Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Spectral density"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Topics on Climate Model Output Analyses
    (2021-10) Gong, Kaibo
    Comparison of two different data samples, and of paired data samples, is a well known problem in Statistics. Specifically, there is a wide range of applications in the fields of climate study. In this thesis, we provide a brief review on the ensemble of climate models and the need of probabilistic evaluation of model outputs, which is equivalent to the comparison between two models. Based on recent advancements in the context of evaluating climate model outputs, we develop two different approaches for comparing two functional time series. The first one is based on wavelet decomposition and the second one by comparing the local spectral density of non-stationary series. For the last chapter, we conduct a brief review on Gaussian Process and a framework for Bayesian Optimization, which establishes a theoretical framework and algorithmic properties of t-process based spatio-temporal modeling, for further use in modeling climate and neuroscience data.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues