Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Author

  1. Home
  2. Browse by Author

Browsing by Author "Saxena, Priyam"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cracking of the PCC layer in composite pavement.
    (2011-12) Saxena, Priyam
    An asphalt concrete (AC) overlay of a jointed plain concrete pavement (JPCP) is intended to extend the service life of the existing pavement structure. Also known as composite pavements, such pavements exhibit features of both rigid and flexible pavements. While behavior of rigid pavements is mainly elastic, behavior of asphalt layer is load-duration dependent. At the same time, temperature curling causes non-linear interaction with the foundation. The available models of composite pavement ignore the behavior of the load duration dependent asphalt layer when the composite pavement is subjected to a combination of temperature curling and traffic loads. This research concentrates on the improvement of structural modeling of composite pavements subjected to slow developing temperature curling and instantaneous traffic loads. A finite element (FE)-based model accounting for the viscoelastic behavior of the asphalt layer in composite pavements is developed and verified using comparisons with semi-analytical solutions obtained in this study. In order to maintain compatibility with the Mechanistic-Empirical Pavement Design Guide (MEPDG) framework, a simplified procedure is developed. The procedure uses a different asphalt modulus for curling than for axle loading and determines the total stresses in the pavement as a combination of the stresses from solutions of three elastic boundary value problems. The simplified procedure is compared with the existing MEPDG model for fatigue cracking in AC overlaid JPCP. A framework for the implementation of the proposed model into the MEPDG is also developed.
  • Loading...
    Thumbnail Image
    Item
    Design and Construction Guidelines for Thermally Insulated Concrete Pavements
    (Minnesota Department of Transportation, 2013-01) Khazanovich, Lev; Balbo, Jose T.; Johanneck, Luke; Lederle, Rita; Marasteanu, Mihai; Saxena, Priyam; Tompkins, Derek; Vancura, Mary; Watson, Mark; Harvey, John; Santero, Nicholas J.; Signore, James
    The report describes the construction and design of composite pavements as a viable design strategy to use an asphalt concrete (AC) wearing course as the insulating material and a Portland cement concrete (PCC) structural layer as the load-carrying material. These pavements are intended for areas with heavy trucks and problem soils to increase the service life and minimize maintenance. The project focused specifically on thermally insulated concrete pavements (TICPs) (that is, composite thin AC overlays of new or structurally sound existing PCC pavements) and developed design and construction guidelines for TICPs. Specific research objectives include determining behavior of the layers of the TICP system, understanding life-cycle costs and the feasibility of TICPs, and incorporating the results into design and construction guidelines. Both construction and design guidelines are considered in light of the construction and performance of TICP test sections at the Minnesota Road Research project (MnROAD).

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues