Browsing by Subject "Natural resource management"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Developing a decision support tool for improved aquatic invasive species management(2013-03) Sharpe, Leah M.Aquatic invasive species (AIS) are a serious problem with adverse ecological, economic, and social impacts. These wide-ranging impacts mean similarly wide ranges of affected and interested parties (stakeholders) and of knowledge and data types being involved in AIS decisions. Decision support tools (DST) can be powerfully effective methods for helping to simplify complex decisions, incorporating different types of knowledge, and assisting in clear communication between involved parties. Developing a useful DST, however, requires understanding the needs, priorities, and concerns of broader stakeholders as well as the managers responsible for making the decisions. It also requires understanding the legal and policy context for these decisions. This dissertation reports the results of research conducted to understand stakeholders’ attitudes and concerns about genetic biocontrol (a new AIS control technology currently under development), understand the strengths and weaknesses of the current decision-making process used by AIS managers, and examine the effectiveness of the National Invasive Species Act, the key piece of federal AIS legislation regarding management of AIS. Together, these results form building blocks for developing a DST for improved management of AIS. Information on stakeholder perspectives on development of new AIS control technologies, involving genetic manipulations, was gathered in a series of focus groups in the United States Great Lakes and Lake Champlain regions. Stakeholders were enthusiastic about the potential inherent in these new technologies but remained deeply concerned about potential unintended consequences. Key concerns related to ecological impacts, the cost of development, and the possibility that this research will detract from other, ongoing control work. Stakeholders also had a number of recommendations for development of these new technologies that have implications for broader AIS management. These recommendations included engaging stakeholders throughout the development process, employing clear go/no-go reasoning, and using a transparent decision-making process. A series of interviews with natural resource managers was undertaken to improve understanding of the current decision-making environment and identify its strengths and weakness. These interviews illuminated the priorities and concerns underlying managers’ decision-making processes, their perceptions of existing strengths and weaknesses of these processes, and the issues that a decision support tool could help them to better address. In their work, managers must balance a wide range of priorities competing with one another for limited resources (e.g., prevention and containment efforts, research into new control tools, control and eradication efforts). The existing decision-making environment succeeds at facilitating coordination between agencies and communication with the broader public. This process, however, currently lacks several principles of robust decision-making including sufficient scientific basis, structure, documentation, and an adaptive element. The results indicate that AIS decisions could be strengthened by explicitly incorporating these principles into the decision-making process and that use of a decision support tool would be an effective way of carrying out such incorporation. Finally, I analyzed the National Invasive Species Act, arguably the most important federal policy dealing with AIS, using peer-reviewed and grey literature, as well as natural resource manager interviews to assess whether or not the Act had met its stated goals. The results indicate the Act has had limited success in achieving its objectives, especially in preventing introductions of new invasive species and limiting the spread of invasive species already present, but has been effective in organizing national and regional coordination via the Aquatic Nuisance Species Task Force and its regional panels. Results suggest that reauthorizations of the Act should grant additional authority to regulate introductions via pathways other than ballast water to a federal agency and that the Aquatic Nuisance Species Task Force should be granted additional authority and resources to allow it to further increase regional coordination of control and containment efforts. Together, these results allowed me to design a blueprint for a DST responsive to the needs of stakeholders, managers, and federal level policy. I developed a simplified sample of the DST to illustrate how it combines spatial data with manager experience and stakeholder priorities to determine key areas for management actions (i.e. monitoring, quarantines, and control efforts).Item Fond du Lac Resource Management: 2008 Integrated Resource Management Plan(2008) Fond du Lac Band of Lake Superior ChippewaThis very comprehensive document was reviewed and is felt to have significant content and analysis relevant to Minnesota’s coastal area and water resources. It also contains biophysical and watershed-related content directly relevant to Native communities in Minnesota’s coastal communities. Key content is reproduced below: Executive summary: “This Integrated Resource Management Plan contains information about the Band’s past and current management activities and identifies resources that need additional