Browsing by Author "Newstrom, Bryan"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Advanced BRT Volume I: Innovative Technologies for Dedicated Roadways(University of Minnesota, Center for Transportation Studies, 2008-06) Alexander, Lee; Cheng, Pi-Ming; Gorjestani, Alec; Menon, Arvind; Newstrom, Bryan; Shankwitz, CraigPresented herein is a novel approach to vehicle positioning using RFID technology (Vehicle Positioning System, or VPS). By installing in the road RFID tags encoded with road name or other designation, the specific lane, the direction of travel, and the longitudinal distance from a known reference, a vehicle outfitted with an RFID tag reader can determine its position each time it passes over and reads a tag, thus, providing precisely the information needed for many ITS applications - the longitudinal position of a vehicle in a particular lane on a particular road of the transportation network. Knowledge of lane of travel and distance from a known reference provided by VPS enables many transit applications, including headway control of bus platoons, merge/lane change assistance, rear-end collision avoidance, and bay mark-up applications. For lane assist systems, VPS and a lateral positioning system can augment DGSP in urban areas, providing seamless operation where DGPS accuracy is insufficient for lane keeping. This research focused on designing and building a prototype VPS using existing third party RFID hardware. The hardware was evaluated and characterized to determine if it could be used to create a viable, robust VPS. After the development and characterization of the positioning system, an implementation of a rear-end collision avoidance system was built to demonstrate the use of VPS. Finally, a more sophisticated rear-end collision avoidance system was designed and simulated, after which its implications to the accuracy specifications for VPS were analyzed.Item Advanced BRT Volume II: Innovative Technologies for Dedicated Roadways(University of Minnesota, Center for Transportation Studies, 2008-06) Cheng, Pi-Ming; Donath, Max; Gorjestani, Alec; Menon, Arvind; Newstrom, Bryan; Shankwitz, CraigPresented herein is a novel approach to vehicle positioning using RFID technology (Vehicle Positioning System, or VPS). By installing in the road RFID tags encoded with road name or other designation, the specific lane, the direction of travel, and the longitudinal distance from a known reference, a vehicle outfitted with an RFID tag reader can determine its position each time it passes over and reads a tag, thus, providing precisely the information needed for many ITS applications – the longitudinal position of a vehicle in a particular lane on a particular road of the transportation network. Knowledge of lane of travel and distance from a known reference provided by VPS enables many transit applications, including headway control of bus platoons, merge/lane change assistance, rear-end collision avoidance, and bay mark-up applications. For lane assist systems, VPS and a lateral positioning system can augment DGSP in urban areas, providing seamless operation where DGPS accuracy is insufficient for lane keeping. This research focused on designing and building a prototype VPS using existing third party RFID hardware. The hardware was evaluated and characterized to determine if it could be used to create a viable, robust VPS. After the development and characterization of the positioning system, an implementation of a rear-end collision avoidance system was built to demonstrate the use of VPS. Finally, a more sophisticated rear-end collision avoidance system was designed and simulated, after which its implications to the accuracy specifications for VPS were analyzed.Item Bus Rapid Transit Technologies: Assisting Drivers Operating Buses on Road Shoulders: Volume 1(2003-12) Alexander, Lee; Cheng, Pi-Ming; Donath, Max; Gorjestani, Alec; Newstrom, Bryan; Shankwitz, Craig; Trach, WalterThe FTA has identified the concept of Bus Rapid Transit as a means to increase the efficiency of transit operations while maintaining transit's proven safety record. According to the FTA website www.fta.dot.gov, "BRT combines the quality of rail transit and the flexibility of buses. It can operate on exclusive transitways, HOV lanes, expressways, or ordinary streets. A BRT system combines intelligent transportation systems technology, priority for transit, cleaner and quieter vehicles, rapid and convenient fare collection, and integration with land use policy." Because of the limited right-of-way available to build new (and possibly dedicated) lanes for BRT operations, the FTA has identified lane assist as an emerging technology, which will enable deployment of BRT systems. The premise behind lane assist technology is to increase the safety of BRT vehicles as they operate in the more unique environments, such as narrow lanes. Lane assist technology will allow BRT vehicles to operate at the desired higher operating speeds while maintaining the safety of the passengers, BRT vehicle and the motoring public.Item Driver Assistive Systems for Rural Applications: A Path to Deployment, Volume 1(2005-08-01) Cheng, Pi-Ming; Gorjestani, Alec; Newstrom, Bryan; Shankwitz, Craig; Trach, WalterDeployment of any system is driven by market demand and system cost. Initial deployment of the Intelligent Vehicle Lab Snowplow Driver Assistive System (DAS) was limited to a 45 mile section of Minnesota Trunk Highway 7 west of I-494 and east of Hutchinson MN. To better gage demand and functionality, St. Louis and Polk Counties in Minnesota operationally tested the system during the winter of 2003-2004; Polk County also tested during the winter of 2004-2005. Operational benefits were found to be drastically different in the two counties. Low visibility was not an issue with the St. Louis County snowplow routes, so the system offered few benefits. In contrast the topology of Polk county is flat, with almost no trees. High winds combined with few visual cues create significant low visibility conditions. Polk County was pleased with their original system, and obtained a second system and tested it operationally during the 2004-2005 winter. The experience of these two counties is documented in this volume, Volume One. A key component of the DAS is a high accuracy digital map. With the exception of the mapping process, the present cost of the DAS is well documented. Volume Two describes a system designed to collect and process geospatial data to be used by driver assitive system, and the costs and time associated with collecting map data, and creating a map from that data. With cost data complete, counties can determine whether to acquire these systems.Item Driver Assistive Systems for Snowplows(2003-03-01) Gorjestani, Alec; Alexander, Lee; Newstrom, Bryan; Cheng, Pi-Ming; Sergi, Mike; Shankwitz, Craig; Donath, MaxA comprehensive driver assistive system which utilizes dual frequency, carrier phase real time kinematic (RTK) differential global positioning system (DGPS), high accuracy digital geospatial databases, advanced automotive radar, and a driver interface with visual, haptic, and audible components has been used to assist specialty vehicle operators perform their tasks under these low visibility conditions. The system is able to provide a driver with high fidelity representations of the local geospatial landscape through a custom designed Head Up Display (HUD). Lane boundaries, turn lanes, intersections, mailboxes, and other elements of the geospatial landscape, including those sensed by automotive radar, are projected onto the HUD in the proper perspective. This allows a driver to safely guide his or her vehicle in low to zero visibility conditions in a desired lane while avoiding collisions. Four areas of research, are described herein: driver assistive displays, the integration of a geospatial database for improved radar processing, snowplow dynamics for slippery conditions, and a virtual bumper based collision avoidance/gang plowing system. (Gang plowing is the flying in formation of snowplows as a means to rapidly clear multilane roads.) Results from this research have vastly improved the performance and reliability of the driver assistive system. Research on the use of a specialized driver assistance system to assist specialty vehicle operators in low visibility conditions, including the design of a custom Head Up Display (HUD) projecting elements of the landscape in proper perspective. Driver assistive displays, the integration of a geospatial database for improved radar processing, snowplow dynamics for slippery conditions, and a virtual bumper based on collision avoidance/gang plowing system are discussed.Item Dual Frequency, Carrier Phase Differential GPS Augmentation(Center for Transportation Studies, 2011-05) Arpin, Eddie; Newstrom, Bryan; Shankwitz, CraigFor many roadway applications, high-accuracy in-lane level vehicle position information is desired. Unfortunately, in many roadway environments GPS dead zones hinder sufficient GPS position accuracy. These roadway environments include underpasses, tree canopies, urban canyons, and any other locations where the view to the sky is limited. This report introduces a high-accuracy position estimator that augments GPS in areas where short-term (<200 