Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments
2021-06-08
Loading...
Persistent link to this item
Statistics
View StatisticsCollection period
2014
2017
2017
Date completed
2021
Date updated
Time period coverage
Geographic coverage
Source information
Journal Title
Journal ISSN
Volume Title
Title
Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments
Published Date
2021-06-08
Group
Author Contact
Cavender-Bares, Jeannine
cavender@umn.edu
cavender@umn.edu
Type
Dataset
Field Study Data
Programming Software Code
Field Study Data
Programming Software Code
Abstract
Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling, providing a potential link between remote sensing and belowground processes. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic-functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments—the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. Specifically, we tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy data were used to map aboveground biomass and green vegetation cover, functional traits and phylogenetic-functional community composition of vegetation. We examined the relationships between the image-derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment—which has low overall diversity and productivity despite high variation in each—belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at Wood River—where plant diversity and productivity were consistently higher—remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates. Aboveground biomass (or cover) did not predict these belowground attributes. The strong, contrasting associations between the quantity and chemistry of aboveground inputs with belowground soil processes and properties provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly.
Description
Foliar traits, plant taxonomic and phylogenetic-functional group data, soil microbial and chemical data and airborne spectroscopic data from the BioDIV Cedar Creek Ecosystem Science Reserve biodiversity experiment in Minnesota and the Wood River Nature Conservancy biodiversity experiment in Nebraska and R scripts for analyses of spectral reflectance data and structural equation models.
Referenced by
Cavender‐Bares, J. M., Schweiger, A. K., Gamon, J. A., Gholizadeh, H., Helzer, K., Lapadat, C., ... & Hobbie, S. E. Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecological Monographs, e1488.
Related to
Replaces
item.page.isreplacedby
Publisher
Collections
Funding information
DEB-1342872; NSF DBI: 2021898; NSF DEB 1831944
item.page.sponsorshipfunderid
item.page.sponsorshipfundingagency
item.page.sponsorshipgrant
Previously Published Citation
Other identifiers
Suggested citation
Cavender-Bares, Jeannine; Schweiger, Anna K.; Gamon, John; Gholizadeh, Hamed; Kimberly, Helzer; Lapadat, Cathleen; Madritch, Michael; Townsend, Philip A.; Wang, Zhihui; Hobbie, Sarah E.. (2021). Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Retrieved from the Data Repository for the University of Minnesota (DRUM), https://doi.org/10.13020/fvdj-zv57.
View/Download File
File View/Open
Description
Size
BioDIV_biomass_2014.csv
Biomass (g m-2) of plant species in BioDIV plots in 2014
(101.04 KB)
BioDIV_biomass_2015.csv
Biomass (g m-2) of plant species in BioDIV plots in 2015
(111.72 KB)
BioDIV_biomass_2016.csv
Biomass (g m-2) of plant species in BioDIV plots in 2016
(28.95 KB)
BioDIV_plot_traits_2014_Aug.csv
Predicted foliar traits in plots by pixel for BioDIV in 2014 as calculated in Wang et al. 2019 RSE
(6.13 MB)
BioDIV_plot_traits_2015_Aug.csv
Predicted foliar traits in plots by pixel for BioDIV in 2015 as calculated in Wang et al. 2019 RSE
(6.14 MB)
BioDIV_plot_traits_2016_Aug.csv
Predicted foliar traits in plots by pixel for BioDIV in 2016 as calculated in Wang et al. 2019 RSE
(6.03 MB)
BioDIV_RootChemistry.csv
Root chemical traits (carbon fractions) in BioDIV plots in 2014
(3 KB)
BIoDIV_SoilRespiration.csv
Cumulative carbon respired (mg CO2-C [g soil]-1) in BioDIV plots
(1.48 KB)
BioDIV.2014.Microbial.Biomass.csv
Microbial biomass carbon (mgC per g soil) and nitrogen (mgN per gsoil) in BioDIV in 2014
(1.99 KB)
BioDIV.2015.Microbial.Biomass.csv
Microbial biomass carbon (mgC per g soil) and nitrogen (mgN per gsoil) in BioDIV in 2015
(4.82 KB)
BioDIV.2014.NmineralizationRates.csv
Net nitrogen mineralization rates - 2014
(1017 B)
BioDIV.2015.NmineralizationRates.csv
Net nitrogen mineralization rates - 2015
(3.54 KB)
BioDIV.2014.phylo.metrics.csv
Metrics of plant phylogenetic diversity in BioDIV plots in 2014 and species richness
(10.98 KB)
BioDIV.2015.phylo.metrics.csv
Metrics of plant phylogenetic diversity in BioDIV plots in 2015 and species richness.
(11.02 KB)
BioDIV.2016.phylo.metrics.csv
Metrics of plant phylogenetic diversity in BioDIV plots in 2016 and species richness
(8.34 KB)
BioDIV.Soil.C.N.2014.2015.2016.csv
Total soil carbon and nitrogen (proportion) to 20 cm depth in BioDIV plots in 2014, 2015, 2016
(11.52 KB)
BioDIV.Species.biomass.FG.2014.2015.2016.csv
Biomass (g m-2) of individual species in BioDIV plots sorted from clip strips in 2014, 2015, 2016 and functional group identity (C3 grass, C4 grass, Forb, Legume)
(194.57 KB)
WR.AISA.all.plots.csv
Wood River AISA airborne spectral reflectance (400-1000 nm) by pixel in plots from 2017
(86.99 MB)
WR.Biomass.woodriver.2017.csv
Wood River plant biomass (g m-2) in plots, measured in subplots (sp) at 12 m intervals along two transects (T1 and T2) per plot
(5.1 KB)
WR.functDIV_leaf.level_subplots.csv
Plant functional diversity (LLqDTM) in subplots along transects in plots based on leaf-level measurements of each species and weighted by cover
(4.36 KB)
WR.Microbial.Biomass.csv
Wood River microbial biomass carbon (mgC per g soil) and nitrogen (mgN per g soil) in subplots along transects in plots
(7.69 KB)
WR.N-min.Nebraska.csv
Wood River net nitrogen mineralization rates (micro g N [g soil]-1 d-1) in 2017 calculated as the difference between initial and final 2 M KCl-extractable concentrations of nitrogen (NH4+ and NO3-)
(8.66 KB)
WR.soil.CN.csv
Wood River total soil carbon (%) and nitrogen (%) to 20 cm depth in 2017
(7.78 KB)
WR.soil.enzymes.csv
Wood River 2017 soil enzyme activities from sampled subplots along transects within plots for alpha-glucosidase (AG), beta-1,4-glucosidase (BG), cellobiohydrolase (CBH), beta-1,4-xylosidase (BX), N-acetyl-alpha-glucosaminidase (NAG), phenol oxidase (PO) and peroxidase (PX)
(22.65 KB)
BioDIV.enzymes.2014.csv
BioDIV 2014 soil enzyme activities from sampled plots for alpha-glucosidase (AG), beta-1,4-glucosidase (BG), cellobiohydrolase (CBH), beta-1,4-xylosidase (BX), N-acetyl-alpha-glucosaminidase (NAG), phenol oxidase (PO) and peroxidase (PX)
(3.96 KB)
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.