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SPECIFICATION AND ESTIMATION OF CONSUMER DEMAND SYSTEMS WITH 

MANY BINDING NON-NEGATIVITY CONSTRAINTS 

by 

Lung-Fei Lee and Mark M. Pitt(*) 

1. Introduction 

Household or individual microeconomic data offer important advantages for the analysis of 

consumer demand. Heterogeneous preferences associated with the age, sex, or educational 

attainments of consumers can be treated explicitly with micro data but cannot easily be incor

porated into aggregate demand analysis. However, household budget data, which typically con

tain information on the consumption of disaggregated commodities, often demonstrate a 

significant proportion of observations for which expenditures on some goods are zero. Standard 

approaches of specifying and estimating demand systems are inappropriate in this case. 

Recent papers by Wales and Woodland [18] and Lee and Pitt [11] have proposed methods 

for estimating demand systems with binding non-negativity constraints. The approach of Wales 

and Woodland is based upon the Kuhn-Tucker conditions associated with a stochastic direct util

ity function. They estimate a three-good model of the household demand for meat derived from 

a stochastic quadratic utility function. Lee and Pitt, taking the dual approach, begin with indirect 

utility functions and show how virtual price relationships can take the place of the Kuhn-Tucker 

conditions. They use this dual approach to estimate a three-good translog energy cost function 

with firm-level data (Lee and Pitt [8]). Both Wales and Woodland and Lee and Pitt have 

estimated only three-good examples because both of their stochastic specifications involve mul

tiple numerical integrals which enormously complicate estimation for models with more than 
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three goods. The generalization of these approaches to models with diaggregated commodities 

which are computationally tractable is a remaining practical issue. 

This article reports several approaches to the stochastic specification of direct and indirect 

utility functions which imply likelihood functions which do not involve multiple integrals and 

may thus solve the computational issue. One of the proposed approaches is used to specify and 

estimate--with the method of maximum likelihood--a seven-good food demand system involving 

many zero demands. 

Section 2 of this paper discusses the relation between the specification of stochastic terms 

in the utility function and model coherency with binding non-negativity constraints. Sections 3 

and 4 propose stochastic specifications that are both computationally tractable and coherent. The 

results of estimating a seven-good demand system which utilizes one of our specifications are 

presented in Section 5. Our results are summarized in Section 6. 
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2. Random Preferences and Utility Maximization: Model Coherency 

The econometric specification of consumer demand systems consistent with utility maximi

zation requires attention to the manner in which stochastic terms are introduced. The common 

practice of simply appending additive error terms to demand equations derived from determinis

tic direct or indirect utility functions may result in a stochastic specification which is not compa

tible with utility maximization. Stochastic demand systems consistent with utility maximization 

are more likely to result if the random terms are introduced into the underlying direct or indirect 

utility functions, as in the approaches of Pollak and Wales [13], McFadden [12], Burtless and 

Hausman [4] and Wales and Woodland [18] among others. In the case of demand systems with 

binding non-negativity constraints, stochastic specifications also need to satisfy certain 

coherency conditions set forth below. 

Let U (x ;e) be a utility function with m commodity arguments x l' ... ,xm' and a vector 

of stochastic terms e which is fully known by each consumer but is stochastic from the 

econometricians perspective. It represents unobserved differences in consumers which affect 

their demands. The utility maximization problem of the consumer is 

(2.1) max U(x;e) 

subject to v IX = 1 

and Xj <:: 0, i=I,"',m 

where v = p 1M is a vector of goods prices p normalized by income M. To guarantee unique 

solutions to (2.1), it is assumed that the utility function U is strictly increasing and strictly 

quasi-concave in x. It is furthermore assumed that U is continuously differentiable with 

respect to x. 
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Household-level consumption data with disaggregated commodities is often characterized 

by the nonconsumption of many goods by many consumers over a given reference period. 1 Let 

x'" = (x;, ... ,x;) be a vector of observed demand quantities ordered so that the first 1. goods 

are not consumed and all remaining goods (indexed ~+ 1 through m) are consumed. The 

optimal consumption vector x· is characterized by the Kuhn-Tucker conditions: 

. (2.2) au (x· ;£) _ AV' sO 
ax· ' , 

i-I' .. IJ -, ,A, 

aU(x·;t) -AV' =0 
ax. J 

J 

j =1+1,' .. ,m 

where A is the Lagrange multiplier corresponding to the budget constraint. The Kuhn-Tucker 

conditions can equivalently be expressed in terms of virtual prices as in Lee and Pitt [11]. Vir-

tual prices are those prices which exactly support a vector of demands. In the case of a vector of 

demands having zero demands for some goods (such as x·), virtual prices are derived by solv-

ing the consumer's problem (2.1) without the non-negativity constraints. Virtual prices can be 

written as 

(2.3) i=I,"',m 

Using virtual prices, the Kuhn-Tucker conditions can simply be rewritten as 

(2.4) ~. <v· ~,- , i-l···J. -, , 

j =/+1,'" ,m 

where v'x = 1. The use of these virtual price conditions is particularly advantageous in the dual 

approach to specifying demand systems subject to binding non-negativity constraints, as demon-

strated in Lee and Pitt [11]. 
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A functional form for U and a distribution for e needs to be specified prior to parametric 

estimation. The likelihood function for x· can then be derived using the relations (2.2) or (2.4) 

if the model is coherent. The structural equations (2.2) or (2.4) imply that the statistical model is 

essentially a simultaneous nonlinear equations model with multivariate limited dependent vari

ables. Amemiya [1] and, subsequently, Gourieroux, Laffont and Monfort [6] have demonstrated 

that for these models certain coherency conditions must be satisfied to guarantee that the implied 

distribution functions for the endogenous variables are proper distributions. The coherency con

ditions are, first, that for every possible value of the t vector, a unique vector of endogenous 

variables is generated by the structural equations; and, second, that for every possible vector of 

endogenous variables, there exists an e vector that will generate them from the structural equa

tions. 

For our problem, the monotonicity and strict quasi-concavity properties of the utility func

tion U (x ;e) guarantees the existence of a unique demand vector for every e vector. Satisfac

tion of the second coherency condition crucially depends on the manner in which the stochastic 

elements are introduced into the consumer's maximization problem. If there are m goods, typi

cally at least m -1 stochastic terms are introduced. Less than m -1 stochastic terms may sug

gest some degree of determinism in consumer demand. More than m-l stochastic terms may 

complicate the implied distributions for x· . More important than the number of stochastic terms 

is the manner in which they are introduced. A given stochastic utility specification, functional 

form and vector of normalized prices may not be able to generate demand quantities which cover 

the entire simplex {x I v IX = 1, x ~ OJ. Thus it is possible that an observed outcome x· is not 

realizable under this specification--violating the second coherency condition--and the likelihood 

for this observation will not exist. Satisfaction of the second coherency condition depends cru

cially on the functional form chosen for the utility function. 
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Attention to functional form is important not just to satisfy the coherency conditions. The 

presence of binding non-negativity constraints will complicate estimation if multivariate proba

bilities appear in the likelihood function. The following sections discuss how judicious choice of 

functional form and stochastic specification can allow for both coherency and tractable likeli

hood functions. 
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3. Stochastic Marginal Utilities: A Generalization 

In their treatment of demand syste,n estimation with binding non-negativity constraints, 

Wales and Woodland [18] begin with a random direct utility function. In their specification, each 

of the marginal utilities is composed of a deterministic component and an additive disturbance. 

The stochastic utility function is of the form U (x ;E) = V (x ) + E' x where V (x) is deterministic 

utility and E is a vector of random terms of the same dimension as x. 2 They assume E to be 

m 
multivariate normal and impose L Ej = ° as a normalization rule. Strictly speaking, the 

j=1 

assumption of multivariate normality is not compatible with the ~lobal monotonicity of the util-

ity function. Monotonicity requires that V (x) be strictly increasing and the random variables Ei 

be all non-negative. A random utility specification consistent with monotonicity is 

(3.1) 
m E' 

U(X;E) = VeX) + Le' Wj(Xi) 
i=1 

where V (x), Wi (Xi), i = 1, ... ,m are strictly increasing and strictly concave functions. Com-

putational tractability is achieved by assuming that the Ej' S are mutually independent and nor

mal.3 Since the utility function (3.1) is invariant under linear transformation, we can set a vari

ance of E (such as Em) to unity as a normalization.4 There may be other useful normalizations 

as well. Treating Wi (xi) as a general function, rather than a linear function as in Wales and 

Woodland [18], generalizes the approach by allowing for more functional forms, in particular, 

the class of additive utility functions whose usefulness is demonstrated in the empirical section 

of this paper. 

This random utility specification satisfies the model coherency requirements and implies a 

computationally tractable likelihood function for the model. Consider the general demand pat-

tern with quantity vector x· = (0, ... ,0, X i+ 1 ' ••. ,x~) where the first J goods are zero and 
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the remaining goods are positive. The virtual prices at x * are 

(3.2) i = 1,'" ,m-1 

The conditions (2.4) which characterize the optimality of x * are equivalent to 

Vj av(x*) E awm(x*) 
+e'" 

(3.3) e Ei ~ 
vm aXm aXm 

awj(x*) 
i -1 ... IJ -, ,~ 

ax· I 

and 

Vj aV(x*) E awm(x"') 
+e'" 

(3.4) e Ej = 
Vm aXm aXm 

awj(x*) 
j = /+1, ... ,m-I. 

ax· J 

Given x"', the range of values of £m which satisfy the second coherency requirement will be 

determined by the inequalities 

i = 1, ... ,m-l 

The feasible values of £m are, therefore, determined by 

[~ aV(x*) _ av(x*)] 
Vj aXj aXm 

(3.5) £m > In [max {D, '" 
aWm(x ) 

for i = 1,' .. ,m-l}] 

aXm 

where In D = -00 is understood as a conventional rule. Denote 
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i=l,"',m-l 

for Em satisfying (3.5) and let R (x .) be the expression on the right hand side of (3.5). As 

x; = (1- v 1+1 X j+1 - .,. - Vm-1 X~-l )/Vm , given the distributions EJ+l>'" ,Em-1 condi

tional on Em' the relations (3.4) imply a conditional distribution for x j+1 , ... ,X;-l' Let Ii 

and Fi be, respectively, the density function and the distribution function of Ei' Conditional on 

Em' the joint density function for x ;+1 , ... ,X;_l is 

where the Jacobian J (x· ,Em) is the determinant of the matrix 

aE(+l(X· ,Em) aE(+l(X· ,Em) 

axj+1 • • • • aX;_l 

• • 
• • 
• • 

aEm (x· ,Em) • • • • aEm-1 (x· ,Em) 

axj+1 aX;_l 

Since E1"", Em are mutually independent, the conditional probability, conditional on 

£1+1, ... ,£m (or equivalently, xA+1' ... ,X;-l ,Em), that the inequality conditions (3.3) hold is 

Hence the likelihood function L (x .) for the sample observation is 

With an independent sample of size N, the likelihood function for the whole sample will be 
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(3.8) 
• • N • 

L (x l' ... ,XN) = II L (Xi ). 
i = 1 

The likelihood function is computationally tractable as it involves effectively a single integral 

for each sample observation. In the empirical section of this paper, we apply this specification to 

the estimation of a linear expenditure system. 
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4. Random Preferences: Translating-and Scaling 

The stochastic elements in our util;ty function may represent unobservable characteristics 

of consumers. Translating and scaling are two familiar methods for introducing consumer 

characteristics into demand systems (see Pollak and Wales [14]). Below we consider these pro-

cedures in the context of both an additive utility function and an indirect utility function with 

binding non-negativity constraints. 

a. Translating 

The translating procedure consists of appending additive terms to the consumption vector 

elements in the utility function. In the case of binding non-negativity constraints, if the utility 

function is additive, this procedure provides tractable likelihood functions. Consider the follow-

ing random specification of an additive utility function 

(4.1) 
m £ 

U(x ;E) = L Wj(Xj + e I) 
j=l 

where the functions Wj (.), i =1 , ... ,m, are strictly increasing and strictly concave and E1, ... , Em 

are mutually independent. Consider the general consumption pattern with demand quantities 

x * = (O, ... ,O,x ;+1 , ... ,x;). The virtual prices at x· are 

(4.2) i=I, ... ,m 

The conditions (2.4) are 

(4.3) i=I,···,1 

and 
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(4.4) 
aWj(Xj* +e£l) Vj aWm(x; +e£..) 