management. The Integrated Resource Management Plan contains alternatives to resource management, as required by the National Environmental Policy Act, which are based on the management objectives. Management activities range from no action to full implementation, and the alternatives presented reflect that range. The objectives that can be completed under each alternative are displayed in a table located at the end of discussion on alternatives. Public input was solicited on the draft document, which included a variety of management alternatives. Comments obtained from the community and tribal government were incorporated into the final document, and the hearing process provided a basis for the formulation and selection of the preferred alternative. The preferred alternative is officially approved by Resolution # 1183/08. Each resource is described in a narrative that was developed in the following format: o Description of the affected environment o Background for that resource o Issues, concerns, and opportunities for that resource o Goals and objectives for that program, with different management alternatives The final chapter is a summary of the alternatives. The preferred alternative is identified for each resource.” Approximately 15 pages of this report are dedicated specifically to water-based resources, including chapters on wild rice, wetlands and water, and fisheries. Some sections are reproduced below. Wild Rice There are five primary wild rice lakes on the Fond du Lac Reservation. The total area on which wild rice is currently present on these lakes is 843 acres. The wild rice areas on the individual lakes are: Perch Lake, 411 acres; Mud Lake, 151 acres; Rice Portage Lake, 131 acres; Jaskari Lake, 79 acres; and Deadfish Lake, 71 acres. These lakes are all within the Stoney Brook Watershed, which is tributary to the St. Louis River. Wild rice is also present in Side Lake, Cedar Lake, Wild Rice Lake, Simian Lake, and Hardwood Lake. Side Lake and Hardwood Lake are within the Stoney Brook Watershed. Cedar Lake and Simian Lake are within the Simian Creek Watershed. Wild Rice Lake is the headwaters of the Moosehorn River, a tributary of the Kettle River. The density of mature wild rice varies from season to season, as the ecology of wild rice growth is related to cycles of plant decomposition, the number of growing days, and available nutrients. In addition, wild rice is easily lost as a result of natural events, such as high winds, flooding, and hail. The majority of the wild rice resource on the Fond du Lac Reservation is in the Stoney Brook Watershed. Beginning in 1916, the Stoney Brook Watershed was adversely affected by the creation of a network of judicial ditches. These judicial ditches drastically altered the hydrology of the watershed, resulting in the loss of over 500 acres of wild rice habitat. The lower water levels that resulted from the judicial ditching allowed competing vegetation to encroach on areas that at one time supported wild rice. Besides the Stoney Brook Watershed, wild rice resources in other areas of the Fond du Lac Reservation are in decline as well. The reason for this decline is primarily due to higher water levels, caused by road building and beaver activity. The Fond du Lac Natural Resources Program is responsible for the wild rice management and restoration activities on the Fond du Lac Reservation. The primary method of wild rice lake management consists of utilizing water control structures (dams) to stabilize water levels, ditch maintenance, and beaver dam management. The restoration of the major wild rice lakes on Fond du Lac is dependent on restoring the lakes to their historical elevation and a more natural annual hydrological cycle. The implementation of the Rice Portage Wild Rice and Wetland Restoration Project resulted in the construction of four water control structures. These four structures are located at the outlet of Perch Lake, the outlet of Rice Portage Lake, an impoundment that is upstream of Deadfish Lake (commonly known as “Upper Deadfish”), and at the outlet of Deadfish Lake. These structures are used to restore the lake elevations and improve hydrologic function. Issues: The ineffectiveness of current mechanical methods for the restoration project on Rice Portage Lake. Mud Lake continues to produce a thin crop of wild rice, despite its potential for higher yields. Concerns: Invasive species–both invasive and exotic plant species–are of great concern due to their persistence once introduced. While there are no know exotic species in our wild rice lakes, the risk is high given the uses of these lakes by waterfowl hunters and wild rice harvesters. Climate change–weather pattern changes, annual precipitation, and temperature changes–all may impact the viability of our wild rice lakes. Opportunities The Stoney Brook Watershed Study will provide a model that will allow for more effective water level management, and identify opportunities for restoration of the original river system, and abandonment of unnecessary ditch segments. The current trend of land purchasing, land use planning, and increased resource management capabilities affords long term protection for portions of the wild rice lake watershed that were unavailable in the past. Increased Resource Management Division staff and capabilities may allow for opportunities to partner with other agencies and organizations to restore, protect, and enhance wild rice growth throughout the Ceded Territories. Goals & Objectives At a minimum, maintain the current program and management. Increase vegetation treatment acreage per annum. Surface water resources The Fond du Lac Reservation includes abundant freshwater resources, with over 3,000 acres of lakes (828 acres of wild rice waters), nearly 44,000 acres of wetlands, and 96 miles of rivers and streams. The St. Louis River, the largest U.S. tributary to Lake Superior, borders the Reservation to the north and east, and approximately 95% of the waters of the Reservation lie within its watershed. All of the waters within the Reservation are believed to be relatively pristine. There are no known or permitted industrial or municipal discharges to the waters, except to the St. Louis River. Historical hydrological modifications to many of the Reservation’s wild rice lakes occurred with the development of the judicial ditch drainage system early in the twentieth century. Currently, a restoration project is underway to gradually restore Rice Portage Lake, one of the most productive rice lakes, to its historical water levels, and to minimize water level fluctuations on Deadfish Lake, thereby enhancing its stands of rice. Shoreline development and the accompanying potential for increased nutrient inputs (septic discharge and lawn chemicals) and erosion are factors that could affect the water quality of several Reservation lakes. By 1998, the Fond du Lac Environmental Program developed and the Reservation Business Committee adopted a set of Water Quality Standards for the surface water resources of the Reservation, setting contaminant criteria and designating uses for 24 lakes and eight streams within the boundaries, and identifying Outstanding Reservation Resource Waters. More recently, the Band has been granted “Treatment as a State” authority by the U.S. Environmental Protection Agency, under the federal Clean Water Act, enabling it to enact and enforce such standards. As a critical tool for implementing these standards, the Environmental Program designed a comprehensive Water Quality Monitoring Plan. Initially a rigorous three-year monitoring project measuring the physical, chemical and biological quality of 24 lakes and eight streams located within the exterior boundaries of the Reservation, it has since been modified to reflect an ongoing status and trends program. This comprehensive database on Fond du Lac surface waters will also permit the Office of Water Protection to develop numerical biocriteria to replace the narrative biocriteria currently in the tribal Water Quality Standards. The data is also utilized to assess and report on the condition of these water bodies and their attainment of designated and aquatic life uses. Protecting human health requires monitoring for indicators that measure the safety of eating fish or other aquatic wildlife, or of swimming and boating. Conserving ecosystems requires indicators of diverse, healthy aquatic plant and animal communities, and indicators are also needed to assure that water quality and sediment conditions can maintain those biological communities. The Water Quality Monitoring Plan was designed to assess indicators for both human health and aquatic life. Atmospheric deposition of mercury is of particular concern in this boreal forest and wetland ecoregion, as biochemical processes enhance mercury availability to the aquatic food chain, bioaccumulating to levels that are hazardous to top predators and humans. Consequently, fish caught in Reservation waters can be dangerously high in tissue mercury content. Criteria for the Water Quality Standards were calculated under an assumed fish consumption rate that is much higher than the state of Minnesota or the Great Lakes region assumes for the general population, as some Band members rely upon fish at a subsistence level in their diet. The Environmental Program has completed several projects that assessed contaminant levels (mercury, PCBs and lead) and characterized sediments of twelve Reservation lakes and the St. Louis River. In 2001, Fond du Lac partnered with the Minnesota Department of Health to collect and analyze fish tissue from lakes and the St. Louis River (preferred fishing waters), using the data to develop specific fish consumption advisories. Groundwater In 2004, Fond du Lac completed its first Nonpoint Source Assessment Report and applied for Treatment as a State for non-point source authority. The Office of Water Protection received its first base program funding in 2005 and is using that support to implement several projects under the following categories: hydro modification, timber harvesting, roads and urban development. The Resource Management Division is also engaged in a major hydrologic study of the Stoney Brook watershed in partnership with Natural Resources Conservation Service and the U.S. Geological Survey. Ultimately, a Stoney Brook Watershed Management Plan will be developed to account for multiple resource management objectives, including wild rice production and stream and wetland restoration. The Office of Water Protection also has identified aquatic invasive species as a major concern for protecting the Reservation’s water resources. The nonpoint source program provides for broad education and outreach to the Reservation community and affected stakeholders, in order to minimize nonpoint source impacts to Fond du Lac water resources. The primary objectives of the Environmental Program are to ensure the protection of valuable ground water resources through the continued closures of abandoned wells, the delineation of