View Planning For Cloud-Based Active Object Recognition
2013-09-12
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
View Planning For Cloud-Based Active Object Recognition
Alternative title
Authors
Published Date
2013-09-12
Publisher
Type
Report
Abstract
One of the central problems in computer vision and robotics is to recognize objects in a scene. State-of-the-art algorithms for object recognition are extremely data intensive. Cloud technologies hold the promise to make such algorithms available to robots with limited computation capabilities. However, collecting and transferring large amounts of data with such robots remains a challenge. In this work, we investigate the possibility of enabling cloud based object recognition by carefully planning the robot's viewpoints. While view planning techniques for object recognition exist, such techniques are too costly to be executed by robots with limited capabilities which are the robots which would benefit most from cloud-based techniques.
In this paper, we present evidence for the existence of universal viewpoints: a small number of viewpoints which guarantee accurate object recognition regardless of the object pose. Our experiments with real data provide evidence that such view points exist for common objects. Hence, view-planning for object recognition can be performed in an open-loop fashion without the need for running costly algorithms on small robots.
Keywords
Description
Related to
Replaces
License
Series/Report Number
Technical Report; 13-025
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Oliveira, Gabriel. (2013). View Planning For Cloud-Based Active Object Recognition. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215928.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.