Browsing by Subject "Pavement distress"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Effects of Implements of Husbandry (Farm Equipment) on Pavement Performance(Minnesota Department of Transportation Research Services Section, 2012-04) Lim, Jason; Azary, Andrea; Khazanovich, Lev; Wang, Shiyun; Kim, Sunghwan; Ceylan, Halil; Gopalakrishnan, KasthuriranganThe effects of farm equipment on the structural behavior of flexible and rigid pavements were investigated in this study. The project quantified the difference in pavement behavior caused by heavy farm equipment as compared to a typical 5-axle, 80 kip semi-truck. This research was conducted on full scale pavement test sections designed and constructed at the Minnesota Road Research facility (MnROAD). The testing was conducted in the spring and fall seasons to capture responses when the pavement is at its weakest state and when agricultural vehicles operate at a higher frequency, respectively. The flexible pavement sections were heavily instrumented with strain gauges and earth pressure cells to measure essential pavement responses under heavy agricultural vehicles, whereas the rigid pavement sections were instrumented with strain gauges and linear variable differential transducers (LVDTs). The full scale testing data collected in this study were used to validate and calibrate analytical models used to predict relative damage to pavements. The developed procedure uses various inputs (including axle weight, tire footprint, pavement structure, material characteristics, and climatic information) to determine the critical pavement responses (strains and deflections). An analysis was performed to determine the damage caused by various types of vehicles to the roadway when there is a need to move large amounts agricultural product.Item Evaluation, Development, and Implementation of 3D GPR for Assessment of Minnesota Infrastructure(Center for Transportation Studies, University of Minnesota, 2016-12) Hoegh, Kyle; Thompkins, Derek; Khazanovich, LevThis research project evaluated the 3D Radar ground penetrating radar (3D GPR) equipment to determine applications and develop software for immediate use. A major focus was the use of 3D GPR to determine asphalt compaction uniformity. Other pavement assessment applications were explored. The research resulted in the development of new software that provides on-site mapping shortly after the last roller pass is completed on new construction. This provides the potential to select validation locations and give feedback to the contractor detailing the as-constructed performance during the paving process. The outputs of the software were also designed to allow for comparison with other technology and as-constructed information. (A user’s guide for the software is included in the project final report.) Overall, the use of 3D GPR with the developed software, combined with as-constructed data such as Intelligent Compaction pass counts, vibration amplitude, and other measures, can lead to better asphalt compaction and longer lasting roads.Item Optimizing Asphalt Mixtures for Low-volume Roads in Minnesota(Minnesota Department of Transportation, 2023-08) Barman, Manik; Dhasmana, Heena; Manickavasagan, Vishruthi; Marasteanu, MihaiMinnesota has a large number of low-volume asphalt roads. These roads typically fail because of environmental factors, such as frigid temperatures, freeze-thaw cycles, and seasonal and daily temperature variations. The goal of this study was to suggest modifications to asphalt mixture designs currently used for low-volume roads in Minnesota to improve the resistance of the mixes against the environmentally driven distresses. The study was conducted by accomplishing multiple tasks, such as a literature review, online survey, fieldwork studying the cause of the asphalt pavement distresses, laboratory work comparing asphalt mixtures designed with Superpave-4, Superpave-5, and regressed air voids methods, and studying the field compaction of Superpave-5 mixes. The mechanical performance of the asphalt mixes was studied by conducting Disc-Shaped Compact Tension (DCT), Indirect Tensile Strength (ITS), and Dynamic Modulus (DM) tests. The study included both laboratory- and plant-produced mixes. The study found that asphalt layers for the low-volume roads did not get enough densification, which augments environmentally driven distresses, such as thermal cracks, and longitudinal joint cracks. The Superpave-5 method holds considerable promise for the design of asphalt mixtures for low-volume roads in Minnesota, which may likely increase the asphalt layer densification and mitigate some of the common distresses.Item Portland Cement Concrete Pavement Thickness Variation Versus Observed Pavement Distress(Minnesota Department of Transportation, 2016-09) Khazanovich, Lev; Hoegh, Kyle; Barnes, Randal; Conway, Ryan; Salles, LucioBenefits from a potential significant correlation between distresses and slab thickness can be broadly applied in all stages of highway development from design and construction to maintenance decisions. In order to comprehensive explore this possibility, thickness data and existing distresses were related for three highway projects in Minnesota. Thickness was obtained through non-destructive ultrasonic testing, while distresses were recorded for the same location with a distress image software. Significant thickness variation was observed in both longitudinal and transverse directions. The combined results of thickness, shear wave velocity and distresses analysis revealed that an increase in shear wave velocity was coincident with a less damaged pavement area within a section. An in-depth statistical analysis confirmed this observation showing that shear surface velocity variation was better correlated with overall pavement performance than thickness variation. Differences in cracking behavior within a section were traced back to changes in construction and design practices, showing the potential of using shear velocity analysis for pavement maintenance. A survey and analysis procedure for shear wave velocity testing of concrete pavements is proposed.Item Pothole Prevention and Innovative Repair(Minnesota Department of Transportation, 2018-04) Ghosh, Debaroti; Turos, Mugur; Hartman, Marcella; Milavitz, Rose; Le, Jia-Liang; Marasteanu, MihaiPothole repairs continue to be a major maintenance problem for many highway agencies. There is a critical need for finding long-lasting, cost-effective materials and construction technologies for repairing potholes. This research effort investigates critical components associated with pothole formation and pothole repair and proposes solutions to reduce the occurrence of potholes and increase the durability of pothole repairs. The components include investigating and documenting pavement preservation activities, experimental work on traditional repair materials as well as innovative materials and technologies for pothole repairs, stress analysis of pothole repairs to identify whether certain geometric configurations are more beneficial than others, evaluating cost analyses to determine the effectiveness of various repair methods. A number of conclusions and recommendations were made. Potholes are mainly caused by the delayed response to timely fixing common pavement distresses. The state of Minnesota has a number of preservation strategies that are available and have been successfully used. Recommendations are made to improve these strategies using documents made available as part of new Every Day Counts, EDC-4, initiative. Currently, there are no required specifications for patching materials. Mechanical testing can be used to select patching materials based on the estimated durability of the pothole repair, such as short-, medium-, and long-term. A number of new materials and technologies are available for more durable solutions for winter pothole repairs, however, they require additional heat source and are more expensive.Item Simplified Design Table For Minnesota Concrete Pavements(Minnesota Department of Transportation Research Services & Library, 2014-06) Tompkins, Derek; Khazanovich, LevThe project “Simplified Design Table for Minnesota Concrete Pavements” led to the creation of MnPCC-ME, a standalone 32-bit Windows executable program to replace the preexisting RigidPave. Whereas RigidPave was based upon the outdated AASHTO 1993 design procedure for rigid pavements, MnPCC-ME is based on MEPDG version 1.1, a mechanistic-empirical design procedure that accounts for the effects of traffic loading and environment. Furthermore, MnPCC-ME was localized for Minnesota pavements through: 1) the use of local climate data and weigh-in-motion traffic data; 2) the incorporation of previously conducted calibrations of the MEPDG for Minnesota pavements; and 3) the inclusion of advanced analysis features included in MnPCC-ME’s flexible design counterpart, MnPAVE. The development and source code of MnPCC-ME is detailed in this final report.