Therefore, the 

elastic modulus of concrete Ec is approximately equal to 4183 ksi.  Using the cylinder test 

data, the ultimate creep coefficient vu and the ultimate shrinkage strain εshu in Equations 

(6.9) and (6.11) were determined as 2.83 and 844×10-6, respectively.  For cylinder 

specimens, the experimental strain values together with the prediction of finite element 

analysis based on EMM is presented in Fig. 6.9.  A good agreement between 

computational and experimental results was achieved for the creep behavior over the 

entire time range and for the shrinkage after the first 50 days.  Next, three-dimensional 

finite element models of Beam-1 and Beam-2 were generated using modeling techniques 

similar to those in the example of reinforced concrete beams, described above.  Due to 

the combined effect of the prestressing force and the self-weight of the beams, the initial 

camber at the mid-span of the beams was measured in the value of 0.225-in.  Creep and 

shrinkage effects in concrete and the loss of the presstressing force in strands led to an 

increase on the time-dependent cambers.  It is concluded that the finite element model 

based on the EMM for creep, the thermal expansion procedure for shrinkage, and the 

damage-plasticity model for the short-term concrete response describes the long-term 

response of prestressed concrete beams tested quite well, especially after the first 50 

days, as seen in Fig. 6.10. However, the results of the finite element analysis were 

slightly stiffer at early ages of concrete, possibly due to the discrepancy between actual 

and computed shrinkage effects. 
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Fig. 6.9. FE analysis vs. test results for cylinder specimens 
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Fig. 6.10. Time dependent camber at the mid-span of prestressed concrete beams 

6.6. Description of Prototype Spandrel Beams 

Spandrels are often categorized by the features of their configuration which serve to 

support the deck members (e.g. the double-tee beams).  "L-shaped" spandrels have a 

continuous horizontal ledge, "pocket" spandrels have rectangular cutouts on which 

double-tees are supported.  The latter configuration provides support only at the locations 

of the double-tee webs. The “corbel” spandrel has discontinuous ledges only at the 

location of the double-tee webs.  Due to the similarity with the “L-shaped” spandrels, 

they are not considered here.  The height and width of a typical spandrel vary from 60 to 

83 in. and 10 to 12 in., respectively.  Today, technological advances in fabrication and 
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erection enable precasters to produce the “next generation” of spandrels with the span 

length that can be as long as 60 ft, and with a web width as thin as 8 in. Therefore, a set 

of prototype spandrels, that are representative of the ‘next generation’ of the spandrel 

beams, is defined.  

  Precast and prestressed concrete spandrel beams in various configurations were 

designed in order to achieve a range of long-term lateral deflections under service loads.  

The main design parameters included the spandrel type (“L-shaped” or “pocket”), the 

span length (48 ft and 60 ft) and the web width (8 in, 9 in, and 10 in.).  The height h of all 

spandrels was 83 in.  The cross-sectional dimensions of the prototype L-shape and pocket 

spandrels are presented in Fig. 6.11.   

Spandrels were designed in accordance with the ACI 318-08 document, the 

International Building Code (IBC 2009 Edition), Minimum Design Loads for Buildings 

and Other Structures (ASCE 7-05).  The compressive strength of concrete was assumed 

to be 6000 psi for all spandrels.  Fig. 6.12 shows the design details of prototype 

spandrels.  It was assumed that spandrels supported one end of 60 ft-long double-tee 

beams (12DT30), which have a 12 ft-wide top flange and the self-weight of 81 psf.  Four 

double-tee beams of 12DT30 rested on 48-ft long spandrels, whereas five double-tees 

were on 60-ft spandrels.  Live and snow loads acting on double tees were assumed as 40 

and 30 psf, respectively. Thus, double-tee stem loads (depicted as concentrated loads in 

Fig. 6.12) acting on the ledges of L-shaped spandrels and in the cut-outs of pocket 

spandrels, were placed at typical spacing of 6 ft. The computed dead, live and snow 

loads, respectively, were 14.5 kips, 7.2 kips and 5.4 kips.  In addition to the double-tee 

loads, the self-weight of spandrels were obtained by assuming a unit weight of concrete 

equal to 150 pcf.   Deck-tie restraints were located at the mid-height level of a typical 

spandrel beam (3’-6” from the top) with 8-ft spacing. Two tie-back bolts restraining the 

twisting deformations of the spandrel at the ends were located at the distance of 6-in from 

the end and 12-in from the top and bottom of the spandrel (Fig. 6.12). 

The design of the spandrels for the loads defined above yielded two typical strand 

patterns, as seen in Fig. 6.13. Strand pattern 1 (SP1), consisting of 10 strands in total, was 

provided in 48-ft long spandrels regardless of spandrel type (i.e., L-shape or pocket).  
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Strand pattern 2 (SP2) included 16 strands and were used in all of the 60-ft spandrels. 

