Department of Mechanical Engineering
Persistent link for this communityhttps://hdl.handle.net/11299/109589
Browse
Browsing Department of Mechanical Engineering by Subject "Bioprinting"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Supporting data for "3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments"(2020-05-29) Meng, Fanben; Meyer, Carolyn M; Joung, Daeha; Vallera, Daniel A; McAlpine, Michael C; Panoskaltsis-Mortari, Angela; mcalpine@umn.edu; McAlpine, Michael C; McAlpine Research GroupThe data set includes the experimental data and the corresponding code files for " 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments", Fanben Meng, Carolyn M Meyer, Daeha Joung, Daniel A Vallera, Michael C McAlpine, Angela Panoskaltsis‐Mortari, Adv. Mater. 2019, 31 (10), 1806899. The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof-of-concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs.Item Supporting data for "3D Printed Functional and Biological Materials on Moving Freeform Surfaces"(2020-05-13) Zhu, Zhijie; Guo, Shuang-Zhuang; Hirdler, Tessa; Eide, Cindy; Fan, Xiaoxiao; Tolar, Jakub; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; McAlpine Research Group; Tolar LaboratoryThe data set includes the experimental data supporting the results reported in Zhu, Zhijie, Shuang‐Zhuang Guo, Tessa Hirdler, Cindy Eide, Xiaoxiao Fan, Jakub Tolar, and Michael C. McAlpine. "3D printed functional and biological materials on moving freeform surfaces." Advanced Materials, 30(23), 1707495. Conventional 3D printing technologies typically rely on open‐loop, calibrate‐then‐print operation procedures. An alternative approach is adaptive 3D printing, which is a closed‐loop method that combines real‐time feedback control and direct ink writing of functional materials in order to fabricate devices on moving freeform surfaces. Here, it is demonstrated that the changes of states in the 3D printing workspace in terms of the geometries and motions of target surfaces can be perceived by an integrated robotic system aided by computer vision. A hybrid fabrication procedure combining 3D printing of electrical connects with automatic pick‐and‐placing of surface‐mounted electronic components yields functional electronic devices on a free‐moving human hand. Using this same approach, cell‐laden hydrogels are also printed on live mice, creating a model for future studies of wound‐healing diseases. This adaptive 3D printing method may lead to new forms of smart manufacturing technologies for directly printed wearable devices on the body and for advanced medical treatments.