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An Answer to Littlewood's Problem on Boundedness

for Super-Linear Duffing's Equations

Tongren Ding

(Department of Mathematics, Beijing University)

Abstract We consider the super-linear Duffing's equation
x" + g(x) = p(t) , (%)

where p(t) is a continuous and periodic function in t€é R, and g(x)
is a continuously differentiable function in x € R, satisfying the
super-linear condition: g(x)/x =» 00 , as x =>* co. The purpose of
this paper is to prove the following theorem, which leads to an ans-
wer to Littlewood's problem on boundedness for super-linear Duffing's
equations,

Theorem Every solution of the super-linear Duffing's equation (¥)
is bounded for t é€R.

I) Introduction

The long-time behavior of solutions for a periodic Hamiltonian sys-
tem can be very intricate, and its study challenges one's attention .
For example, J. Littiewood [1]), L. Markus [2], and J. Moser [ 3] propose
the consideration of the Duffing's equation

x" + g(x) = p(t) , (1)
where p(t) is a continuous and 21 -periodic function in té€ R, and g(x)
is a continuously differentiable function in x€R .

The so-called Littlewood's problem on boundedness consists of the

following two parts:
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Part A Every solution of the Duffing's equation (1) is bounded for
t€R, if the super-linear condition

I+
3

(a): g(x)/x —=» 00, as x —>
is satisfied;

H

Part B Every solution of the Duffing's equation (1) is bounded for

t €R, if the sub-linear condition

(b): g(x)/x ~» 0, g(x)sgn(x) —»00 , as x —> 400,
is satisfied.

There are a few works contributing to some special cases for Part A,
while there is nothing done even in a particular example for Part B. We
will give here a quick survey for the results related to Part A,

In 1976, using the Moser's twist-theorem , G. Morris [4] proved that

every solution of the Duffing's equation

x" + 2x° = p(t) ,
is hounded for t€ R, where p(t) is a periodic function in té€ R. Recently,
R. Dieckerhoff and E, Zehnder in a preprint [5] proveda in a similar way
that every solution of the the equation

x4 k2 3 jiz p‘_j(‘c)xJ =0,

is hounded for t € R, where pj(t)(J =1, #%+,2n) are 27 -periodic and
sufficiently smooth in t € R. The present author in a recent paper [6]
proved an exlstence theorem for Lagrange's positively and negatively
stable continuums passing through a given fixed-point of an area-preser-
ving mapping, and then applied it to prove the following result: Every
solution of the Duffing's equation (1) is bounded for t€&€ R, if the super-
linear condition (a) holds and p(t) is evenfor, p(t) and g(x) are odd].
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The purpose of this paper is to prove the following theorem, which
leads to an answer to Littlewood's problem on boundedness for super-
linear Duffing's equations.
Theorem A Every solution of the Duffing's equation (1) with the

super-linear condition (a) is bounded for t €R.

The method used in this paper is the same one developed in (6] with
a few of modifications and simplifications, and it can be applicable to
a wilder c{ass of periodic Hamiltonian systems of second order. However,
compared.'vtthe Moser's twist-theorem used in [4] and [5], our method

provides us with less information about the periodic solutions and the

almost periodic solutions for the equation in the consideration.

II) Preliminaries

We first introduce some notations and some lemmas.,

Denote by B, the open disk in the (x,y)-plane with radius r centered
at the origin, and denote its boundary by Sr or aBr , where 9 1is the
boundary operator for sets in R°. Let A(c,d) be the open annulus between
S, and Sy (d>c>0). And let the closure of a set M be denoted by M.

Let

X=rcos® , y=rsine, (r20).
Then denote by L, the vertical line r = a in the Cartesian (r,8)-plane,
and denote by T(c,d) the open strip between L, and Ly (d>c) .

and A(c,d)

Therefore, L, and L, and T(c,d) are the liftings of S, » Sy

to the (r,8)-plane, respectively.
Lemma 1 Let E be a connected open set in the (x,y)-plane with
Eflsc £ D, ENsy, £ 8 , (a>c>0) ,

and lat ] be a connected closed set connecting Sc and Sd with
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InEzﬁo
Then there exists a connected closed set J in OQENA(c,d) connecting
(This Lemma can be proved in the same way as employed in the proof

of the Proposition 3 in (6], and its proof is thus omitted here.)