The prestressing steel was ½ -in. diameter seven wire strand (pulled to 75% of strand 

ultimate stress) with a nominal diameter of 0.167 in2 and a specified tensile strength, fpu, 

of 270 ksi.  The details of non-prestressing steel, used in the spandrels with yield strength 

of 60 ksi, are shown in Fig. 6.14.    
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Fig. 6.11. Cross-sections of prototype spandrels considered  
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Fig. 6.12. Geometry of 48-ft and 60-ft prototype spandrels 
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Fig. 6.13. Typical strand details: (a) SP1 for 48-ft spandrels and (b) SP2 for 60-ft 

spandrels (Dimensions shown are strand location from soffit) 

 

 

 

  



 144 

14No5 
20-ft long ea. end

No4 
ledge stirrup

9" x 15"

2No6 cont. 

No4 
web stirrup

6'-8" x 7"

CL CL

48-ft 

spandrel

60-ft 

spandrel

2' 4'

8No4@3"
12No4@4"

Balance 

No4@9"

6 x 6 W3/W3 WWF
two layers mesh

2No5 

ea. end

1'-6"

6'-3"

8"

4'

6'-2"
No6 

hanger bar typ. 

centered at pocket

2No4 
typ. Ea. pocket 

5"

6'-3"

  
Fig. 6.14. Reinforcement details for L-shape and pocket spandrels  

6.7. Creep and Shrinkage Effects for Spandrel Beams 

Creep and shrinkage effects for concrete are influenced by various factors, as listed in 

Table 6.1, which lead to a wide range of values for correction factors that are applied to 

the ultimate creep coefficient (2.35) and ultimate shrinkage strain (780×10-6) when 

concrete is not under the standard conditions.  The investigation of spandrels for every 

single possible condition, however, is not practical.  Therefore, assuming values for these 

corrections that bracket a practical range is crucial for estimating long-term deflections in 

precast spandrels. 
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An informal survey of several concrete precasters was conducted to assess typical 

values for the variables affecting creep and shrinkage behavior of concrete in spandrels.  

Table 6.2 shows these variables, the values for these variables obtained from the informal 

survey, and the corresponding values for correction factors determined based on the ACI 

209 model.  For each variable, three values were selected and designated as high, 

medium and low depending upon their effect on creep and shrinakge.  For example, 

loading age is a factor affecting the creep of steam-cured concrete.  The effect of creep 

reduces with an increase of loading age. In standard conditions, ACI 209 model assumes 

that steam-cured concrete is loaded at age of 1-3 days.  In this study, three different 

loading ages, 7, 28 and 90 days, corresponding to high, medium and low creep effects, 

respectively, were considered.  

Finally, the correction factors for the ultimate creep coefficient and shrinkage strain, 

Table 6.3, were obtained by multiplying values tabulated in Table 6.2. For example, the 

correction factor for creep of moist cured concrete, assuming a “high” level of long-term 

effects, was obtained as 1.07, equal to the multiplication of factors, 1.00 for the loading 

age of 7 days, 1.00 for 40% relative humidity, 0.77 for average thickness, 1.16 for 5-in. 

(13 cm) slump, 1.02 for 60% fine aggregate percentage, and 1.18 for 8% air content.  

Table 6.3 indicates the correction factors are close to unity for a “high” level of long-term 

effects for both types of curing.  Therefore, the ultimate creep coefficient (2.35) and 

ultimate shrinkage strain (780×10-6) for standard conditions recommended by ACI 209 

committee report generally results in a conservative assumption for long term effects in 

spandrel beams. 
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Table 6.2. Factors affecting concrete creep and shrinkage considered in ACI 209 Model 

Creep Shrinkage

High 7 days 0.94 -

Medium 28 days 0.83 -

Low 90 days 0.74 -

High 7 days 1.00 -

Medium 28 days 0.83 -

Low 90 days 0.74 -

High 1 day - 1.20

Medium 3 days - 1.10

Low 7 days - 1.00

High 40% 1.00 1.00

Medium 60% 0.87 0.80

Low 80% 0.73 0.60

High 8 in. 0.77 0.77

Medium 9 in. 0.75 0.74

Low 10 in. 0.74 0.71

High 5 1.16 1.10

Medium 2.7 1.00 1.00

Low 0.5 0.85 0.91

High 60 1.02 1.02

Medium 50 1.00 1.00

Low 40 0.98 0.86

High 800 - 1.04

Medium 700 - 1.00

Low 600 - 0.97

High 8 1.18 1.01

Medium 6 1.00 1.00

Low 3 1.00 0.97

Level of 

long-term (LT) 

effects

Variables affecting 

concrete creep and 

shrinkage

Values 

for variables 

considered

Correction Factors

Loading age for 

steam cured 

concrete

Average Thickness 

(V/S approach)

Relative Humidity

Loading age for 

moist cured concrete

Moist Curing 

Duration

Air Content 

Percentage

Fine Aggregate 

Percentage 
(ratio of fine aggregate to 

total aggregate by weight)

Slump

in.

Cement Content

lb/yd
3

 

Table 6.3. Correction factors for conditions other than standard 

Creep Shrinkage Creep Shrinkage

High 1.07 1.09 1.01 0.91

Medium 0.54 0.65 0.54 0.59

Low 0.33 0.31 0.33 0.31

Corrections for Moist Cured Concrete Corrections for Steam Cured Concrete
Level of 

long-term (LT) 

effects
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6.8. Modeling of Spandrel Beams 

The computational study using ABAQUS included three-dimensional models of 

spandrel beams.  Referring to Table 6.4, the parametric study of the spandrels included 

the following variables; spandrel type (L-shape and pocket), span length (48 and 60 ft), 

web width (8, 9, and 10 in.), concrete curing conditions (moist and steam), long term 

effects (high, medium and low), instantaneous loads (DL, DL+0.5LL and DL+LL) and 

load locations (s=0.50c, 0.75c, and 1.0c, seen in Fig. 6.15).  The term s describes the 

distance from the location of load to the face of the spandrel web. The exact location of 

the resultant point load P along the support width c is not known. Therefore, three 

different locations 0.5c, 0.75c and 1.0c were considered as possible locations for the 

resultant point load P. Due to a large variety of parameters, baseline spandrel models 

were first generated and analyzed. Next, by altering the baseline model for various 

parameters, the sensitivity of spandrel response to these parameters was evaluated.  Basic 

characteristics of these baseline models are tabulated in Table 6.5.  All of these models 

were based on moist cured concrete, high long-term effects, 50% of live load, and the 

eccentricity ec for the load location s=0.5c. By varying spandrel type, length and width, 

twelve baseline models were created.  

Table 6.4. Spandrel parameters considered in the finite element simulations 

Spandrel 

Type

Span 

Length [ft]

Web 

Width [in]

Curing 

Type

Level of Long Term 

(LT) Effects

Instantaneous 

Load

Load Locations

s

L-shape 48 8 Moist High DL 0.50c

Pocket 60 9 Steam Medium DL+0.5LL 0.75c

10 Low DL+0.75LL 1.00c  
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Fig. 6.15. Load locations for L-shape and pocket spandrels (the eccentricity ec=b/2+s for 

L-shape and ec=b/2+s-c for Pocket)  

Table 6.5. Basic characteristics of baseline spandrel models 

Designation

Spandrel 

Type

Span 

Length 

[ft]

Web 

Width 

[in]

Curing 

Type

Level of 

Long Term 

(LT) Effects

Instant

Load

Load 

Location 

s

Support  

width c 

[in]
Eccentricity 

e c  [in]

L4808 L-shape 48 8 Moist High DL+0.5LL 0.50c 8.0 8.00

L4809 L-shape 48 9 Moist High DL+0.5LL 0.50c 8.0 8.50

L4810 L-shape 48 10 Moist High DL+0.5LL 0.50c 8.0 9.00

P4808 L-shape 60 8 Moist High DL+0.5LL 0.50c 6.0 7.00

P4809 L-shape 60 9 Moist High DL+0.5LL 0.50c 6.5 7.75

P4810 L-shape 60 10 Moist High DL+0.5LL 0.50c 7.0 8.25

L6008 Pocket 48 8 Moist High DL+0.5LL 0.50c 8.0 8.00

L6009 Pocket 48 9 Moist High DL+0.5LL 0.50c 8.0 8.50

L6010 Pocket 48 10 Moist High DL+0.5LL 0.50c 8.0 9.00

P6008 Pocket 60 8 Moist High DL+0.5LL 0.50c 6.0 7.00

P6009 Pocket 60 9 Moist High DL+0.5LL 0.50c 6.5 7.75

P6010 Pocket 60 10 Moist High DL+0.5LL 0.50c 7.0 8.50  

Each simulation utilized one-half of a spandrel to minimize computational effort since 

loading and boundary conditions were symmetric, as illustrated in Fig. 6.16. The concrete 

solid was defined using 8-node brick elements with reduced integration.  Short-term 

behavior of the concrete was represented by concrete damage plasticity model, described 

earlier in detail. Based on the concrete compressive strength of 6000 psi, other material 

properties of concrete were predicted as follows: Ec= 4,415x103 psi , ν= 0.15, εcu= 

0.0038, ft= 465 psi, Gf= 10 lb/in, and Lo=2.5 in. The characteristic length Lo is a 

parameter describing the typical dimension of concrete solids used in the model.  

Spandrel models were meshed using solid elements in a cubic shape with an 
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approximate side length of 2.5 in. (i.e., Lo=2.5).  

Reinforcing steel was modeled with 3D truss elements, as shown in Fig. 6.16, and 

metal plasticity models. The elastic modulus for reinforcing steel, with the yielding 

strength of 60ksi, was taken as 29000 ksi.  The elastic modulus of strands was taken 

28,500 ksi.  Prestressing force in strands (0.75×270=202.5 ksi) was applied as an initial 

condition to the truss elements representing the strands in the model.  The transfer length 

(assumed to be 20 in.) of a strand was also modeled by gradually reducing the cross 

section of the strand at one end. Truss elements representing rebar and strands were 

embedded into the concrete solid and relative displacements between concrete and steel 

was fully restrained. Tension stiffening was defined in the concrete damage plasticity 

model and describes the interaction between concrete and steel (i.e., bond-slip and load 

transfer). 

