Browsing by Author "University of Minnesota, Department of Chemistry"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Step-Growth Polyesters with Biobased (R)-1,3-Butanediol(2020-08-26) DeRosa, Christopher A; Kua, Xiang Qi; Bates, Frank S; Hillmyer, Marc A; hillmyer@umn.edu; Hillmyer, Marc A; University of Minnesota, Department of ChemistryThese files contain primary data along with associated output from "Step-Growth Polyesters with Biobased (R)-1,3-Butanediol" by Hillmyer et al. We present the synthesis and characterization of polymers containing 1,3-butanediol, also known as butylene glycol. Butylene glycol (BG) can be prepared from petroleum or sugar-based feedstocks. Petrol-based BG (petrol-BG) is isolated as a racemic mixture, whereas the bio-based BG from sugar that we utilized (Bio-BG), is enantiopure upon purification (>99.7%). In the presence of a titanium catalyst, polyesters were prepared by transesterification polymerization between petrol- or Bio-BG and various aliphatic and aromatic diacid derivatives. Polymers were analyzed by size-exclusion chromatography (SEC), 1H NMR and 13C NMR spectroscopies, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The synthesized polyesters were statistical in nature, according to 13C NMR spectroscopy, a result of the asymmetric nature of the BG-starting material. As a result, many of the polyesters were amorphous in nature with low thermal glass transitions (Tg) and no melting points (Tm). In many of the polyester derivatives, the racemic petrol-based and enantiopure bio-based BG polymers were nearly identical in thermal performance. Differences arose in semi-crystalline polyesters with long, aliphatic backbones (e.g., 1,14-tetradecanediocic acid; C14 diacid) or regioregular 4-hydroxybenzoate polyesters. This suggests the polymer microstructure (statistical versus sequenced) and the optical activity (racemic versus enantiopure) are important determinates in establishing the structure-property relationships in BG-containing polyesters. This work establishes synthetic protocols and the foundation for materials based on BG-containing polymers.Item Supporting data for Dynamic Aliphatic Polyester Elastomers Crosslinked with Aliphatic Dianhydrides(2023-01-27) Meyersohn, Marianne S; Haque, Farihah M; Hillmyer, Marc A; hillmyer@umn.edu; Hillmyer, Marc, A; University of Minnesota, Department of ChemistryThese files contain primary data along with associated output from instrumentation supporting all results reported in Meyersohn, M. et. al. "Dynamic Aliphatic Polyester Elastomers Crosslinked with Aliphatic Dianhydrides." In Meyersohn, M. et. al. we found: Chemically crosslinked elastomers are a class of polymeric materials with properties that render them useful as adhesives, sealants, and in other engineering applications. Poly(γ-methyl-ε-caprolactone) (PγMCL) is a hydrolytically degradable and compostable aliphatic polyester that can be biosourced and exhibits competitive mechanical properties to traditional elastomers when chemically crosslinked. A typical limitation of chemically crosslinked elastomers is that they cannot be reprocessed; however, incorporation of dynamic covalent bonds (DCBs) can allow for bonds to reversibly break and reform under an external stimulus, usually heat. In this work we the study dynamic behavior and mechanical properties of PγMCL elastomers synthesized from aliphatic dianhydride crosslinkers. The crosslinked elastomers in this work were synthesized using the commercially available crosslinkers, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (CHDA), and 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) and three-arm hydroxy-telechelic PγMCL star polymers. Stress relaxation experiments on the crosslinked networks showed an Arrhenius dependence of viscosity with temperature with an activation energy of 118 ± 8 kJ/mol, which agrees well with the activation energy of the exchange chemistry obtained from small molecule model studies. Dynamic mechanical thermal analysis and rheological experiments confirmed the dynamic nature of the networks and provided insight into the mechanism of exchange (i.e., associative, or dissociative). Tensile testing showed that these materials can exhibit high strains at break and low Young’s moduli, characteristic of soft, strong elastomers. By controlling the exchange chemistry and understanding the effect of macromolecular structure on mechanical properties, we prepared high performing elastomers that can be rapidly reprocessed at moderately elevated temperatures.Item Supporting data for Impact of macromonomer molar mass and feed composition on branch distributions in model graft copolymerizations(2021-12-07) Zografos, Aristotelis; Lynd, Nathaniel A; Bates, Frank S; Hillmyer, Marc A; hillmyer@umn.edu; Hillmyer, Marc A; University of Minnesota, Department of ChemistryThese files contain primary data along with associated output from instrumentation supporting all results reported in the referenced manuscript. Graft polymers are useful in a versatile range of material applications. Understanding how changes to the grafted architecture, such as the grafting density (z), the side-chain degree of polymerization (Nsc), and the backbone degree of polymerization (Nbb), affect polymer properties is critical for accurately tuning material performance. For graft-through copolymerizations, changes to Nsc and z are controlled by the macromonomer degree of polymerization (NMM) and initial fraction of the macromonomer in the feed (fMM0), respectively. We show that changes to these parameters can influence the copolymerization reactivity ratios and, in turn, impact the side-chain distribution along a graft polymer backbone. Poly((±)-lactide) macromonomers with NMM values as low as ca. 1 and as high as 72 were copolymerized with a small-molecule dimethyl ester norbornene comonomer over a range of fMM0 values (0.1 ≤ fMM0 ≤ 0.8) using ring opening metathesis polymerization (ROMP). Monomer conversion was determined using 1H nuclear magnetic resonance spectroscopy, and the data were fit using terminal and non-terminal copolymerization models. The results from this work provide essential information for manipulating Nsc and z, while maintaining synthetic control over the side-chain distribution for graft-through copolymerizations.