Let C* be a continuous and simple curve in T(c,d) connecting L. and
Ly (c<d). Then C* separates the open strip T(c,d) in two disjoint

simple and unbounded domains; i. e. ,

T(c,d)\ C* = D_(C*)U Dy(C*) ,

where Da(C*) is a simple domain extending to infinity in the positive
direction along the 8-axls in T(c,d), and D, (C*) is a simple domain
extending to infinity in the negative direction along the 6-axis in
T(cyd). For simplicity, a set M in T(c,d) is said to bec above C* (or
below C*) if MCIDa(C*) holds (or,MCZDb(C*) holds) . Hence, Da(C*) is
is above C*, and Db(C*) is below C*,

A set M in T(c,d) is said to be bounded above (or, below) if M is
below (or, above) a continuous and simple curve C' in f(c,d) connecting
Lc and L, .

Let Q be a simple domain in T(c,d) with

dq = MUPUN ,
where M, P and N are disjoint, P is a connected closed set in T(c,d),

MCcT(c,e) and NCT(e,d) are continuous curves (c<e<d).

Lemma 2 Let Q be defined as above. Then we have:
(1) If M and N are bounded above, and P is below C*, then any
point
pELLND,(C*)
does not belong to Q ;
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(ii) If M and N are bounded below, and P is above C*, then any
point
PE Ly Dy (C)
does not belong to Q .
Proof We only prove the conclusion (i), and omit the proof of (ii)
since it is similar to that of (i). |
In the case of (i), we think of P as the top boundary of Q, M as the

left boundary of Q, and N as the right boundary of Q. It follows that

(-] o0
* = U
ANCY = (fi1 %, ) VU Gy i)

where Qa,j is a simple domain (or an empty) above C* (j=1,2,-' »), and
Qb,k is a simple domain (or an empty) below C* (k=1,2,:+ ).

Hence, any point p in Da(C*) does not belong to Qb,k (k=1,2, 7+ - ).

Since P is below C*, then Qa,j is bounded by C*, M and N (j=1,2, - ).
Note that M and N are bounded above in T(c,e) and T(e,d), respcclively.
It follows that for any j, Qa,j is a bounded domain in T(c,e) or T(e,d).
Hence , any point p on Le does not belong to Qa,j (§=1,2, « - + ).
Note that any point p in D_(C*) does not belong to C*. It follows that

any point in Da(C*)f]Le does not belong to Q .

The proof of Lemma 2 is thus completed.

2 is said to be simply connected if for

A connected closed set M in R
any bounded open set in RZ, MIAECM " yields " ECF ",
Let
F: R —> R° ,

be a homeomorphism., A set K in R2 is said to be positively (or negatively)

stable for F in the Lagrange's sense if for any point p in K the sequence

'{Fk(p)} R for k€z" , (or, for k€z") ,
is bounded .
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Now, we state the following basic Lemma, which was proved in 6] .

2

Lemm If F : RZ——> R, is an area-preserving homeomorphism, then

for any given fixed-point z, of F, we have a positively stable sct K;

= K;(zo,F) and a negatively stable set K; = K;(ZO,F),(r;> lzol), with
1%) K; and K; are simply connected closed sets in Er ;
2*) Both K; and K; pass through z, and intersect S_ ;

3%) K; and K; are positively and negatively invariant with res-
pect to F; i. e. ,

+

+
F(Kr)C: Kr ’

-1,.,- -
F7U(KD) C KL 5

+ + -
L*) K. CK, and KrCKs , for any s>r .

III) Twist Property

It is well-known that the Duffing's equation (1) is equivalent to a

Hamiltonian system
x' = H&(t,x,y) sy y!' = - H&(t,X,Y) ’ (2)

where the Hamiltonian function H is defined by

X
H(t,x,y) = 3y2 +SO g(x)dx - p(t)x , for (t,x,y)€R> .

Let (u,v)€ R%, and let
x = x(ty,u,v) , y =y(t,u,v) , (2)
be tne solution of (2), satisfying the initial condition:
x(0O,u,v) = u , y(O,u,v) = v .

From now on, assume the super-linear condition (a) is satisfied. Then
it can be shown that the solution (3) exists for t€ R, and it is conti-

nuously differentiable in (t,u,v)E‘Rz. Moreover, the Poincare map
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F: o (uw,v) > ( x(27 ,u,v), y(2r ,u,v) ) ,
1s an area-preserving diffeomorphism, and possesses an infinite set of
fixed-points extending to infinity in Ra, (see [7]).
Set

u

1
’-S
Q
(o]
9]
©
<
i

r.sine , (r20) ,
and put (3) in the form

X

1]
I}

PcosQ} s Y ()sinqb R

where

Q = P(t,r,e) = N/ xe(t,u,v) + ya(t,u,v) .

Hence, P(t,r,e) is continuous in (t,r,8) € RX [0, 0O)XR and 27 -periodic
in 8, It is not hard to prove that there is a positive constant a, such
that P(t,r,@))O, whenever r>a, and (t,9) € [O,Z}ZJX R . In this case,

(2) is equivalent to the following system

{()' [ecosd) - g( Pcos(p ) + p(t)J sing
4)'

»-QLg( Pcos¢ )cosd - sirF¢ +é—p(t)cos¢ .
It follows that Q(t,r,e) and ¢(t,r,e) are continuously differentiable

1]

in t€ [0,2T], r€ (a,, 00 ) and 6 €R, with p(0,r,6) = r and $co,r,0) =

8. Moreover, we have
¢(t,r,0+2 ) = §(t,r,8) + 27T .

Hence, for r>a the above Poincare map F can be written in the form

[o) H
6 = pm,r,0) , 4:, =96 + h(r,0) , (4)

where 9(2n;,r,e) and h(r,8) = ¢(2ﬂ:,r,6) - 0, are continuous in (r,8)
€ (a, » ©0) X R, and 27T -periodic in 6 €R .

The following Lemma 4 is just the Lemma 4.3 in [7) , which expresses
the twist property of the Poincare map F for the super-linear Duffing's

equation (1) .
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Lemma 4 Assume the super-linear condition (a) holds. Then, for any

positive integer m, there is a constant ajs (a]‘> ao), such that

h(r,8) < - 2myt ,

whenever r>a, and 6 €R .

IV) Main Theorem

Now we are in a position to prove the following main theorem of this

paper .

Theorem A If the super-linear condition (a) is satisfied, then every

solution of the Duffing's equation (1) is bounded for t€R .

Proof Using Lemma 3, we have

k! = K;(zo,F) » KJ = KJ(3,F) ,

+
r r
where F is the Poincare map of (2) with (a), and z, is a fixed-point of

It suffices to prove that for any constant d >0, there is a constant

C, [c) max(d, |z4|) ) , such that
+ -
B, € K. NK; (5)
holds.

(In fact, it follows from (5) that
+ e
F(By) C (k) C K C B, ,
holds for k€2z', and
F*(B,) C F*(X])C K] CB_ ,
holds for k€ Z~, Hence, for any point (u,v)eBd , the solution (3) of

the system (2) is bounded for t€ R . Since d is arbitrary, we arrive at

the desired result of Theorem A .)
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In order to prove (5), we first claim that for any constant d >0,
By C K7 (5")
holds for some constant c¢c> 0O ,
The proof of (5') is rather long, and thus we will devide it into the
following seven steps.
Step 1: Assume the contrary; i. e., (5') is false. Then there is a

constant r (r0;>(z0|), such that

O,
+
(Br\ KN Bro D, for r>rg (6)
Without loss of generality, assume
where a, is a constant chosen in III).
Now, choose constants r, and r, ,(ro<:r]<fr2), satisfying
B. - FTHr])C: B. . (7)

2
Since F possesses infinitely many fixed-points extending to infinity in
2

(o)

R, we can take a fixed-point Z1s with sufficiently large ]z]]. Hence,
without destroying (7), we can take r, = )z1| , and thus we have
z, € S .
1 T
Then we get a constant
h, = max |h(r,,0)| , for 6€R. (8)

Let m* and m be two positive integers satisfying
2Xw* > hy y,  m > m* + 2, (9)
Using Lemma 4, we get a constant d2 such that
h(r,8) £ =-2m7t , for r;d2 , O€R , (10)
Moreover, we can take the above d2 s together with

d, > r, and }a.rac: F(Eda) , (11)
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and a fixed-point
z, € S
2 d2 .
Now, choose constants d; and d, (dp < dy < d,) satisfying

B, C B, ) B, . (12)
d, d, d,
Step 2: Set
00
B, \ kK = U E
do do i=1 i’

where Ej C By is a simple domain (or an empty set ), with
o)

EiﬂEJ.:ﬂ, for i £ J e
It follows from (6) that there is at least one simple domain, say I, for

definiteness, satisfying
B NS, AP

Since K is a simply connected closed set in B intersecting S, , then
do do dg

A, = (B, N S, )\ K|
1 1 d dg

is a non-degenerate open arc of Sd « Note that E] is a simple domain .
o]

Then there is a continuous and simple curve
C : z = z(t) , o< t<1) ,
in (E,U A,) N A(r.,d_), connecting S, and S; . It follows that
1 1 0’0o ro dO

CNKy, =0 . (13)
(0]

Perturbating C slightly if necessary, we can assume that C does not pass

through the above-chosen fixed-points z, and z, .
Step 3%: Set
z2(t) = (p(t)cose(t), p(t)sin@(t) ) , (0<€ t £ 1),

where n(t) = |z(t)], (roéjg(t)]é d,). Then @(t) is dedermined up to 27,
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and

6=e(t) =e(t) +2jr , (jez),

where @ (t),(0<€t £1), is a single-valued continuous function with @, (o)

=0 (0% g, <2m).

o ?
Then, in the closed strip T(ro,do), we have an infinite number of

continuous and simple curves
C(J) : r = 9(t) y B =e,(t) + 237 , (0£t<),

(J€2), which are liftings of C. Note that for each j€ Z, C(j) is a

translation of C(o) along the B6-axis by a displacement 2j7t «+ Since KE

o]

is a connected set joining Sh and Sy , then from (13) we get
o) 0

¢ @ og, sor 143,

Therefore, C(J), C(3+1) ’ Lr and L, bound a unique simple and bounded
o o

domain v(J) in T(ry,d,), for each j€ Z. Note that v(3) is a translation
of V(O) along the ©-axis by a displacement 2j/t . Hence, we have

(r,0) € v83)  irr  (r,e-2jr) € v(®
Let

z, = (racospo,rasinpo) y 2y = (daco§§0,dzsiqgo ) .
Since C does not contain the fixed-points z, and z, , we can take PO and
¥, » such that
(o) (o)
(rpB) € VO, (@ g€ v,
It follows that for each j€ 2,
I A W IR TN ST
are liftings of Z, and Z5 in V(j) , respectively.

Step 4: Let

F* T(ao, ©0) > T(0, 00) ,
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be the mapping defined by (4); i. e., F* is a 1lifting of F restricted in

RZ‘\ﬁé . Since z, and z, are fixed-points of F, we get
0

pe(a{®) ) = 200 mE{) ) =LY, (15)
for some integers k and n .
Then we claim :
Kk >n+ L . (16)
In fact, from (4), (14) and (15), we have
2wk = h(r2 sPo) ’ 2nrn = h\dz, 50) .
Then, from (8) and (10), we have
2Tk 2 - h, , n < -m .
It follows from (9) that
k> -m*> -m+2 >n+2 ,
which yields (16), since k, m*, m and n are integers .

Step 5: It may be noted that

and

E.NK =p .
1 d,

Then, from Lemma 1, we get a connected closed set
JC (3 N K, ) NEr,d)
1 dg 12717 2

connecting Sr1 and Sy « From (13), we have
1

CnJ = ﬂ .
It follows that we have the 1iftings J'J) (j € 7) of J satisfying

where J(j) is a connected closed set joining L and L

r, d1 , for each j

€ Z., Note that
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J(O) c V(O) n T(I‘],d.') . i

Step 6: We want to prove
re (3¢ C p_(c®)) N p (e, (17)

which is a key point in our proof .

For this aim, we set
(o)

T(rysd)) \ 0% = G, U Gy U Gy »
where G , G, and Gy are disjoint, G, C V(O) is an open set (or empty),
G, C Da(C(O)) and G () Db(C(])) are simple and unbounded domains.
It can be seen that

_ (o)
aGa = Ma U Ja U Na ,
where Jéo)Cf J(o) is a connected closed set connecting L and Ly ,

1
(o),

and N CILd are open half-lines abcve C ;1. e, J(O) is
1 a 1 a

the bottom boundary of Ga’ M

Ma Cer

o 1s the left boundary of Ga,'and N_ is the

right boundary of Ga .
Similarly, we have
_ (o)
Gy, = MU Jy U Ny,
where the top boundary Jéo) C J(O) is a closed connected set joining

Lr] and Ld1 , the left boundary Mb C Lr1

are open half-lines below 0(1).

and the right boundary Nb<: Ld
1

Since Jéo) cC V(O) is above C(O), we have
(-1)
Z € Gb o

Similarly, we have
(1)
Z2 € Ga

Since (4) and (15) yield
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ng—]) - F*(Z](—])) , zén""]) = F*(Zé])) ,
then we have
Z$k—])€ F‘(Gb) , ZE(:on+]) € F*(Ga) . (]8)

Step 7: In order to use Lemma 2, we consider the simple domain Q =
F*(Gy) and its boundary
dQ = MUPUN ,
where

P = Fe(a®)), M= Fxm), N=FN) .
From (7) and (12), we have
QUP CZT(ro,do), MC T(ro,re), N CZT(dz,do) ,

where P is a connected closed set, M and N are continuous curves bounded

above., Note that My P and N are disjoint.

Since
(k=1) (k=1)
z, € Lraﬂ v ,
we have
2k ¢ ern Da(c(k"”) . (19)
If

pncE D kg, (.e., mr®n BV % g,
then we arrive at

FAOYNC £ .
Since F(J) C F(Kgo)c: Kgo, we get

Ki,NCAZ,
which contradicts to (13) . Therefore, we have
pnctD - g,
It follows that P is either above ¢ 5=1) or below c(K-1) .

Assume P is below C(k']). Then, using Lemma 2(i), we conclude that

any point
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does not belong to Q. It follows from (19) that ng-1) does not belong
to Q@ = F*(G,). However, this conclusion is in conflict with (18).

(k=-1)

Hence, P is above C « It follows that F*(J(O)) is above C(k'l),

since F*(J(°)y D> F*(Jéo)) =p, WO N ™) L g oang 7)) is a
connected closed set.

In a similar way, we can prove that F¥(3(°)) is velow c(™*2),

(n+2) is above C(k~]).

Hence, we have proved (17), which implies that C
It follows that (k-1) < (n+2). Hence, we have
k<n+ 3,
which is in conflict with (16). This contradiction proves the desired
conclusion (5'),

], and K; by K; , we can prove that

In a similar way, replacing F by F~
for any constant d>O0,

B‘d C KZ (5")

holds for some constant ¢ >O0.
From (5'),(5") and 4*) of Lemma 3, we then arrive at (5). Thus we have

proved Theorem A,
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