The spandrel simulations included reasonable boundary conditions for the tie-backs, 

deck-ties and bearing supports.  Tie backs and deck ties were modeled as linear and 

horizontal springs with stiffness values of 600 and 10000 k/in, respectively. These values 

are defined in a previous study by the author [98] concerned with the influence of deck-

tie and tie back stiffnesses on the behavior of spandrels. A simple support (vertical 

restraint only) was provided at one end of the spandrel whereas, at the mid-span, 

symmetric boundary conditions were introduced.  Double-tee loads acting on the ledges 

of L-shaped spandrels and in the cut-outs of pocket spandrels were evaluated in three 

different load levels. 

All spandrel beam models were analyzed with time-controlled static analysis 

procedure with large deformation formulation. After being deformed under the effect of 

prestressing force, each spandrel beam was first analyzed for the self-weight and double-

tee loads (acting simultaneously), resulting in the instantaneous response of the spandrel. 

Next, by sustaining these loads for the period of two years and implementing the EMM 

analysis procedure, the time dependent response of the spandrel beam was obtained.  
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(b) Pocket spandrel mesh 
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(b) Pocket spandrel mesh 

and reinforcement  
Fig. 6.16. Finite element mesh and reinforcement details for 48-ft spandrels  

6.9. Results of Finite Element Simulations 

6.9.1. Deflections of spandrel beams 

Precast and prestressed concrete spandrel beams exhibit complex deflection response 

including both vertical deflections and twisting deformations. Fig. 6.17 shows typical 

mid-span deflections of spandrels before and after the gravity loads are applied.  The 

dashed lines represent the undeformed shape of the spandrel prior to the release of 

prestressing strands and the application of the beam self-weight.  Under the effects of 

prestressing forces and the self-weight of the beam, the mid-span of the spandrel initially 

moves upward as shown in Fig. 6.17 (a).  However, loading from the deck beams 

produces twisting and vertical deflections in the opposite direction of the initial 

deflections under the prestressing and self-weight, as seen in Fig. 6.17 (b).  The bottom 

point moves laterally in the positive u direction, which is toward the outer face of the 

spandrel.  It is noted that the spandrel is laterally restrained by deck-ties located at the 

mid-height level.  The deflection of spandrel beams requires definition of the reference 

position by the totally undeformed shape indicated by dashed lines or the shape deformed 
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by the prestressing and self-weight in Fig. 6.17 (a).  In this study dashed lines 

representing the position of spandrel prior to the release of prestressing strands are 

considered as reference.   

(b) After loading(a) Before loading

u

v

 
Fig. 6.17. Deformed shapes of spandrel cross-sections  

Fig. 6.18 shows the results from finite elements (FE) analysis for baseline model 

L6008 (L-shape, 60-ft long, 8-in. wide).  Time-dependent deflections of various locations 

(i.e., top, bottom, middle and ledge, see Fig. 6.17) in the mid-span cross section are 

presented. Results are plotted for both lateral u and vertical v deformations.  Due to 

twisting of the spandrel, vertical displacements varied within the section. At the end of 

two years, the middle point moved 0.97 in. downward. The top and bottom points 

however had slightly different deformations, but the percentage of variation was less than 

5 percent. The maximum vertical deflection was computed as 1.1 in. at the tip of the 

spandrel ledge (13 percent greater than the mid-point deflection).  These deflections 

include contributions from prestressing (i.e., camber), self-weight, deck beam loads, and 

long-term effects (creep and shrinkage).  Since the spandrel was laterally restrained 

around the mid-depth of the cross section, zero lateral displacements occurred at this 

location. The bottom and top points moved laterally in the similar amount (0.55 in.), but 

in the opposite directions.  Computational results showed that the maximum displacement 

in the lateral direction is approximately one-half that in the vertical direction for the 60-ft 

L-shape spandrels as in the case of L6008.   

The results of model P6008 (pocket, 60-ft long, 8-in wide) for a time period of two 

years are presented in Fig. 6.19.  Similar to the deflection response of L6008, due to 
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twisting deformations, vertical deflections were different within the cross section at the 

mid-span. But such variations remained less than 5 percent.  The maximum vertical 

deflections for the mid point were computed as 0.85-in. at the end of two years when the 

position of the beam before the release of the strands was used as a reference.  Unlike L-

shape spandrel L6008, lateral deflections at the top and bottom points in the mid-span 

cross section of pocket spandrel, P6008, were relatively small (utop=0.11 in. and ubottom=-

0.11 in).  This is partly due to the fact that the loading eccentricity in pocket spandrels is 

less than that in L-shaped spandrels. The effect of the eccentricity on the spandrel 

response will be discussed in detail later. 

