Browsing by Author "Postiglione, William M"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Data for Doping- and Strain-Dependent Electrolyte-Gate-Induced Perovskite to Brownmillerite Transformation in Epitaxial La1−xSrxCoO3−δ Films(2021-11-17) Chaturvedi, Vipul; Postiglione, William M; Chakraborty, Rohan D; Yu, Biqiong; Tabiś, Wojciech; Hameed, Sajna; Biniskos, Nikolaos; Jacobson, Andrew; Zhang, Zhan; Zhou, Hua; Greven, Martin; Ferry, Vivian E; Leighton, Chris; leighton@umn.edu; Leighton, Chris; Chemical Engineering and Materials Science, University of Minnesota; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science; Advanced Photon Source, Argonne National Laboratory; School of Physics and Astronomy, University of MinnesotaElectrolyte-gate-induced perovskite to brownmillerite transformations in La1-xSrxCoO3-d (LSCO) has been shown to be a facile technique to toggle between disparate electronic and magnetic phases in a single perovskite oxide thin film. Here we study the doping (Sr concentration), and strain (epitaxially imparted from the substrate) dependence of this topotactic transformation in LSCO thin films across almost the entire phase diagram. This repository page serves as a place to store the Figure plots and raw data from the cited publication.Item Data for Room-Temperature Valence Transition in a Strain-Tuned Perovskite Oxide(2022-11-09) Chaturvedi, Vipul; Ghosh, Supriya; Gautreau, Dominique; Postiglione, William M; Dewey, John E; Quarterman, Patrick; Balakrishnan, Purnima P; Kirby, Brian J; Zhou, Hua; Cheng, Huikai; Huon, Amanda; Fitzsimmons, Michael R; Korostynski, Caroline; Jacobson, Andrew; Figari, Lucca; Barriocanal, Javier G; Birol, Turan; Mkhoyan, K Andre; Leighton, Chris; leighton@umn.edu; Leighton, Chris; Leighton Electronic and Magnetic Materials LabCobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-delta, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. This dataset contains all digital data published in the Nature Communications paper of the same name.Item Supporting data for Wide-range continuous tuning of the thermal conductivity of La0.5Sr0.5CoO3−δ films via room-temperature ion-gel gating(2023-04-19) Zhang, Yingying; Postiglione, William M; Xie, Rui; Zhang, Chi; Zhou, Hao; Chaturvedi, Vipul; Heltemes, Kei; Zhou, Hua; Feng, Tianli; Leighton, Chris; Wang, Xiaojia; wang4940@umn.edu; Wang, Xiaojia; Materials Research Science & Engineering CenterThese files contain data along with associated output from instrumentation supporting all results reported in Wide-range continuous tuning of the thermal conductivity of La0.5Sr0.5CoO3-delta films via room-temperature ion-gel gating. Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability to continuously tune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-delta (LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (with ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (with = 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications. Authors to whom correspondence should be addressed are Chris Leighton (leighton@umn.edu) and Xiaojia Wang (wang4940@umn.edu).