protection zones for wells contributing to community water systems, and the development of a wellhead protection plan for the Reservation. The Fond du Lac Reservation boundary encompasses 101,153 acres, of which 43,264 (43%) are wetlands. These wetlands consist of forested (67% – black spruce, tamarack, or black ash dominant; includes bogs), scrub shrub (29% – alder or willow dominant), emergent (3% – sedge, reed canary grass, or cattail dominant; includes wild rice lakes), and open water (< 1% – coontail dominant). Many wetlands on the Reservation have been degraded due to human activities, particularly by ditching, road construction, agricultural and silvicultural runoff, and commercial and residential development. The Environmental Program has a Wetlands Conservation and Protection program that has been active since October of 1998. A Wetlands Protection and Conservation Plan was adopted by the Reservation Business Committee in October 2000. The plan was expanded, updated and adopted by the Reservation Business Committee in February 2006 to become the Fond du Lac Joint Comprehensive Wetlands Protection and Management Plan. The adoption of this plan led to the development and adoption by the Reservation Business Committee of the Fond du Lac Wetlands Protection and Management Ordinance in June 2006. Erosion and sedimentation resulting from storm water can cause significant impact to surface waters. On the Reservation, construction activities have the potential to be a major contributor to these impacts. Since March 2003, the Office of Water Protection has been providing erosion and sedimentation control best management practices oversight of construction projects on the Reservation. This is the result of the Environmental Protection Agency’s National Pollutant Discharge Elimination System Phase II Construction Storm Water regulations as part of Section 402 of the Clean Water Act. In addition to this voluntary oversight, the Office of Water Protection has also entered into a Storm Water Direct Implementation Tribal Cooperative Agreement to conduct inspections of construction sites impacting one acre or more. Two tribal inspectors have been trained and credentialed by Environmental Protection Agency to conduct inspections on the Reservation. More than 13 projects are scheduled for inspection during the construction seasons of 2007 and 2008. In addition, the Office of Water Protection has been developing the required Storm Water Pollution Prevention Plans for nearly all projects conducted by the Reservation, as well as occasional projects conducted by individual Band members.” A long list of concerns and threats to water resources is included in the report. These related to taconite and sulfide mining operations, mercury deposition, nonpoint source pollution and other causes. “Fisheries The majority of the lakes on the Fond du Lac Reservation are small, shallow bodies of water, more suitable for growing wild rice than for the management of any significant fisheries. Many of these lakes do have fish, however, with populations consisting primarily of northern pike), largemouth bass, panfish, yellow perch), and bullhead. Due to relatively shallow water, high abundance of aquatic macrophytes, and substrates composed predominantly of decaying organic matter, many of these Reservation lakes are incapable of supporting any naturally reproducing populations of walleye (Sander vitreus). These lakes are, however, conducive to the production of northern pike, panfish, largemouth bass, and bullhead but are also subject to frequent winterkill. Most of the lakes on the Reservation do have some type of public access, though most are strictly carry-in accesses. The fishery of the St. Louis River is by far the most important one for residents of the Reservation. At least four game fish species can be found in appreciable numbers; northern pike, walleye, smallmouth bass, and channel catfish. The channel catfish fishery remains the highest priority of Fond du Lac Band members who regularly use the St. Louis River’s fishery resources. Much can be done to improve the trout populations on the Reservation. Stream improvements and the removal of beaver and their lodges and dams may improve habitat for resident trout populations. Stocking may need to be a part of future management activity, but shouldn’t be random and haphazard as past stocking activities appear to have been. In addition, regular assessments need to be performed following any stocking efforts. The fisheries in the 1854 and 1837 Ceded Territories are numerous and diverse, from small trout streams in the Superior National Forest, to lakes such as Mille Lacs that are capable of sustaining large walleye populations, to the salmon and trout of Lake Superior. Walleye and northern pike appear to be the most important species to Band members, and are relatively abundant throughout both of the Ceded Territories. A high priority for Band members is a concentrated subsistence harvest at Mille Lacs Lake, where a regular spring harvest season occurs.”Item Independent science review in natural resource management: evaluation's role in knowledge use.