Media and Devices for Management of Airborne Contaminants
2023-01
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Media and Devices for Management of Airborne Contaminants
Authors
Published Date
2023-01
Publisher
Type
Thesis or Dissertation
Abstract
This thesis presents two projects pertaining to media and devices for themanagement of airborne contaminants. The projects were completed consecutively and
have each been separated to their respective chapters.
Investigation of the Temperature Dependent Effects in Crankcase Aerosol Control
Devices
Oil aerosols formed in the crankcase of reciprocating engines are a significant
source of particulate matter and may lead to engine component degradation when used in
closed crankcase ventilation (CV) systems or constitute a significant emission source in
open CV systems. In modern CV systems, filtration or inertial separation is used to collect
oil particles. These devices are highly efficient over a range of flow rates and temperatures;
however, some system conditions result in a decrease in efficiency with increasing
temperature in a manner not predicted by theory.
Experiments were performed on a bench system that introduced atomized oil
particles into a clean, pre-heated, air stream that was conveyed isothermally through a
heated duct to an oven containing the removal device, either a coalescing filter or an inertial
separator, followed by another heated section and an exit duct. The aerosol was sampled
using identical upstream and downstream isokinetic sampling systems and characterized
using a Dekati Electrical Low-Pressure Impactor (ELPI) that measured particle
concentration and size in the range from 0.043 to 8.46μm aerodynamic diameter.
Neither single fiber efficiency (SFE) filtration theory nor physical arguments
describing the performance of the inertial separator predict a significant dependence of total
and fractional efficiency and most penetrating particle size (MPPS) on temperature in
the range explored here, 25 to 115°C, but in many cases our measurements show MPPS
shifting to smaller size and total efficiency decreasing with increasing temperature. These
observations are consistent with the hypothesis that, at device temperature, the particles
being processed are smaller than the particles being measured, at room temperature.
Particles shrink by evaporation as they pass through the heated sections, but cool and grow
by condensation as the sample cools in the sampling lines or in the exit duct.
Reported carbon number distributions of typical lubricating oils and evaporation
kinetics indicate that droplets in the size range investigated may lose more than half of their
mass under temperature conditions, up to 115°C, found in typical crankcase removal
devices under engine high-load conditions. These droplets are in a dynamic balance with
their vapors and may change during sampling and measurement. Great care must be taken
in design of systems used to characterize devices intended to remove volatile droplets and
interpretation of measurements made, as the size of the particles measured may not be the
same as the size of particles passing through the device.
Evaluation of Media and Low-Cost Gas Sensors for Indoor Air Quality Measurement
The second project was motivated by increasing interest in high efficiency indoor air
purification devices for control of airborne contaminants. Filtration is a commonly used
method for removing particulate matter and improving air quality. An emerging field is the
study of impregnated media, where the same highly efficient particle removal media can
be engineered to also capture pollutant gases. We set out to evaluate the pollutant gas
removal effectiveness for a set of carbon-impregnated media, where the pollutant gases
under investigation were CO, CO2, NO, NO2, and SO2. Another feature of the study was
that the sensors used were relatively low-cost sensors and a detailed evaluation of their
performance was performed. Part of the motivation for using low-cost sensors was the
possibility of using them for real-time performance of media in actual air purification
devices.
The goal of the study was to evaluate 3 different carbon-impregnated media and a set
of 6 low-cost gas sensors on a test bench designed to determine pollutant gas concentration
as well as the removal efficiency. Tests were performed at ambient temperature conditions
with relative humidity controlled from 5-60%, characteristic of indoor residential or
commercial conditions. Five of the sensors used were Alphasense B4 series low-cost gas
sensors, for monitoring CO, SO2, NO, NO2, and a combination NO2 and ozone sensor.
These were electrochemical type sensors. The sixth sensor was a non-dispersive infrared
sensor for measuring CO2.
The pollutant gas sensors were assessed for concentration accuracy, sensor noise, and
response time. We found that sensor accuracy was acceptable under both humid and dry
conditions for the NO, CO, and CO2 sensors. Concentration accuracy was also acceptable
for the NO2 and SO2 sensors, though indicated concentrations did not agree with expected
values during media testing. This was due to concerns with the dilution air supply. Sensor
noise observed was higher than specification for CO and SO2, where SO2 encountered the
greatest deviations from manufacture specification. With respect to response times, it was
found that the CO2 and CO sensors were slower than manufacturer specification, the NO2
and NO2/O3 matched specification, and the NO and SO2 sensors were faster than
specification.
The pollutant gas removal efficiency for each gas, media, and humidity combination
was calculated and presented. The influence of humidity on removal effectiveness was
observed, wherein humid conditions resulted in decreased pollutant gas removal efficiency.
Removal efficiencies were very low for CO and NO2. They were somewhat higher for NO,
SO2, and CO2, most notably under dry conditions. This work demonstrated the efficacy of
using LCGSs for media evaluation.
Description
University of Minnesota M.S.M.E. thesis. January 2023. Major: Mechanical Engineering. Advisor: David Kittelson. 1 computer file (PDF); ix, 88 pages.
Related to
Replaces
License
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Hicks, Myles. (2023). Media and Devices for Management of Airborne Contaminants. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/259543.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.