meter and < 15 second) GPS dead zones exist. The position estimator fuses differential GPS (DGPS) position measurements, yaw rate measurements, and two-dimensional velocity measurements to provide in-lane level accuracy position estimates. The estimator increases the availability of high-accuracy position estimates for applications that demand continuous high-accuracy in-lane level positioning, such as lane departure warning systems. The position estimator was evaluated and the position accuracy was quantified. Seven vehicles were outfitted with the position estimator system. Data was collected for 460 DGPS outages and the accuracy of the system was analyzed. From the analysis the position accuracy of the estimator could be approximated based on the distance and time since the DGPS outage began. This analysis provides a level of confidence in the position estimates as a function of distance and time elapsed from the start of a DGPS outage. This level of confidence measure allows applications to have a means to reject position estimates based on the outage time and distance if those estimates are projected to have lower accuracy than the application requires.Item Macroscopic Review of Driver Gap Acceptance and Rejection Behavior at Rural Thru-Stop Intersections in the US - Data Collection Results in Eight States: CICAS-SSA Report #3(2010-08) Gorjestani, Alec; Menon, Arvind; Cheng, Pi-Ming; Newstrom, Bryan; Shankwitz, Craig; Donath, MaxCrashes at rural thru-stop intersections arise primarily from a driver attempting to cross or enter the mainline traffic stream after failing to recognize an unsafe gap condition. Because the primary cause of these crashes is not failure to stop, but failure to recognize an unsafe condition, the US DOT FHWA, MnDOT, and the University of Minnesota ITS Institute undertook the CICAS-SSA program. CICAS-SSA uses roadside radar sensors, a computer processor and algorithms to determine unsafe conditions, and an active LED icon based sign to provide timely alerts and warnings which are designed to reduce the frequency of crashes at rural expressway intersections. These rural, thru-stop crashes are problems in many states. In conjunction with the CICAS-SSA program, MnDOT and the University of Minnesota led a nine-state (CA, GA, IA, MI, MN, NC, NH, NV, and WI) pooledfund study whereby driver behavior data at rural thru-stop intersections was collected by the Minnesota Mobile Intersection Surveillance System (MMISS). The ultimate goal of the pooled fund study and the analysis of that data described here, was to identify whether drivers in different regions of the county exhibit different gap acceptance/rejection behavior, and if different driver behaviors are identified, determine whether they are different enough to inhibit the deployment of a common CICAS-SSA design throughout the US. The analysis of the data indicated that the system can indeed be deployed nationally.Item Technology Enabling Near-Term Nationwide Implementation of Distance Based Road User Fees(University of Minnesota Center for Transportation Studies, 2009-06) Donath, Max; Gorjestani, Alec; Shankwitz, Craig; Hoglund, Richard; Arpin, Eddie; Cheng, PiMing; Menon, Arvind; Newstrom, BryanThis report describes a system meant for near-term deployment that directly determines the distance traveled by a vehicle and uses this as a basis for charging a fee that reflects road use. An in-vehicle device with access to the vehicle data bus and power through a single standard connector available on all passenger vehicles since 1996, electronically calculates the distance and then securely communicates relevant information to a “back office” for processing and transferring accumulated fees from the user to the appropriate government jurisdiction. Also described are means for providing payment (and receiving credit for motor fuel use taxes paid at the pump) while also ensuring compliance, enforcement, transparency and privacy. Communication is via text messaging, available wherever cellular service is accessible. No new wireless infrastructure is needed. The in-vehicle device distinguishes distance traveled by state or by other regions of interest e.g., rural vs. urban areas, using the same cellular technology that is used for communications. Aggregating distance based on rural vs. urban travel can facilitate different pricing policies for these different road users. Neither a GPS receiver nor longitude/latitude position data is necessary. However, higher resolution position sensing can be added to the core platform as needed based on policy objectives, e.g., to consider alternate pricing for specific road facilities.