(2008-02) McEathron, Mary A.Governments and funding agencies have increasingly required programs to be designed using research or evidence-based practices; however, at the same time academics continue to lament the non-use of their most recent work by practitioners. Professionals in most fields--whether academics or practitioners--readily recognize the chasm between the academic world and the applied world. This study explores the potential for evaluation to strengthen communication between such professionals by providing an informational bridge between those worlds. To support that function, the field of evaluation must fully realize evaluation's dual role as both knowledge producer and knowledge evaluator . Currently, the field of evaluation has primarily focused on evaluating practice and not on evaluating the knowledge or research that is being applied in practice. To explore this concept, this study examined an evaluative process--independent science review (ISR)--as it was used to assess the scientific basis for river management decisions or programs. Using a retrospective, comparative case study design, I investigated three ISRs conducted by the Sustainable Ecosystems Institute (SEI): the review of the Columbia Channel Deepening Project (conducted in 2001), the Missouri River Pallid Sturgeon Monitoring and Assessment Program (conducted in 2004), and the Missouri River Habitat Assessment and Monitoring Program (conducted in 2006). The study was based on document review and interviews with 35 people who participated in review workshops or meetings, including panelists, agency staff, technical presenters, and SEI staff. Specifically, this study described the process of using ISR in the complex, applied situations of natural resource management; how the results of the review were used in the environmental or natural resource project; and how the process of review affected the interactions between academic scientists and resource agency staff. Findings included the critical importance of the planning phase of the ISR, including the selection of issues to be reviewed and panelists, and the reported significance of face-to-face meetings. However, this study also found that the interactions during ISRs continued to favor the unidirectional flow of knowledge from panelists (academic world) to agency staff (applied world).Item Understanding human activities and global w“o”rming and its impacts on soil properties and temperature in a Minnesota hardwood forest(2023-05) Baumann, TylerInvasive earthworms create widespread ecological changes after they are introduced.Exotic earthworms are transported mainly through anthropogenically-mediated activities, including fishing, agriculture, horticulture, and development. Here, we use a conceptual framework to review the ways in which exotic earthworms are transported to new environments. This conceptual framework involves invasion filters (human activities filter and climate & edaphic filter) that constrain which exotic earthworm species can be transported within specific contexts. Differences in earthworms’ ecological behaviors, life cycle, and physiological tolerance of environmental conditions influence which species are transported and which regions can successfully be invaded. Within the human activities filter, we utilize the pathways of invasion laid out by Hulme et al. 2008, including release, escape, contaminant, stowaway, corridor, and unaided. These pathways follow a continuum of human intention; five of these pathways are associated with human activity: with release, escape, and contaminant pathways related to commodities, and stowaway plus corridor related to transport infrastructure. We find that the major human activities that transport exotic earthworms include discarding of fishing bait, agriculture, composting and horticulture, and development (e.g. the construction of roads, trails, houses, or campgrounds). Our review finds that although a diverse number of human activities transport exotic earthworms, the magnitude that specific activities transport earthworms is vastly understudied. We conclude that more research needs to be conducted to understand the methods that transport exotic earthworms in order to slow their spread. In the Upper Midwest, temperate hardwood forests have been heavily altered followingthe introduction of invasive earthworms of European, and more recently, Asian origin. Earthworms significantly modify the biological, chemical, and physical composition of soils in these ecosystems by mixing overlying organic horizons with underlying mineral soil layers. The recent invasion of these forests dominated by invasive European earthworms (Lumbricus terrestris, Lumbricus rubellus, Aporrectodea spp.) by ‘jumping worms’ (Amynthas agrestis and Amynthas tokioensis) has created profound and distinct changes to the soil that are not well understood. We surveyed forests at the University of Minnesota Landscape Arboretum in 2020 and 2021 and established transects with discrete areas of European or jumping worm dominance. We found that these discrete areas had distinct soil features and that jumping worm populations appear to replace Lumbricus spp. populations. Soils in areas dominated by jumping worms had a loose, granular casting layer near the surface, decreased bulk density, increased soil organic matter, increased pH, and higher leaf litter mass than soils in sites dominated by European earthworms. We also measured lower monthly average soil temperature, lower maximum soil temperature, and lower soil temperature variability in our jumping worm dominated sites. Our soil temperature results indicate that Amynthas spp. will not be limited by soil temperatures in advancing much further north than central Minnesota. It remains to be seen how invasive earthworm populations and soil properties will evolve with the continued invasion of jumping worms in the long-term.