Browsing by Subject "Rheological properties"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Evaluation of Bio-Fog Sealants for Pavement Preservation(Center for Transportation Studies, University of Minnesota, 2016-06) Ghosh, Debaroti; Turos, Mugur; Marasteanu, MihaiPavement preservation is playing an increasingly significant role in maintaining our aging pavement infrastructure. One important component is the application of sealants to the pavement surface. In a joint study between MnDOT and the University of Minnesota, the field performance and mechanical properties of asphalt mixtures from pavement sections treated with a number of new products, called bio sealants, is investigated. The objective of the study is to obtain relevant properties of treated asphalt materials to understand the mechanism by which sealants improve pavement performance. Laboratory testing was performed on treated asphalt binder and mixtures. For binders, a dynamic shear rheometer and a bending beam rheometer were used to obtain rheological properties of treated and untreated asphalt binders. Field cores from both untreated and treated sections were collected and thin beam specimens were prepared from the cores to compare the creep and strength properties of field-treated and laboratory-treated asphalt mixture. It is observed that the oil-based sealants have a significant softening effect on the control binder compared to the water-based sealants. For asphalt mixtures, different trends are observed for the field samples compared to the laboratory prepared samples. Similar to binder results, significant differences are observed between the asphalt mixtures treated with oil-based and water-based sealants, respectively. From the analysis performed on the bending creep and strength results at low temperature, it is concluded that the application of sealants in the field have no significant effect on these properties. Fourier transform infrared spectroscopy (FTIR) analysis showed that the sealant products could not be detected in mixture samples collected from the surface of the treated section.Item Investigation of Cracking Resistance of Asphalt Mixtures and Binders(Minnesota Department of Transportation, 2019-01) Marasteanu, Mihai; Turos, Mugurel; Ghosh, Debaroti; Matias de Oliveira, Jhenyffer Lorrany; Yan, TianhaoIn this study, the viability of using three test methods for asphalt mixtures and one test method for asphalt binders are investigated. These test methods are: Bending Beam Rheometer (BBR) for creep and strength of asphalt mixtures; low temperature Semi Circular Bend (SCB) test for fracture energy of asphalt mixtures; Dynamic Modulus (E*) test of asphalt mixtures using the Indirect Tensile Test (IDT) configuration; and BBR strength test of asphalt binders. The materials used in the experimental work were used in MnROAD cells constructed in the summer of 2016 as part of the MnROAD Cracking Group (CG) experiment, a 3-year pooled-fund project. The results show that the testing methods investigated provide repeatable results that follow trends similar to the one observed using traditional methods. The results also show that the properties are highly temperature dependent and the ranking observed at one temperature can change at a different temperature. In addition, it is observed that materials with similar rheological properties, such as complex modulus absolute value |E*|, creep stiffness S, and m-value, do not necessarily have the same fracture resistance. These results confirm one more time the need for a fracture/strength test for correctly evaluating cracking resistance of asphalt materials.