Browsing by Author "Cornelissen, Johannes H C"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The global spectrum of plant form and function(2016) Díaz, Sandra; Kattge, Jens; Cornelissen, Johannes H C; Wright, Ian J; Lavorel, Sandra; Dray, Stéphane; Reu, Björn; Kleyer, Michael; Wirth, Christian; Prentice, I. Colin; Garnier, Eric; Bönisch, Gerhard; Westoby, Mark; Poorter, Hendrik; Reich, Peter B; Moles, Angela T; Dickie, John; Gillison, Andrew N; Zanne, Amy E; Chave, Jérôme; Wright, S. Joseph; Sheremet’ev, Serge N; Jactel, Hervé; Baraloto, Christopher; Cerabolini, Bruno; Pierce, Simon; Shipley, Bill; Kirkup, Donald; Casanoves, Fernando; Joswig, Julia S; Günther, Angela; Falczuk, Valeria; Rüger, Nadja; Mahecha, Miguel D; Gorné, Lucas DEarth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today’s terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.Item The worldwide leaf economics spectrum(Nature Publishing Group, 2004) Wright, Ian J; Reich, Peter B; Westoby, Mark; Ackerly, David D; Baruch, Zdravko; Bongers, Frans; Cavender-Bares, Jeannine; Chapin, Terry; Cornelissen, Johannes H C; Diemer, Matthias; Flexas, Jaume; Garnier, Eric; Groom, Philip K; Gulias, Javier; Hikosaka, Kouki; Lamont, Byron B; Lee, Tali; Lee, William; Lusk, Christopher; Midgley, Jeremy J; Navas, Marie-Laure; Niinemets, Ülo; Oleksyn, Jacek; Osada, Noriyuki; Poorter, Hendrik; Poot, Pieter; Prior, Lynda; Pyankov, Vladimir I; Roumet, Catherine; Thomas, Sean C; Tjoelker, Mark G; Veneklaas, Erik J; Villar, RafaelBringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.