Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Particle segregation and flow in slurries: dependence on the interstitial fluid viscosity and angular velocity

2011-08-11
Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Particle segregation and flow in slurries: dependence on the interstitial fluid viscosity and angular velocity

Published Date

2011-08-11

Publisher

Type

Presentation

Abstract

A granular binary mixture of particles differing in size in a rotating drum will tend to segregate. The mechanism by which this happens occurs in the ‘flowing layer’ of the drum. As the particles flow through the flowing layer, the smaller particles are more likely to fall through holes created by the moving particles, so they segregate towards the bottom of the flow. Thus, the larger particles are more likely to be pushed to the top of the flowing layer. When the particles ‘freeze,’ or come out of the flowing layer, the particles on the bottom of the flowing layer segregate towards the middle of the drum, and the particles on the top to the outside of the drum. Because the flowing layer is curved, the particles at the bottom of the layer freeze sooner (closer to the center) than the particles at the top. This is called radial segregation forms a ‘half-moon’ pattern. When the drum is filled to about half full (51– 61% full [1]) something more interesting happens. The segregation pattern first forms the half-moon pattern, then forms stripes. These stripes form because small differences in volume fraction lead to different flowing layer velocities, and therefore, to stripes [3]. By the geometric argument proposed by Hill et. al, the stripe width is proportional to the depth of the flowing layer. It is known that a higher viscosity does increase the depth of the flowing layer [2], although this seems to be empirically observed. In this project, the effects of the viscosity interstitial fluid were investigated and speed of the drum rotation on the wavelength and width of the stripes were investigated. This has important applications in industry and chemical engineering.

Description

Additional contributor: Dr. Kimberly Hill (faculty mentor)

Related to

Replaces

License

Series/Report Number

Funding information

This work was supported by a grant from the Undergraduate Research Opportunities Program.

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Sievert, Scott. (2011). Particle segregation and flow in slurries: dependence on the interstitial fluid viscosity and angular velocity. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/113663.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.