Incremental Window-based Protein Sequence Alignment Algorithms

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Published Date

Publisher

Type

Abstract

Motivation: Protein sequence alignment plays a critical role in computational biology as it is an integral part in many analysis tasks designed to solve problems in comparative genomics, structure and function prediction, and homology modeling. Methods: We have developed novel sequence alignment algorithms that compute the alignment between a pair of sequences based on short fixed- or variable-length high-scoring subsequences. Our algorithms build the alignments by repeatedly selecting the highest scoring pairs of subsequences and using them to construct small portions of the final alignment. We utilize PSI-BLAST generated sequence profiles and employ a profile-to-profile scoring scheme derived from PICASSO. Results: We evaluated the performance of the computed alignments on two recently published benchmark datasets and compared them against the alignments computed by existing state-of-the-art dynamic programming-based profile-to-profile local and global sequence alignment algorithms. Our results show that the new algorithms achieve alignments that are comparable or better to those achieved by existing algorithms. Moreover, our results also showed that these algorithms can be used to provide better information as to which of the aligned positions are more reliablea critical piece of information for comparative modeling applications. Suppl. Data http://bioinfo.cs.umn.edu/supplements/win-aln/

Keywords

Description

Related to

Replaces

License

Series/Report Number

Technical Report; 06-010

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Rangwala, Huzefa; Karypis, George. (2006). Incremental Window-based Protein Sequence Alignment Algorithms. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/215695.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.