Browsing by Subject "Environmental impacts"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Economic and Environmental Costs and Benefits of Living Snow Fences: Safety, Mobility, and Transportation Authority Benefits, Farmer Costs, and Carbon Impacts(Minnesota Department of Transportation, 2012-02) Wyatt, Gary; Zamora, Diomy; Smith, David; Schroeder, Sierra; Paudel, Dinesh; Knight, Joe; Kilberg, Don; Current, Dean; Gullickson, Dan; Taff, SteveBlowing and drifting snow on Minnesota's roadways is a transportation efficiency and safety concern. Establishing standing corn rows and living snow fences improves driver visibility, road surface conditions, and has the potential to lower costs of road maintenance as well as accidents attributed to blowing and drifting snow. It also has the potential to sequester carbon and avoid the carbon emissions of snow removal operations. In recent years the Minnesota Department of Transportation (MnDOT) has paid farmers to leave standing corn rows to protect identified snow problem roadways. They have paid farmers $1.50 per bushel above market price. With increasing demand for corn to fuel the ethanol industry, paying $1.50 per bushel above market price may not be sufficient incentive for leaving standing corn rows. Also, with MnDOT’s memorandum of understanding with USDA to plant living snow fences through the Conservation Reserve Program (CRP), now is an opportune time to review MnDOT’s annual payment structure to farmers and prepare a new one. This project has: 1) developed a calculator to estimate payments for farmers that includes consideration of safety and snow removal cost savings; 2) estimated potential income from carbon payments; 3) worked closely with MnDOT engineers and plow operators, estimated the safety and snow removal costs and carbon emissions avoided by MnDOT through establishing living snow fences; and 4) evaluated farmers’ willingness to establish living snow fences and identified farmers/landowners’ constraints to adoption. Data is provided to MnDOT to assist staff in its decision making related to their Living Snow Fence Program.Item Environmental Impacts of Potassium Acetate as a Road Salt Alternative (University of Minnesota evaluation)(Minnesota Department of Transportation, 2022-07) Gulliver, John S.; Chun, Chan Lan; Weiss, Peter T.; Erickson, Andrew J.; Herb, William; Henneck, Jerry; Cassidy, KathrynRoad salt (NaCl) is used predominantly across the state for winter road anti-icing (as brine) and de-icing (as a solid) operations. Road salt is used because it is inexpensive and effective, but the thousands of tons used annually have resulted in increasing chloride concentrations of surface water bodies throughout Minnesota. In many cases, chloride concentrations are above regulatory limits, which results in the loss of aquatic biota and the water body being labeled as impaired. Thus, there is a need for one or more road salt alternatives (RSAs) that are effective, relatively inexpensive, and environmentally friendly. This report investigates the environmental impacts of potassium acetate (Kac), which is effective at lower temperatures than most other potential RSAs and is also less corrosive to steel than conventional road salt. Field measurements indicate that current applications of KAc do not have a substantial influence on biochemical oxygen demand (BOD) and microbiological water quality in Lake Superior. However, KAc concentrations due to application to 25% of the roads in the Miller Creek watershed are predicted to be above the toxic limit for water fleas. We believe that KAc could be used in the most precarious winter driving safety locations, but not over all watershed roads or for all storms. Acetate could be used as a general organic anti-icer, but in combination with another cation, such as sodium or magnesium.Item Study of De-icing Salt Accumulation and Transport Through a Watershed(Minnesota Department of Transportation, 2017-12) Herb, William; Janke, Ben; Stefan, HeinzThe accumulation of chloride in surface waters and groundwater from road deicing and other sources is a growing problem in northern cities of the U.S., including the Minneapolis-St. Paul metro area. To inform mitigation efforts, the transport of chloride in surface waters of a metro-area watershed (Lake McCarrons) was studied in this project to characterize chloride transport by surface runoff, the residence time of chloride in surface water, and how variations in weather influence chloride transport and accumulation processes. Monitoring work over three winters showed that the residence time of chloride in small, sewered watersheds varied from 14 to 26 days, depending on winter weather conditions, with 37 to 63% of chloride applied as de-icers exported in snowmelt and rainfall surface runoff. In contrast, a monitored highway ditch exported less than 5% of chloride applied to the adjacent road. Stormwater detention ponds were found to act as temporary storage for chloride, with persistent layers of high chloride content at the bottom. Chloride monitoring data and runoff simulations were used to explore the possibility of snowmelt capture as a chloride pollution mitigation strategy. We found that capturing snowmelt runoff close to source areas (roads and parking lots) yields the highest chloride concentrations and removal potential.Item Who owns the weather? The politics of cloud seeding in northern California.(2010-10) Whittlesey, EliciaAbstract summary not available