Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Algebraic de Rham cohomology"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Some invariants of nonsingular projective varieties and complete local rings
    (2015-05) Switala, Nicholas
    In this thesis, we establish some results concerning invariants of nonsingular projective varieties and complete local rings (in characteristic zero) which are defined using local cohomology and de Rham cohomology. We first study Lyubeznik numbers, invariants of local rings with coefficient fields defined using iterated local cohomology. If V is a nonsingular projective variety defined over a field of characteristic zero, we prove that the Lyubeznik numbers of the local ring at the vertex of the affine cone over V (viewing V as a closed subvariety of some projective space) are independent of the chosen embedding into projective space, by expressing these numbers in terms of the dimensions of the algebraic de Rham cohomology spaces of V. We next consider Matlis duality. We give an equivalent definition of the Matlis dual over a local ring with coefficient field k in terms of certain k-linear maps, which we call Sigma-continuous maps. We use this definition to develop a theory of Matlis duality for D-modules over formal power series rings in characteristic zero. If R = k[[x_1,..., x_n]] is such a ring, and D is the ring of k-linear differential operators on R, we show that the Matlis dual D(M) of any left D-module M can again be given a structure of left D-module; and if M is holonomic, the de Rham cohomology spaces of D(M) are k-dual to those of M. Finally, we examine the Hodge-de Rham spectral sequences associated with Hartshorne's algebraic de Rham homology and cohomology theories for a complete local ring A with a coefficient field k of characteristic zero. A priori, these objects depend on a choice of k-algebra surjection from a formal power series ring to A. We prove that, beginning with their E_2-terms, these spectral sequences depend only on A (and possibly the choice of coefficient field) and consist of finite-dimensional k-spaces, thus producing another set of numerical invariants of A. What is more, using our results on Matlis duality, we conclude that the E_2-objects in the homology and cohomology spectral sequences are k-dual to each other; whether this duality holds (as we conjecture) for the rest of the spectral sequences remains open.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues