Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Author

  1. Home
  2. Browse by Author

Browsing by Author "Arepalli, Uma Maheswar"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Experimental and Computational Investigations of High-Density Asphalt Mixtures
    (Minnesota Department of Transportation, 2019-10) Marasteanu, Mihai; Le, Jia-Liang; Hill, Kimberly; Yan, Tianhao; Man, Teng; Turos, Mugurel; Barman, Manik; Arepalli, Uma Maheswar; Munch, Jared
    Compaction of asphalt mixtures represents a critical step in the construction process that significantly affects the performance and durability of asphalt pavements. In this research effort, the compaction process of asphalt mixtures was investigated using a combined experimental and computational approach. The primary goal was to understand the main factors responsible for achieving good density and was triggered by the success of a recently proposed Superpave 5 mix design method. First, a two-scale discrete element method (DEM) model was developed to simulate the compaction process of asphalt mixtures. The computational model was anchored by a fluid dynamics-discrete element model, which is capable of capturing the motion of aggregates in the viscous binder. The model was then calibrated and validated by a series of experiments, which included rheological tests of the binder and a compaction test of the mixture. It was concluded that the compaction process was significantly influenced by the rheological properties of the fine aggregate matrix and by the sphericity of the coarse aggregates. Finally, the mechanical properties of two high-density mixtures were determined and compared with mechanical properties of mixtures used for MnROAD 2017 National road Research Alliance (NRRA) test sections. It was found that the properties of high-density mixtures as a group were not significantly different compared to the properties of conventional mixtures.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues