MITPPC Research publications
Persistent link for this collectionhttps://hdl.handle.net/11299/241449
Browse
Browsing MITPPC Research publications by Author "Aukema, Brian H."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Colonization and reproduction of potential competitors with mountain pine beetle in baited logs of a new host for mountain pine beetle, jack pine(Forest Ecology and Management, 2021-10) Smith, Zach M.; Chase, Kevin D.; Takagi, Esturo; Kees, Aubree M.; Aukema, Brian H.The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a bark beetle that is native to pine forests of western North America and the Black Hills of South Dakota. Recent eastward range expansion into stands of jack pine (Pinus banksiana) and associated hybrids with lodgepole pine (Pinus contorta) in western Canada has created concern that the insect will continue moving eastward. In the Great Lakes region, mountain pine beetle would encounter novel species of pines and associated insect fauna; interactions with which are largely unexplored. We baited logs of jack pine with lures for mountain pine beetle and Ips grandicollis (Eichhoff) alone and in combination in a 2 × 2 factorial design in the Black Hills of South Dakota. Both insects occur in this region, but not jack pine, a common species in the Great Lakes region of North America at risk of invasion by mountain pine beetle. We measured attraction and reproduction of insects that colonized the logs. Ips grandicollis were significantly more attracted to logs of jack pine baited with their aggregation pheromone, ipsenol, than unbaited logs or those baited with pheromones of mountain pine beetle and myrcene, a host volatile. Colonization by I. grandicollis was inhibited by the presence of lures for mountain pine beetle. We also found larvae of longhorn borers, likely Monochamus spp., infesting logs. These borers, which act as competitors and facultative predators of bark beetles, were significantly attracted to logs baited with ipsenol over those baited with lures for mountain pine beetle. Our results suggest that if mountain pine beetle were to invade the Great Lakes Region, common bark and wood-boring species such as I. grandicollis and longhorn borers would not compete with mountain pine beetles at tree-colonizing stages, and thus could pose little resistance to invasion.Item Defensive response of evolutionarily naïve Pinus sylvestris to the mountain pine beetle fungal associate Grosmannia clavigera in comparison to Pinus ponderosa(Forest Ecology and Management, 2023-10) Chase, Kevin D.; Rynders, Kathryn J.; Maddox, Mitchell P.; Aukema, Brian H.Mountain pine beetle (MPB, Dendroctonus ponderosae) is a destructive pest of pine forests in western North America. This insect is currently expanding its range across the Canadian boreal forest towards eastern North America, where a suite of novel pine species will be encountered. One species of pine without prior association with MPB is Pinus sylvestris (Scots pine), which is native to Europe and naturalized in parts of central and eastern North America. Here, we take advantage of a unique opportunity in the Black Hills of South Dakota where an isolated, planted, and mature stand of P. sylvestris and native Pinus ponderosa (ponderosa pine) co-exist within the range of MPB. We conducted a punch-inoculation experiment to determine the chemical response of P. sylvestris from a blue-stain fungus associated with MPB, Grosmannia clavigera, and compared the response to that of P. ponderosa. We found that P. sylvestris had a higher localized monoterpene response than P. ponderosa in response to inoculation, but a lower sesquiterpene response. Among the significant monoterpenes associated with MPB behavior, limonene, 3-carene, and myrcene had a larger localized response in P. sylvestris than P. ponderosa; lower levels of 4-allylanisole were found in P. sylvestris. Fungal inoculation did not induce a stronger terpenoid response than mechanical wounding without inoculation, indicating that P. sylvestris responds to mechanical damage similarly as to fungal inoculation. Pinus sylvestris may provide one alternative plantation species for timber production in the Great Lakes Region following mountain pine beetle incursion, however, more evaluation is needed to determine the role of this species in future plantings.Item Effects of systemic insecticides against emerald ash borer on ash seed resources(Forest Ecology and Management, 2022-05) Mwangola, Dorah M.; Kees, Aubree M.; Grosman, Donald M.; Aukema, Brian H.Emerald ash borer (EAB), Agrilus planipennsis, is an invasive insect that was accidentally introduced to North America from Asia. It continues to spread rapidly across North America and is responsible for the death of tens of millions of ash trees (Fraxinus spp.). All North American species of ash are susceptible to EAB infestation threatening the ash resource and diversity. Measures such as systemic insecticide treatments in urban forests