aXj = vm aXm 
j=J.+l, ... ,m-l 

T . l·f . d \II () aWj (x) . 1 S· W ( ) . . I o snnp 1 y notatIon, enote I j X = ax ' I = , ... ,m. mce j x IS a strIct y concave 

function, 'P j must be a strictly decreasing function. Hence it follows from (4.3) and (4.4) that 

;=I, ... ,J 

and 

j=/+l, ... ,m-l 

Given x * , the corresponding values of Em' such that the equation (4.4)' holds, are determined by 

the inequalities 

The feasible values of Em are, therefore, determined by 

* (4.5) Em > R (x ) 

where 

* -Xm 

j=/.+l, ... ,m-l 

for j =J+l, ... ,m-lJ] 

Since the set {Em I Em > R (x * )} is nonempty, the model is coherent. Denote 

j=/.+I, ... ,m-l 

for the values of Em satisfying (4.5), and 
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i=1,···,1 

The likelihood function for this observation x· is 

b. Scaling Specification 

The scaling procedure consists of appending multiplicative terms to the consumption vector 

x in the utility function. The random utility function is specified as 

where the function W is strictly increasing and strictly concave on all its arguments, and the ran-

dom variables el' ... ,em are mutually independent. Consider the general consumption pattern 

with demand quantities x· = (0, ... ,0, x ~ 1 ' •.• , x~). The virtual prices at x· are 

aw (0 0 £1+1 • £". .) , ... "e x 1+1' ... ,e xm £0 
vm ------:-"'------- e I aXi 

(4.11) ~i = -a-W-(O--O-£-"+-I -.----£".-.-)--
, ... "e xJ.+l"" ,e xm £ 

-----~:....------ e '" aXm 

i=1, ... ,m 

where aw (. )/axi is the partial derivative of W with respect to its i th argument. To simplify nota-

. d \II (_. -) - aw (0 0 £1+1· £", .) a h _. _. • non, enote T i X ,e - , ... "e x 1+1, ... ,e xm I 'Xi w ere x - (x 1+1" .. ,xm) and 

"£ = (e1+1' ... ,em)' The conditions (2.4) for the optimality of x· are 

.- .-(4.12) ei :sIn Vi -In vm + In '¥ m (x ,e) -In '¥j (x ,e) + em i=1, ... ,£ 

and 
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_.- -- _.-
(4.13) Ej =lnvj -lnvm +In'l'm (x ,E)-ln'l'j(x ,E)+Em j=P+I, ... ,m-1 

The equations in (4.13) are functions of Xi+1' ... ,X~_l and E,+1, ... ,Em but not E1' ... ,Ei' The 

model coherency requirement will be satisfied if values of E,I+1' ... ,Em exist such that the equa

tions in (5.4) are satisfied for any given x· . A complication is that E,f+1' ... ,Em-1 may appear 

nonlinearly on both sides of the equations, and hence there is no guarantee that this stochastic 

specification may not restrict the range of demand quantities. Coherency depends on the specific 

functional form of the utility function W. Suppose that EJ+1' ... ,Em-1 can be solved from (4.13) 

as functions of x· and Em with values of Em on some range S CX·) which are denoted as 

Ej (x· , Em), j =9+ I, ... , m -1. The likelihood function for x· will then be 

where 

i =I, ... ,/. 

c. Indirect Utility with Scaling 

It is apparent from the above discussion that both scaling and translating are useful methods 

to introduce consumer characteristics into demand systems derived from additive utility func-

tions. The scaling method may be more advantageous than translating when demand equations 

are derived from an indirect utility (or cost) function since it does not depend specifically on the 

form of the indirect utility function except that the coherency conditions be satisfied. 

Corresponding to the utility function (4.10), the indirect utility function V(v ;E) has the form5 

where H(p)=max{W(Y)lp'y = I}. The notational demand system corresponding to V(v;e), 
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derived from Roy's identity, is 

i=I, ... ,m 

The dual approach specifies either the functional form of the indirect function H or the demand 

functions D j , i =1, ... ,m. The stochastic elements will then be incorporated multiplicatively in the 

functions (4.15) and (4.16). The derivation of the likelihood function proceeds as follows. Con-
. 

sider the consumption pattern with x· = (0, ... ,0, x i+ 1 ' •.. , x~) where Xj· > 0, j = 1 + 1 , ... ,m. The 

virtual prices ~i' i =1, ... ,1 for the first I. goods at x· are characterized by the following rela-

tions: 

_ J: -£1 J: -El -£1+1 -E", -£j 
(4.17) O-Dj("Ie ' ... '''Je ,vJ+Ie , ... ,vme )e i=I,···,1 

j=i+l, ... ,m 

The factors e -£j in (4.17) can be dropped. Firstly, solve the factors ~ie -£j, i=I, ... ,1 from (4.17) 

f . f (-EJ+1 -E".) as unctIons 0 v J+Ie , ... , Vm e , 

i=I,···,l 

Substituting (4.19) into (4.18), they imply 

(4 20) • - D (h h -£.1+1 -E",) -EJ . Xj - j 1' ... ' I' v I+Ie , ... , vme e, j=i+l, ... ,m-l 

which involves only the random variables £1+1' ... , £m. The regime conditions ~i ~ Vj, i =1, ... ,R 

become 

Suppose that the model is coherent and £1+1' ... , £m-l can be solved from (4.20) as functions of 

x ~, ... ,X~_1 and £m where £m has a range of effective values S (x·). Denote these functions as 
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i=1, ... ,~. The likelihood function for x· will be 

In practice, the difficulty of this approach lies in the derivation of the virtual price functions 

(4.19) and the equations £i (x • '£m) from (4.20). The primal approach is somewhat simpler in that 

the derivation of the virtual prices is straightforward for any specified direct utility function. In a 

preliminary paper, Lee [9] has shown that the linear expenditure and the translog indirect utility 

functions with the scaling specification provide computationally tractable likelihood functions. 

This approach is also useful in production analysis (see Lee [9]) and can be extended for the 

analysis of discrete choice models; see Haneman [7] and Lee and Chiang [10]. 
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5. Estimation of the Linear Expenditure System: The Demand for Food in Indonesia 

a. Stochastic Specification of the LES System 

To demonstrate this approach to estimating demand systems with many binding non-

negativity constraints, a linear expenditure system of food demand equations is estimated using a 

household expenditure survey from Indonesia. The linear expenditure system estimated is 

derived from a Klein-Rubin-Stone-Geary direct utility function of the form 

m 
(5.1) u(x) = L ai In(xi-13i) 

i=l 

where ai > O. The implied notional expenditure share equations are 

m 
(5.2) v·x· =v· A . +9·(1- "" v· A .) I I II-'I I ~} I-'} i=l, ... ,m 

j=l 

m 
where 9i = ai / L aj. Comer solutions (zero demands) can occur only if some of the parameters 

j=l 

13: are negative. Goods for which the corresponding 13i is negative are referred to as "inessential" 

because of the common interpretation of the l3's as representing subsistence or committed expen-

diture. 

Variation in tastes across consumers is introduced into the utility function (5.1) by treating 

the ai parameters as stochastic 

(5.3) a·=eE; 
I 

where the disturbances £i are mutually independent and are normally distributed 

N (Yi ,o{), i =l, ... ,m. Demographic variables are introduced into the demand system by treating 

Yi, the means of £i in (5.3), as linear functions of demographic variables. Since the additive form 



-18-

of the utility function in (5.1) is invariant with respect to linear transformation, the normalization 

1m = ° is made. With this normalization, the system is observationally equivalent to the 

specification that am = 1 and E1, ... , Em -1 are jointly normally distributed with an error com-

ponent structure, i.e., the covariances of Ei and Ej are the same for all i ,j=I, ... ,m-l and i #-j. At 

the sample observation x * = (O, ... ,O,x j+1 , ... , x;) with xt> 0, i =1+ 1, ... ,m, the virtual prices 

are 

(5.4) i=I, ... ,m-l 

where st = vixt is the expenditure share of the ith commodity. The optimality conditions for the 

x * are, after logarithmic transformation, 

i =1, ... ,/. 

and 

(5.6) * * 13 E· = In(s· - v . A .) - In(s - v ) + E J J JPJ m m m m j=l+l, ... ,m-l 

* m-1 * 
Since Sm = 1- L Sj, the Jacobian of the transformation (5.6) from E,t+l' ... ' Em-l to 

j=,+l 

m m 
Si+l, .. ·,S;-l is L (sj-Vj13j)/. n (Sj*-Vj13j). The likelihood function forx* is 

j=1+1 J=J+l 

(5.7) * L(xi) 

where Ei (x * ,Em) = In(st -Vi 13i ) - In(s; -v m 13m) + Em' i = 1, .. . ,m -1; <I> is the standard normal dis-
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tribution function and cp is the standard normal density function. With the normality assumption, 

the integral can be numerically evaluated with the Gaussian quadrature formula; see Stroud and 

Secrest [16]. 

b. Data and Results 

A sample of 1150 households were drawn from the 1978 Socioeconomic Survey of 

Indonesia (SUSENAS), a national probability sample of households. Food consumption (pur

chased and home-produced) of nearly 100 separate items in the seven days prior to the date of 

enumeration is aggregated into seven categories: tubers, fruits, animal products (meat and 

dairy), fish, vegetables, grains and others. A village was assumed to represent a distinct market, 

and the average price of every dis aggregate item is calculated as the average price of the com

modity consumed by the sampled households in the village. Price indices are computed by 

geometrically weighting component prices with the average budget shares of a larger administra

tive area, the kabupaten (regency)6. There are 300 kabupatens in the sample. The absence of 

data on most non-food prices means that we must impose the assumption that foods and non

foods are separable in the utility function. Three demographic variables are identified--the 

number of household members 4 years of age and under (infants), the number aged 5 through 14 

(children), and those of age 15 and above (adults). Table 1 provides summary statistics on food 

consumption shares and normalized (by total food expenditure) prices, as well as demographic 

variables. 

As Table 1 indicates, six of the seven foods were not consumed by at least one household 

during the reference period. Half of the sampled households did not consume animal products, 

and one third did not consume tubers or fruit. Only grain was consumed by all households. As 

noted above, it is required that all goods which have zero demands have a corresponding ~i 
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which is negative in order that the utility function (5.1) be defined. It follows that only grains can 

be an "essential" good. 

Table 2 provides maximum likelihood estimates of the utility function with demographic 

effects.7 The coefficients ~j are indeed significantly negative for all goods except grain and all 

the asymptotic t-ratios are quite large. The coefficients on the adult and children demographic 

variables are all statistically significant. The infant variable is significant only in the case of 

animal products and fish.8 Parameter estimates are interpreted below in terms of elasticities. 

Table 3 presents estimates of the effects of incremental household members (by type) on 

consumption. Adding an infant to a household having mean demographic characteristics (see 

Table 1) reduces the consumption of all goods except grain and others. There is a particularly 

sharp fall in the consumption of animal products (12.6 percent) and fish (8.00 percent), both 

important but expensive sources of protein. Adding a child rather than an infant leads to an even 

greater reduction in animal product consumption (20.9 percent). Fruit consumption is now shar

ply reduced and only grain consumption rises. Only for tubers, fruit, animal products and fish is 

consumption response monotonic in response to an additional household member in age order: 

infant, child, adult. Tubers, fruit and animal products consumption response rises in magnitude 

with higher aged incremental household members while fish response falls in magnitude. Only 

grain, which has the largest average expenditure, is consumed in even greater amount with incre-

mental household members of any type. 

Table 4 provides the matrix of compensated and uncompensated price elasticities as well as 

income elasticities.9 These elasticities were calculated for a representative household having 

sample mean demographic characteristics, random terms and shares, and virtual prices which 

support those shares given sample mean demographic characteristics. Interpretation of these 

elasticities requires one to recognize the properties of the LES functional form. As is well 
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known, the non-negativity of the <Xi'S in (5.1) rules out inferiority, and concavity requires that 

every good must be a substitute for every other good. Furthermore, the additivity of preferences 

implies--through Pigou's Law (Deaton [5])--that for "large" numbers of goods, income and price 

elasticities are approximately proportional. With this in mind, note that price and expenditures 

elasticities are highest (in absolute value) for animal products and lowest for grain. Grain is the 

only price inelastic good in the set of foods and all other goods are price elastic. Animal products 

are commonly found to be highly income elastic in developing countries. Among these seven 

foods, tubers, vegetables, grain and others are all "necessities" as the expenditure elasticities are 

less than one. Fruit, animal products and fish are all "luxury" goods. All the elasticities seem sen

sible, but one might wonder whether a non-additive model might result in very different elasti

city measurements. We are currently investigating non-additive models, but they are much more 

complicated to estimate. 
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6. Summary 

In this paper we have presented coherent stochastic specifications for direct and indirect 

utility functions which result in computationally tractable demand systems subject to binding 

non-negativity constraints. The implied likelihood functions do not involve multiple integrals. 

As an example of one of the specifications, a seven-commodity demand system for food was 

estimated using household consumption data from Indonesia. These approaches promise to 

greatly relieve the computational burden of estimating large demand systems subject to binding 

non-negativity constraints that were limitations in our earlier work (Lee and Pitt [11]) and that of 

Wales and Woodland [18]. Although the example estimated here was for the relatively restric

tive linear expenditure system, less restrictive functional forms, while computationally more bur

densome than the LES, may still be suitable for applied demand analysis. 



-23-

Table 1 

Summary Statistics 

Frequency of 
Mean Standard Deviation Zero Consumption 

Tubers Share .03126 0.5205 473 
Fruit Share .03638 .04646 419 
Animal Products Share .05591 .08720 576 
Fish Share .11112 .08937 112 
Vegetables Share .12853 .07023 14 
Others Share .18061 .07921 1 
Grain Share .45619 .16298 0 
Tuber Price 1.27625 1.05631 
Fruit Price 1.18679 1.03619 
Animal Products Price 1.0964 .84715 
Fish Price 1.14076 .89651 
Vegetable Price 1.14780 .77964 
Others Price 1.21362 1.02743 
Grain Price 1.12126 .80051 
Infants~a) .77565 .85407 
Children~a) 1.60870 1.39685 
Adults~a) 3.0330 1.30632 

Sample size = 1150 

(a) Infants, children and adults are household members aged 0 to 4,5 to 15, and 16 years of age 
and above, respectively. 



Tubers Fruit 

~ -0.0267 -0.0474 
(-8.8708) (-11.8979) 

Constant -1.9602 -1.3167 
(-13.4296) (-12.3139) 

Infants -.0407 -.0361 
(-.9398) (-1.0944) 

Children -.0953 -.1167 
(-3.6856) (-5.6813) 

Adults -.1104 -.1252 
(-3.7798) (-5.7829) 

(J 1.0286 .7309 
(19.3572) (25.5662) 

.... 
9 .0287 .0506 
(at mean z) 

9 .0398 .0574 
(at mean z) 

Note: 

(1) 't' statistics are in brackets 

- m -
(2) 9i = eZ'Yi I L eZ'(i. 

j=l 
_ m_ 

(3) ei = E £(eZ'Yi Hi I L eZ'(J Hi). 

j=l 
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Table 2 

Parameter Estimates 

Animal Products Fish Vegetables Others Grain 

-.2343 -.0536 -.0327 -.0299 .0122 

(-11.9465) (-12.2722) ( -11.0840) (-9.4441) (3.3862) 

-.1338 -.6223 -.6226 -.4649 --
(-1.2209) (-7.1550) (-9.2591) (-7.3691) 

-.0623 -.0890 -.0395 -.0057 --
(-2.2052) (-2.9782) (-1.7160) (-.2600) 

-.1159 -.0904 -.0911 -.0694 --
(-6.5021) (-5.1844) (-6.4036) (-5.1035) 

-.1128 -.0731 -.0722 -.0448 --
(-6.3366) (-3.6181) (-4.6829) (-2.9864) 

.5546 .6556 .4391 .3702 .6421 

(21.8458) (25.6824) (25.9058) (26.9344) (33.8889) 

.1683 .1189 .1237 .1673 .3425 

.1666 .1271 .1198 .1600 .3292 
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Table 3 

Demographic Effects 

Percent Change in Consumption of (a): 

In Response to 
Incremental: Tubers Fruit Animal Products Fish Vegetables Other Grain 

Infant -1.33 -1.19 -12.57 -8.00 -1.25 +2.87 +2.89 
(-0.04) (-0.04) (-0.70) (-0.89) (-0.16) (+0.52) (+1.32) 

Child -4.03 -9.79 -20.90 -4.05 -3.73 -1.04 +6.06 
(-0.13) (-0.36) (-1.17) (-0.45) (-0.48) (-0.19) (+2.77) 

Adult -6.66 -12.59 -22.73 -2.80 -2.41 +0.94 +5.24 
(-0.21) (-0.46) (-1.27) (-0.31) (-0.31) (+0.17) (+2.39) 

(a) Percent change relative to sample mean shares. Absolute change in expenditure share are in parentheses under
neath percent change in consumption. 
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Table 4 

Uncompensated Price Elasticities 

Quantities/Prices Tubers Fruit Animal Products Fish Vegetables Other Grain 

Tubers -1.1802 .0266 .1482 .0389 .0286 .0326 -.0125 

Fruit .0080 -1.7570 .2246 .0590 .0434 .0494 -.0190 

Animal Products .0174 .0873 -3.4022 .1277 .0940 .1069 -.0411 

Fish .0062 .0310 .1727 -1.3365 .0334 .0380 -.0146 

Vegetables .0055 .0279 .1553 .0408 -1.2130 .0341 -.0131 

Others .0053 .0266 .1495 .0393 0.0289 -1.1637 -.01265 

Grain .0043 .0217 .1212 .0318 .0234 .0266 -.9603 

Compensated Price Elasticities 

QuantitieslPrices Tubers Fruit Animal Products Fish Vegetables Other Grain 

Tubers -1.1515 .0600 .1995 .1409 .1466 .1983 .4061 

Fruit .0515 -1.7064 .3024 .2136 .2223 .3007 .6157 

Animal Products .1115 .1968 -3.2340 .4622 .4809 .6505 1.3319 

Fish .0396 .0699 .2325 -1.2176 .1709 .2312 .4733 

Vegetables .0356 .0629 .2091 .1477 -1.0893 .2079 .4258 

Others .0343 .0605 .2013 .1422 .1480 -.9964 .4099 

Grain .0278 .0491 .1632 .1153 .1199 .1622 -.6377 

Total Expenditure Elasticities 

Tubers Fruit Animal Products Fish Vegetables Other Grain 

0.9177 1.3913 3.099 1.070 .9623 .9263 .7509 
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Footnotes 

(*) The first author appreciates having financial support from the National Science Foundation 
under grant number SES-8510473 for his research. Both authors acknowledge computational 
support provided by an NSF supercomputer grant We also thank the Biro Pusat Statistik in 
Jakarta for access to data. 

I Household purchase (as opposed to consumption) data may also be characterized by many 
zeroes over a reference period. Under certain conditions, our model estimated with purchase data 
may be interpretable as a short-term purchase model. The estimation results we report in this 
paper use consumption data. 

2 Before Wales and Woodland, this stochastic specification had been studied by Theil and Neu
decker [17] and Barten [3]. 

3 Alternative distributions may also be feasible as long as their support is not bounded from 
above (see (3.5». 

4 The normalization ~ Ej = 0 used by Wales and Woodland implies that the disturbances Ej 
j=1 

must be correlated and their covariance matrix is singular. Such a specification does not result in 
a computationally tractable likelihood function. 

5 Barten [2] previously obtained this reuslt. 

6 If a commodity'S price was unavailable for a village, it was taken to be the average kabupaten 
price. 

7 Numerical optimization was accompanied with both the Powell and Berndt, Hall, Hall and 
Hausman algorithms in the Goldfeld and Quandt optimization package GQOPT. The computa
tion was carried out on both an mM PC-AT and a Cray-l supercomputer at the University of 
Minnesota. 

8 We experimented with the model by treating demand as continuous dependent variables, thus 
neglecting their discrete pature. Using the MLE of Table 2 as initial values, parameter estimates 
changed sharply after only a few iterations. This suggests that explicitly treating the binding 
non-negativity constriants importantly affects the estimates. 

9 alnx· (1-e·)~· 
The own price elasticities for the LES system are ~ = -1 + I I, i =1 , ... ,m. The 

ulnvj Xj 

. I ... alnxj 8 Vj ~j • . • . 1 d h . I' .. cross pnce e astIcltIes are -~-- = - j --, I '#J, I,J= , ... ,m, an t e mcome e astlcltles are 
ulnv· v,x· 1 I I 

aInx· 8· 
I I. I 

~1nM = --, 1= , ... ,m. 
u VjXj 
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