The pocket spandrel, P6008, initially moved upward 0.29 in. (vmid=-0.29 in.) under 

prestressing forces and self-weight, as seen in Fig. 6.19 . After the application of 

instantaneous service loads (DL+0.5LL), the mid-span section deflected 0.52-in 

downward (vmid=+0.23 in.). At the end of two years, the spandrel mid-span section had a 

final vertical position of vmid=+0.85 in., indicating that the additional deflection due to 

concrete creep and shrinkage was around 0.63-in. Therefore, the multiplier λ for 

additional deflection due to long-term effects can be estimated as 1.22 (=0.63/0.52) for a 

time period of two years.  Similar observations can be made for the L-shaped spandrel 

L6008; vmid=-0.11 before loading, +0.29 after loading, +0.97 in. after two years, 

indicating that spandrel deflects 0.4 in. downward due to the instantaneous loads and 0.68 

in. more due to long-term effects.  Thus, the multiplier λ for additional deflection due to 

long-term effects can be estimated as 1.73 (=0.68/0.4).    
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Fig. 6.18. Long-term deflections at the mid-span of the 60-ft-long and 8-in-wide L-shape 

spandrel (L6008) 
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Fig. 6.19. Long-term deflections at the mid-span of the 60-ft-long and 8-in-wide pocket 

spandrel (P6008) 

6.9.2. Geometric parameters: type, length and width 

The effect of geometric characteristics such as spandrel type, length and width on the 

long-term deflections was studied in Fig. 6.20 and Fig. 6.21  for all of the baseline 

spandrel models listed in Table 6.5.  Fig. 6.20 shows the vertical deflections computed at 

the mid-spans of these spandrels.  As expected, the longer spandrels, 60-ft series, had 

larger long-term deflections than the 48-ft series. Interestingly, for the same magnitudes 

of prestressing force (0.75fpu) and permanent loads (DL+0.5LL), L-shape spandrels 

experienced larger deflections than pocket-type spandrels, given that the pocket-type 

spandrels had smaller cross-sectional stiffnesses. For the 48-ft long spandrels, such 

deflection variations in different spandrel types were negligible. However, as seen in Fig. 

6.20, with the increase in spandrel span length from 48 ft to 60 ft, the effect of spandrel 

type on the vertical deflections becomes significant.   

Fig. 6.21 shows the long-term lateral deflection responses of baseline spandrels, 
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computed at the bottom of the mid-span cross-section. Spandrel type rather than spandrel 

length or width had the greatest influence on the lateral deflection response.  Due to 

smaller eccentricities, lateral deflections in the pocket spandrels were significantly 

smaller than those in the L-shape spandrels. Regardless of the spandrel type or span 

length, long-term lateral deflections at the end of two years typically increased around 

30-40 percent when the width of a spandrel decreased from 10 in to 8 in. For a certain 

spandrel type, the lateral deflections in 60-ft long spandrels were larger than those in the 

48-ft series. This was partly due to the fact that because the short-term lateral deflections 

were larger for the longer spandrels, so were long-term deflections.  

In order to define a long-term deflection amplification factor for a prestressed concrete 

member, a reference condition must be defined as noted earlier.  Using the configuration 

of the spandrels before the strand release and self-weight application as the reference, 

amplification factors were computed. These amplification factors are tabulated in Table 

6.6 for both lateral and vertical deflections for the baseline spandrel beams.  The 

positions of certain points in the cross-section at mid-span were evaluated at three 

different times immediately after the release of strands (RL), immediately after the 

application of the permanent loads (ST) and at the end of two years (LT).  At RL, the 

lateral deflections were negligible or small for all spandrels, whereas the vertical 

deflections varied and are not negligible. The short-term deflection is obtained by the 

total displacement from the point RL to the point ST. These displacements include the 

effects of permanent loads, but not strand release and self-weight.  The long-term 

deflection is obtained by the total displacement from the point ST to the point LT.  

Therefore, the multiplier λ for additional deflection due to long-term effects is calculated 

by the ratio of long-term deflections to the short-term deflection, (LT-ST)/(ST-RL). Thus, 

the multipliers λ for the vertical long-term deflections ranged from 1.22 to 2.04. The 

multipliers λ for lateral deflections in L-shape spandrel ranged from 1.31 to 1.44, 

whereas those in pocket-type spandrels ranged from 2.37 to 2.91.  
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Fig. 6.20. Vertical deflections at the mid-spans of baseline spandrels 



 157 

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800

Time, days

D
is
p
la
c
e
m
e
n
t,
 i
n
. 

L4808 L4809 L4810 L6008

L6009 L6010 P4808 P4809

P4810 P6008 P6009 P6010

 
Fig. 6.21. Bottom lateral deflections at the mid-spans of baseline spandrels 

Table 6.6. Long-term multiplier 

Beam

Mark RL ST LT λ RL ST LT λ RL ST LT λ
- in. in. in. - in. in. in. - in. in. in. -

L4808 0.02 -0.13 -0.35 1.41 -0.02 0.14 0.36 1.37 -0.03 0.14 0.45 1.90

L4809 0.02 -0.11 -0.29 1.39 -0.01 0.12 0.30 1.35 -0.03 0.13 0.42 1.97

L4810 0.01 -0.10 -0.25 1.37 -0.01 0.11 0.26 1.31 -0.02 0.12 0.40 2.04

L6008 0.04 -0.20 -0.54 1.44 -0.04 0.21 0.55 1.41 -0.11 0.29 0.97 1.73

L6009 0.03 -0.17 -0.45 1.44 -0.02 0.18 0.46 1.40 -0.09 0.26 0.90 1.78

L6010 0.02 -0.14 -0.38 1.42 -0.02 0.15 0.39 1.38 -0.08 0.25 0.85 1.83

P4808 0.00 -0.02 -0.07 2.55 0.00 0.02 0.08 2.40 -0.10 0.12 0.43 1.45

P4809 0.00 -0.02 -0.06 2.64 0.00 0.02 0.07 2.47 -0.08 0.11 0.41 1.53

P4810 0.00 -0.02 -0.06 2.75 0.00 0.02 0.06 2.53 -0.07 0.11 0.39 1.61

P6008 -0.03 -0.05 -0.11 2.91 0.02 0.05 0.11 2.87 -0.29 0.23 0.85 1.22

P6009 0.00 -0.03 -0.10 2.38 0.00 0.03 0.10 2.37 -0.24 0.22 0.81 1.28

P6010 0.00 -0.03 -0.09 2.47 0.00 0.03 0.09 2.42 -0.21 0.21 0.77 1.35

RL= immediately after release of strands

ST= immediately after the application of permanent loads

LT= at the end of two years 

λ= Long-term amplification factor =(LT-ST)/(ST-RL)

Lateral position for the top Lateral position for the bottom Vertical position for the center
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6.9.3. Concrete curing process 

The previous sections have described in detail the deflection response of baseline 

spandrel models for a variety of geometric characteristics.  However, the same concrete 

curing process (i.e., moist curing as shown in Table 6.5) was used in all baseline models.  

The present section discusses the variation of lateral deflection results when the steam 

curing of concrete is used.  For this purpose, the creep and shrinkage behavior of concrete 

in L6008 and P6008 models was modified by introducing the steam-curing properties. 

Table 6.3 shows the correction factors for steam cured concrete, based on the “high level” 

of long-term effects (i.e., 1.01 and 0.97, respectively).  For creep and shrinkage 

coefficients because the correction factors for steam curing are smaller than those for 

moist curing, the lateral deflections computed for the L-shape spandrel (L6008) are 

slightly smaller in the case of steam curing, as seen in Fig. 6.22. In addition to this, the 

effect of curing method on the lateral deflection response of the pocket-type spandrel is 

negligibly small.  
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Fig. 6.22. Bottom lateral deflections at the mid-spans for different curing methods 

6.9.4. Level of long-term effects 

The baseline models relied on the “high level” of long-term effects, which is a 

conservative assumption.  In this section, the variation of lateral deflection response of 

spandrels was evaluated for other levels of long-term effects.  For this purpose, the 

spandrel models, L6008 and P6008, were modified by including low and medium levels 

of long-term effects.  The lateral deflection results are plotted in Fig. 6.23.  For both L-

shape and pocket type spandrels, lateral deflections decreased 40 to 50 percent at the end 

of two years when the long-term level changed from high to low. When the level of long-

term effects was changed from the high to medium level, the magnitude of long-term 

lateral deflections typically reduced 30 to 40 percent.   
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Fig. 6.23. Bottom lateral deflections at the mid-spans for different long-term effects 

6.9.5. Magnitude of double-tee loads 

All baseline models (Table 6.5) were subjected to the same instantaneous load, 

DL+0.5LL, sustained for two years in addition to spandrel self-weight and prestressing 

forces.  In this section, lateral deflection responses of spandrels were investigated for 

different loading cases. In one of the loading cases, the full live load was sustained along 

with the dead load (i.e., DL+LL).  In another loading case, only dead load was applied 

(i.e., DL).  Fig. 6.24 shows the results from L6008 and P6008 models under the loading 

cases described. As expected, the long-term deflections increased when the sustained part 

of live load changed from 50 percent to 100 percent.  The increment of lateral deflections 

at the end of two years was around 30 percent for L-shape spandrel, L6008, whereas the 

increment was approximately 10 percent for the pocket type spandrel model, P6008.  
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This result shows L-shape spandrels are more sensitive to a change on the magnitude of 

loads than pocket-type spandrels primarily because they typically have much large 

eccentricities of double tee loads than the pocket spandrels. 

    Fig. 6.24 also shows that there is a significant difference in the lateral deflection 

responses of L-shape and pocket spandrels when they are subjected to the self-weight and 

prestressing forces only.  For such a loading case, the bottom of the L-shape spandrel 

moved toward the double-tees (negative deflection in Fig. 6.24) at the beginning of 

loading and the deflections continued increasing in the same direction due to the long-

term effects. However, the direction of lateral displacements at the bottom of the pocket 

spandrel was not affected by the loading condition.  This difference in responses arises 

from the fact that the L-shape spandrels are subjected to asymmetric bending under the 

prestressing forces.  
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Fig. 6.24. Bottom lateral deflections at the mid-spans for different sustained loads 

6.9.6. Loading eccentricity 

Baseline spandrel models, listed in Table 6.5, were loaded at the half distance of their 

support widths, s=0.5c. The sensitivity of spandrel deflections to different loading 

eccentricities was also investigated by modifying the baseline models L6008 and P6008. 

Additional models were generated and analyzed for values of s equal to 0.75c and 1.0c.  

The support width s was equal to 8 in. for L-shape spandrels and 6 in. for 8-in wide 

pocket spandrels, as shown in Fig. 6.11.  Assuming the eccentricity as the distance from 

the centerline of the spandrel web to the loading location, the value of the eccentricity for 

the loading at 0.5c is equal to 8 in for the 8-in wide L-shape spandrel (0.5b+0.5c=4+4=8 

in.) and 1 in for the 8-in wide pocket spandrel (0.5b+0.5c-c=4+3-6=1 in.).  Table 6.7 

shows the values of eccentricities for other loading locations 0.75c and 1.0c.  Shifting the 
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loading location from 0.5c to 1.0c increased the eccentricity 1.5 times in the L-shape 

spandrel and 4 times in the pocket-type spandrel. 

Table 6.7. Loading eccentricities  

s =0.5c s =0.75c s =1.0c

L-shape 8 8 8 10 12

Pocket 8 6 1 2.5 4

Spandrel

type

Web width

 b  [in.]

Support 

width, c [in.]

Eccentricity e c  for 

 

The load point locations s=0.5c to 0.75c are representative of realistic loading. The 

loading at s=1.0c seems impractical, but corresponds to the most extreme case from the 

lateral deflection standpoint.  Fig. 6.25 shows the lateral deflection results from the FE 

analyses of L6008 and P6008 models with various load point locations, s=0.5c, 0.75c, 

and 1.0c. Clearly, the pocket-type spandrels were more sensitive to the level of loading 

eccentricity than L-shape spandrels. The amount of eccentricity considered for the L-

shape spandrels is always larger than that in the pocket spandrels. However, for the most 

extreme case 1.0c, the pocket spandrel exhibited larger short-term and long-term 

deflections than the L-shape spandrel.  This was partly due to the fact that the pocket 

spandrels have less sectional stiffness. Similarly, the long-term vertical deflection 

responses for various loading eccentricities were plotted in Fig. 6.26.  As expected, the 

variation of eccentricity changed the vertical deflections in the L-shape spandrels slightly, 

while the variation was negligibly small for the pocket spandrels. 
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Fig. 6.25. Bottom lateral deflections at the mid-spans for various eccentricities ec 
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Fig. 6.26. Vertical deflections at the mid-spans for various eccentricities 

6.10. Estimating Long-term Deflections 

The ACI 318-08 document provides a simple method for predicting additional 

deflections due to creep and shrinkage of flexural members. In this method, additional 

deflections can be determined by multiplying the instantaneous deflections by a factor λ 

unless a rigorous analysis method is implemented. This multiplier is defined as a function 

of another multiplier ξ and the compression reinforcement ratio ρ'. The values for 

multiplier ξ are tabulated for various durations of loading. The compression 

reinforcement reduces long-term deflections. However, for prestressed concrete spandrel 

beams, the effect of compression reinforcement can be ignored conservatively and hence 

the multiplier λ will be equal to ξ.  
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Using the procedure described in Section 6.9.2 in order to compute the long-term 

multipliers for the baseline spandrel beams at the end of two years, the multipliers for 

various durations of loading were obtained and plotted as seen in Fig. 6.27.  The results 

indicate that the pocket type spandrels have larger long-term multipliers than L-shape 

spandrels.  The ACI multiplier curve is closer to the set of multiplier curves of L-shape 

spandrels than those of pocket spandrels.  For each type of spandrels, an idealized 

multiplier curve was established. Table 6.8 tabulates the values of the long-term 

multipliers from the ACI 318 document and proposed values for pocket and L-shape 

spandrels.  Factoring these immediate deflections by the proposed long-term multipliers 

gives additional deflections due to long-term effects. 
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Fig. 6.27. Multiplier for additional deflections due to long-term effects   
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Table 6.8. ACI 318 and proposed multipliers λ  

L-shape Pocket

1 0.60 0.70 1.40

3 1.00 1.00 1.90

6 1.20 1.10 2.20

12 1.40 1.30 2.47

18 1.55 1.35 2.60

24 1.65 1.40 2.70

ACI 318

values

Proposed values

Month

 

6.11. Acceptability Criterion  

In the pertinent literature or specifications, great effort has been expended for 

estimating and limiting vertical deflections in prestressed concrete spandrel beams.  

Maximum permissible vertical deflections have been specified to safeguard against the 

damage in supported or attached nonstructural elements (i.e., the limit of L/360 for 

immediate deflection due to live load). However, mention has not been made of the 

limitation of lateral deflections in prestressed concrete spandrel beams.  For this reason, 

the long-term deflections computed in this study cannot be checked against a specified 

limit. However, the results obtained from finite element analyses of various spandrel 

beam models showed that the maximum total deflection (i.e., the sum of short-term and 

long-term deflections) is always less than L/500, above which the appearance of the 

spandrel beam might be impaired.  