and collection of ash seeds provide a means of conserving genetic resources. Understanding the effect these insecticides could have on ash seed viability is therefore important to informing conservation efforts. Another potential concern for effective conservation of ash seeds is the ash seed weevil (Lignyodes spp.) whose larvae develop in and feed on ash seeds. However, the effect of EAB insecticides on weevil infestation levels in ash seeds has not been investigated to date. Our study investigated the effect of two systemic insecticide treatments, azadirachtin and emamectin benzoate, on levels of ash seed weevil infestation, seed germination ability, and seed germination time of seeds collected from boulevard trees of green ash (F. pennsylvanica Marsh.) in cities in Minnesota from 2017 to 2019. Weevil infestation levels were similar between untreated and treated trees in 2017 and 2018. In 2019, the weevil prevalence in untreated trees was on average 17% and 30% higher than in azadirachtin and emamectin benzoate-treated trees respectively. Weevil infestation data suggests that repeated insecticide treatments at labelled rates can reduce seed weevils that target germplasm. Additionally, insecticide treatments did not affect ash seed germination rates between treatments. These results suggest that systemic insecticides may be effective at conserving the seed resource in addition to known benefits such as canopy preservation.Item Foliage Type and Deprivation Alters the Movement Behavior of Late Instar European Gypsy Moth Lymantria dispar (Lepidoptera: Erebidae)(Journal of Insect Behavior, 2019-04) Wittman, Jacob T.; Aukema, Brian H.The movement behavior of insects characterizes their ability to disperse, establish, compete, forage, seek mates, and ultimately reproduce. Understanding the movement of invasive insects is particularly important for developing management policies. We conducted laboratory experiments in Minnesota, USA to determine how host type and food deprivation affected the movement of late instars of the European gypsy moth Lymantria dispar (Lepidoptera: Erebidae), an invasive forest insect in North America. Gypsy moth larvae can feed on over 300 species of trees and shrubs. During outbreaks food availability to conspecifics can become severely restricted as developing instars consume increasing amounts of foliage. Larvae were raised on one of five foods: Quercus macrocarpa , Larix laricina , Acer platanoides , Acer saccharinum , or artificial diet. Subsets of fifth and sixth instar larvae were also deprived of food for zero, 24, or 48 h. After the food deprivation period, late instar larvae were placed on a servosphere and their movement paths were recorded. Larvae raised on Q. macrocarpa , a preferred host, were unlikely to move unless starved. They moved farther the longer they were starved. In contrast, when larvae were raised on less preferred hosts, they were more likely to move without prior starvation. These results suggest that feeding on optimal hosts provides gypsy moth larvae with the energy and nutritional requirements to move more quickly to more food when there is none immediately available.Item The Impact of Systematic Insecticides Against Emerald Ash Borer on Phenology of Urban Ash Trees(Journal of Economic Entomology, 2023-02) Mwangola, Dorah M.; Kees, Aubree M.; Grosman, Donald M.; Aukema, Brian H.The continued threat of emerald ash borer (Agrilus planipennis; EAB) to North American ash trees (Fraxinus spp.) has necessitated the use of systemic insecticide treatments as a primary control strategy against EAB in urban centers. Altered tree phenology due to systemic insecticides could mediate nontarget effects on other insect species, such as seed weevils or leaf-feeders, but whether such injections alter phenological events has not been studied.This study assessed the effects of systemic injections of emamectin benzoate or azadirachtin relative to untreated controls on the spring and fall phenology of mature green ash trees in Saint Paul, MN, USA from fall 2017 to spring 2019. EAB was first detected in this area in 2009.Trees showed minor, visible signs of EAB infestation at study initiation, but not mortality. We examined six phenological events: bud swelling, budburst, flowering, leaf out, leaf color change, and leaf abscission using a visual survey protocol.The timing of phenological events was similar across the different treatments for all but two of events; budburst and flowering. Budburst and flowering occurred 7 d and 5 d earlier, respectively, in treated trees than untreated trees. Given symptoms observed, we posit that delays in these events in untreated trees were due to infestations of EAB and the treatments of emamectin benzoate or azadiractin simply preserved the original phenology.The results from this study suggest that systemic insecticides may mitigate changes in ash tree phenology such as delayed leaf out that may be early symptoms of emerald ash borer.