Browsing by Author "An, Kun"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Analysis of the acceptance of park-and-ride by users: A cumulative logistic regression approach(Journal of Transport and Land Use, 2019) Huang, Kai; Liu, Zhiyuan; Zhu, Ting; Kim, Inhi; An, KunPark-and-ride (P&R) schemes are an important way of increasing the public transport mode share, which relieves the negative impact caused by excessive automobile usage. Several existing studies have been conducted in the past to explore the factors that can influence the acceptance of P&R by travelers. However, quantitative analyses of the pertinent factors and rates of traveler choice are quite rare. In this paper, the data collected from a survey in Melbourne, Australia, is used to analyze the acceptance of P&R by travelers going to the central business district (CBD). In particular, we explore the influence that specific factors have on the choice of travel by those who are currently using P&R. The results indicate that the parking fee in the CBD area, travel time on public transport, and P&R transfer time affect traveler use of P&R. A quantitative assessment of the impact of these three factors is conducted by using a cumulative logistic regression model. Results reveal that the P&R transfer time has the highest sensitivity while public transport travel time has the least. To maximize the use of P&R facilities and public transport, insights into setting parking fees and designing P&R stations are presented.Item Positioning, Planning and Operation of Emergency Response Resources and Coordination between Jurisdictions(Center for Transportation Studies, University of Minnesota, 2018-02) Xie, Siyang; An, Kun; Ouyang, YanfengRailroad related rail incidents, particularly those involving hazardous material (hazmat), cause severe consequences and pose significant threats to safety, public health and the environment. Rail safety is a huge issue in Midwestern states such as Illinois, Wisconsin, and Minnesota. This project aims at strategically positioning and allocating emergency responders and resources in anticipation of potential accidents in a region that may be impacted by rail incidents. Mathematical models and solution techniques are developed to enable systematic analysis of the emergency response system associated with railroad incidents; e.g., to strategically position and allocate emergency responders and resources in anticipation of potential accidents along spatially distributed railroad networks. We consider the added complexity due to vulnerability of the emergency response system itself, such as the risk of disruptions to the transportation network for first-responders (e.g., blockage of railroad crossings). The outcomes from these tasks will provide fundamental understanding, operational guidelines, and practical tools to policy makers (e.g., federal and state agencies) to induce socio-economically favorable system that support safe and efficient railroad industry operations.