Browsing by Subject "anthropogenic impacts"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts(Wiley, 2016) Yan, Zhengbing; Han, Wenxuan; Peñuelas, Josep; Sardans, Jordi; Elser, James J; Du, Enzai; Reich, Peter B; Fang, JingyunCombined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in nitrogen (N):phosphorus (P) stoichiometry in global freshwater ecosystems, but this is not yet well-assessed. Here we evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human-impact levels, regions and periods. Freshwater and its macrophytes had higher N and P concentrations and lower N : P ratios in heavily than lightly human-impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N : P was negatively correlated with population density in China. These results indicate a faster accumulation of P than N in human-impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforce the importance of rehabilitating these ecosystems.Item R code and data supporting: Cattle exclusion increases encounters of wild herbivores in Neotropical forests(2024-05-30) Vélez, Juliana; McShea, William; Pukazhenthi, Budhan; Rodríguez, Juan D; Suárez, María F; Torres, José M; Barrera, César; Fieberg, John; julianavelezgomez@gmail.com; Vélez, Juliana; Fieberg LabThis repository contains R code and data supporting: Cattle exclusion increases encounters of wild herbivores in Neotropical forests. This study implements a BACI experimental sampling design to quantify the effect of cattle exclusion on encounter probability of the native community of browsers and fruit consumers, and percent ground cover in multifunctional landscapes of the Colombian Orinoquía. Wildlife-permeable fences were built along forest edges in four forest patches (i.e., blocks) containing control and fenced (treatment) sites. We installed 33 camera traps to obtain information about wildlife and cattle encounter probabilities, before and after the fences were constructed. We fit Bayesian generalized linear mixed effects models to quantify the effect of fences via the interaction between the time period (before and after the fences were built) and treatment (control or fenced sites).