6.12. Conclusions 

The use of high strength concrete and prestressing steel has allowed precasters to 

produce more material efficient precast and prestressed concrete structural members.  

This “next generation” of spandrels with thinner webs and spanning longer distances 

spandrels spanning longer distances has began to be utilized in the precast industry in the 

last few years due to their efficiency for reducing the number of columns required in a 

precast building.  Comparing to the “current generation” of spandrels, such slender 

spandrels are, however, prone to larger deflections under service loads.  Serviceability 

requirements rather than stress limitations may control the design in extreme cases.  



 168 

Moreover, since spandrels are generally subjected to eccentric loads from deck beams, 

both vertical and lateral deflections ought to be considered for serviceability design 

checks. Thus, predicting long-term deflections for these members becomes necessary. 

For this purpose, first, a series of pocket and L-shape spandrel beams were designed 

for various span lengths (48 and 60 ft) and widths, (8, 9 and 10 in.). Next, three-

dimensional finite element models of these spandrels, including all reinforcement and 

prestressing strand details, were generated using commercial software ABAQUS. Creep 

and shrinkage behavior in concrete were defined using the ACI 209 model. Lateral 

deflections at the bottom and vertical deflections of the mid-span sections were computed 

after two years of sustained loads.  Major findings were as follows: 

• The top of the spandrel section usually moves laterally toward the double-tee 

beams, whereas the bottom moves outward (i.e., away from the double tees). 

• The maximum lateral deflections in the next generation (60-ft long) spandrel beams 

at the end of two years for DL+0.5LL and the eccentricity of 0.5c was less than 1 in. 

Even though no limits have been specified for lateral deflections in the pertinent 

codes, the maximum lateral deflection is less than L/500 in all cases.  

• Increasing the thickness of the spandrel from 8 in. to 10 in. reduced the long-term 

deflections around 30 to 40 percent. 

• Concrete curing procedure (i.e., moist or steam curing) affected long-term lateral 

deflections, but only slightly. 

• Ingoing from high to low levels of long-term effect reduced the long-term lateral 

deflections 40 to 50 percent. 

• L-shape spandrels usually exhibit larger lateral deflections than pocket type 

spandrels provided that loading location is around 0.5c to 0.75c.   

• Short-term and long-term lateral deflections in pocket type spandrel beams were 

more sensitive to the amount of loading eccentricity than those of L-shape 

spandrels. 

This study pioneers in the evaluation of long-term behavior in precast/prestressed 

concrete, L-shape and pocket-type spandrels. Experimental study is necessary in order to 

verify time-dependent lateral deflection response of spandrel beams and the calculations 
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presented here.  
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6.14. Notation 

Ec  = modulus of elasticity of concrete 

εc = concrete strain 

εo = strain corresponding to the compressive strength of concrete 

εp = strain at which the irreversible deformations initiates in concrete 

εcu = concrete compressive strain at ultimate 

εtu  = ultimate tensile strain in concrete 

εc(t) = total strain in concrete at time t 

εins = instantaneous elastic strain in concrete 

εcr(t,to) = creep strain at time t due to loading at time to 

εsh(t) = shrinkage strain at time t 

εshu = ultimate shrinkage strain 

f’c = compressive strength of concrete 

fr  = modulus of rupture of concrete 

ft  = tensile strength of concrete 

fpu = tensile strength of strand 

σo = sustained stress 

vu  = ultimate creep coefficient 

v(t)  = creep coefficient at time t 

γc = correction factor for creep 

γsh = correction factor for shrinkage 

utu  = ultimate cracking displacement at which stress is equal to zero 
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Gf = fracture energy for concrete 

Lo  = characteristic crack length 

α(t) = thermal expansion coefficient at time t 

T(t) = temperature at time t 

Eeff =effective elastic modulus of concrete 

P = concentrated load applied (i.e., double-tee loads) 

L = span length of spandrel 

b = web width of spandrel  

h =depth of spandrel 

c = support width on spandrel ledge (or pocket) 

s = distance from inner face of spandrel web to loading point 

ec  = eccentricity, distance from centerline of spandrel web to loading point 

u =lateral displacement 

v =vertical displacement 

umiddle =lateral displacement at mid-depth of spandrel 

vmiddle =vertical displacement at mid-depth of spandrel 

utop =lateral displacement at top of spandrel 

vtop =vertical displacement at top of spandrel 

ubottom =lateral displacement at bottom of spandrel 

vbotom =vertical displacement at bottom of spandrel 

λ = multiplier for additional deflection due to long-term effects 

P = concentrated load applied (i.e., double-tee loads) 

RL = position immediately after release of strands     

ST = position immediately after the application of permanent loads   

LT = position at the end of two years 

ξ  = time-dependent factor for sustained load 

ρ' = compression reinforcement ratio 
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