Browsing by Subject "Mechanistic-empirical design"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adaptation of the 2002 Guide for the Design of Minnesota Low-Volume Portland Cement Concrete Pavements(Minnesota Department of Transportation, Research Services Section, 2007-06) Yut, Iliya; Husein, Shariq; Turgeon, Carly; Khazanovich, LevA new Mechanistic-Empirical Pavement Design Guide (MEPDG), also known as the 2002 Design Guide, was recently proposed in the United States. The development of such a procedure was conducted by the National Cooperative Highway Research Program (NCHRP) under sponsorship by the AASHTO. The Design Guide is a significant innovation in the way pavement design is performed. A comprehensive evaluation of the MEPDG performance predictions was conducted. It was found that the faulting model produced acceptable predictions, while the cracking model had to be adjusted. The cracking model was re-calibrated using the design and performance data for 65 pavement sections located in Minnesota, Iowa, Wisconsin, and Illinois. A prototype of the catalog of recommended design features for Minnesota low volume PCC pavements was developed using the MEPDG version 0.910. The catalog offers a variety of feasible design alternatives (PCC and base thickness, joint spacing and PCC slab width, edge support type, and dowel diameter) for a given combination of site conditions (traffic, location, and subgrade type). It is recognized, however, that version 0.910 is not the final version of the MEPDG. Therefore, the catalog should be updated after the MEPDG software is finalized.Item Incorporation of Reliability in Minnesota Mechanistic-Empirical Pavement Design(Minnesota Department of Transportation, 1999-07) Timm, David H.; Newcomb, David E.; Birgisson, Bjom; Galambos, Theodore V.This report documents the research that incorporated reliability analysis into the existing mechanistic-empirical (M-E) flexible pavement design method for Minnesota. Reliability in pavement design increases the probability that a pavement structure will perform as intended for the duration of its design life. The report includes a comprehensive literature review of the state-of-the-art research. The Minnesota Road Research Project (Mn/ROAD) served as the primary source of data, in addition to the literature review. This research quantified the variability of each pavement design input and developed a rational method of incorporating reliability analysis into the M-E procedure through Monte Carlo simulation. Researchers adapted the existing computer program, ROADENT, to allow the designer to perform reliability analysis for fatigue and rutting. A sensitivity analysis, using ROADENT, identified the input parameters with the greatest influence on design reliability. Comparison designs were performed to check ROADENT against the 1993 AASHTO guide and the existing Minnesota granular equivalency methods. Those comparisons showed that ROADENT produced very similar design values for rutting. However, data suggests that the fatigue performance equation will require further modification to accurately predict fatigue reliability.