Analysis of Elk data from WA

Programmer: John Fieberg

R Code in support of Fieberg et al. Do Capture and Survey Methods Influence Whether Marked Animals are Representative of Unmarked Animals?
Steps:

  1. Created new input files (without headers or lines at the end, so I could read in the data using functions in RMark)
  2. Transformed the capture history character variable into a “long” data frame with 1 observation for each survey in which the capture field was not “.”
  3. Created a Year variable assoicated with each survey. The first 2 obs. go with year 1, the next two with year 2, etc…
  4. Created a capure year variable: the value was set equal to the first year in which the capture history was a 0 or 1.
  5. Modeled detection (0,1) as a function of time since capture, included a random effect for individual, and other relevant predictors.
  rm(list = ls())
# Load libraries
  library(RMark)
  library(knitr)
  library(lme4)
  library(ggplot2)
  library(doBy)

# set global option for output
  opts_chunk$set(comment=NA, fig.width=6, fig.height=6)

Mt. St. Helens data

  MSH<-import.chdata("../Data/MSH.inp", header=F, field.names=c("ch", "AdF", "BA"))
  head(MSH)
                             ch AdF BA
 533 149.550 COWEEMAN  11......   1  0
 535 150.110 COWEEMAN  111110..   1  0
 505 150.390 COWEEMAN  11110111   1  0
 537 150.450 COWEEMAN  0000....   0  1
 536 150.030 COWEEMAN  10......   1  0
 525 150.260 COWEEMAN  11100000   1  0

Create data set for R

There are 8 capture histories (some of which are missing), create a “long” data set from this file.

  cdat.MSH<-NULL
  for(i in 1:nrow(MSH)){
    temp<-MSH[i,]
    first.cap=NA
    for(j in 1:8){
      temp2<-as.numeric(substr(temp$ch,j,j))
      if(is.na(temp2)==F){
        if(is.na(first.cap)==T){first.cap<-(j+1)%/%2}#first.cap<-j  note, first captures were all in week 1
        cdat.MSH<-rbind(cdat.MSH, data.frame(id=rownames(temp), ID=i, year=(j+1)%/%2, week=(j+1)%%2+1, observed=temp2, first.cap=first.cap, IAdF=temp$AdF))}
    }
  }

# Time since capture (assumes week=1 or 2 does not matter...)
  cdat.MSH$time.cap<-cdat.MSH$year-cdat.MSH$first.cap
  head(cdat.MSH, 20)
                       id ID year week observed first.cap IAdF time.cap
1   533 149.550 COWEEMAN   1    1    1        1         1    1        0
2   533 149.550 COWEEMAN   1    1    2        1         1    1        0
3   535 150.110 COWEEMAN   2    1    1        1         1    1        0
4   535 150.110 COWEEMAN   2    1    2        1         1    1        0
5   535 150.110 COWEEMAN   2    2    1        1         1    1        1
6   535 150.110 COWEEMAN   2    2    2        1         1    1        1
7   535 150.110 COWEEMAN   2    3    1        1         1    1        2
8   535 150.110 COWEEMAN   2    3    2        0         1    1        2
9   505 150.390 COWEEMAN   3    1    1        1         1    1        0
10  505 150.390 COWEEMAN   3    1    2        1         1    1        0
11  505 150.390 COWEEMAN   3    2    1        1         1    1        1
12  505 150.390 COWEEMAN   3    2    2        1         1    1        1
13  505 150.390 COWEEMAN   3    3    1        0         1    1        2
14  505 150.390 COWEEMAN   3    3    2        1         1    1        2
15  505 150.390 COWEEMAN   3    4    1        1         1    1        3
16  505 150.390 COWEEMAN   3    4    2        1         1    1        3
17  537 150.450 COWEEMAN   4    1    1        0         1    0        0
18  537 150.450 COWEEMAN   4    1    2        0         1    0        0
19  537 150.450 COWEEMAN   4    2    1        0         1    0        1
20  537 150.450 COWEEMAN   4    2    2        0         1    0        1

Plots and analyses

Lets just plot the proportion seen versus year since capture.

  par(bty="L")
  plot(0:3,prop.table(table(cdat.MSH$observed, cdat.MSH$time.cap), 2)[2,], ylim=c(0,1), xlab="Years since capture", ylab="Proportion observed")  

plot of chunk unnamed-chunk-5

No apparent relationship, but to be sure, lets fit a few mixed binary regression models.

Mixed models

First, look at a model with Year (as a factor), Week, ID (random)+time since capture + AdF

  fit.temp1a<-glmer(observed~time.cap+as.factor(week)+as.factor(year)+(1|id)+IAdF, family=binomial(), data=cdat.MSH)
  summary(fit.temp1a)
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: observed ~ time.cap + as.factor(week) + as.factor(year) + (1 |  
    id) + IAdF
   Data: cdat.MSH

     AIC      BIC   logLik deviance df.resid 
   782.9    817.6   -383.5    766.9      558 

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-1.696 -0.895  0.596  0.875  1.361 

Random effects:
 Groups Name        Variance Std.Dev.
 id     (Intercept) 0.507    0.712   
Number of obs: 566, groups:  id, 142

Fixed effects:
                 Estimate Std. Error z value Pr(>|z|)  
(Intercept)       -0.1291     0.3220   -0.40    0.689  
time.cap           0.0505     0.1274    0.40    0.692  
as.factor(week)2  -0.0964     0.1791   -0.54    0.590  
as.factor(year)2  -0.1211     0.2972   -0.41    0.684  
as.factor(year)3  -0.0568     0.3173   -0.18    0.858  
as.factor(year)4  -0.4900     0.3513   -1.40    0.163  
IAdF1              0.4502     0.2662    1.69    0.091 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) tim.cp as.fctr(w)2 as.fctr(y)2 as.()3 as.()4
time.cap     0.197                                             
as.fctr(w)2 -0.276  0.001                                      
as.fctr(y)2 -0.537 -0.259  0.001                               
as.fctr(y)3 -0.573 -0.483  0.000       0.637                   
as.fctr(y)4 -0.545 -0.570  0.004       0.609       0.724       
IAdF1       -0.640 -0.159 -0.005       0.026       0.081  0.076

Not much there, but perhaps a significant sex effect (AdF). Also, there is quite a bit of variation from individual to individual. Lets try modeling year and week as random

  fit.temp1b<-glmer(observed~time.cap+(1 | year/week)  +(1|id)+IAdF, family=binomial(), data=cdat.MSH)
  summary(fit.temp1b)
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: observed ~ time.cap + (1 | year/week) + (1 | id) + IAdF
   Data: cdat.MSH

     AIC      BIC   logLik deviance df.resid 
   782.6    808.7   -385.3    770.6      560 

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-1.495 -0.880  0.593  0.854  1.488 

Random effects:
 Groups    Name        Variance Std.Dev.
 id        (Intercept) 0.505    0.71    
 week:year (Intercept) 0.000    0.00    
 year      (Intercept) 0.000    0.00    
Number of obs: 566, groups:  id, 142; week:year, 8; year, 4

Fixed effects:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept)  -0.3185     0.2334   -1.36    0.172  
time.cap     -0.0393     0.1024   -0.38    0.701  
IAdF1         0.4748     0.2641    1.80    0.072 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
         (Intr) tim.cp
time.cap -0.185       
IAdF1    -0.826 -0.137

Lets try dropping the year and week effects, which have small variance components.
Lets also consider a random slope effect for time since capture. I.e., are there some individuals that happen to respond behaviorally more than others?

  fit.temp2<-glmer(observed~time.cap+(1+time.cap|id)+IAdF, family=binomial(), data=cdat.MSH)
  summary(fit.temp2)
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: observed ~ time.cap + (1 + time.cap | id) + IAdF
   Data: cdat.MSH

     AIC      BIC   logLik deviance df.resid 
   782.6    808.7   -385.3    770.6      560 

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-1.478 -0.885  0.615  0.856  1.486 

Random effects:
 Groups Name        Variance Std.Dev. Corr 
 id     (Intercept) 0.535645 0.732         
        time.cap    0.000574 0.024    -1.00
Number of obs: 566, groups:  id, 142

Fixed effects:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept)  -0.3188     0.2344   -1.36    0.174  
time.cap     -0.0372     0.1026   -0.36    0.717  
IAdF1         0.4740     0.2649    1.79    0.074 .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
         (Intr) tim.cp
time.cap -0.189       
IAdF1    -0.824 -0.141

Conculsion regarding time.cap is robust to how we look at the data. Lets construct a plot to look at individual-level variation in predicted probabilities of detection. Appears to be significant variation among individuals in their propensity to be detected.

   cdat.MSH$phat<-predict(fit.temp2, type="resp")
   qplot(time.cap, phat, data=cdat.MSH, geom="line", group=id, colour=IAdF, xlab="Years since capture", ylab="Predicted probability of being observed")

plot of chunk unnamed-chunk-9

# Look at distribution of p_observed across individuals  
  pobs<-summaryBy(IAdF+observed~id, data=cdat.MSH)
  pobs[,2]<-pobs[,2]-1
  pobs[,2]<-as.character(pobs[,2])
  ggplot(pobs, aes(observed.mean))+geom_histogram(aes(y=..density..), binwidth=0.01)+facet_grid(IAdF.mean~.)
Warning: position_stack requires constant width: output may be incorrect
Warning: position_stack requires constant width: output may be incorrect

plot of chunk unnamed-chunk-9

Nooksack data

  Nook<-import.chdata("../Data/Nook.inp", header=F, field.names=c("ch", "Female", "Male"))
  head(Nook)
                         ch Female Male
 149.060   110001111100....      1    0
 149.150   1100............      1    0
 149.530   11..............      1    0
 149.570   110001111100....      1    0
 149.820   01100111111010..      1    0
 149.850   01111110111110..      1    0

Create data set for R

There are 8 capture histories (some of which are missing), create a “long” data set from this file.

  cdat.NS<-NULL
  for(i in 1:nrow(Nook)){
    temp<-Nook[i,]
    first.cap=NA
    for(j in 1:16){
      temp2<-as.numeric(substr(temp$ch,j,j))
      if(is.na(temp2)==F){
        if(is.na(first.cap)==T){first.cap<-(j+1)%/%2}#first.cap<-j  note, first captures were all in week 1
        cdat.NS<-rbind(cdat.NS, data.frame(id=rownames(temp), ID=i, year=(j+1)%/%2, week=(j+1)%%2+1, observed=temp2, first.cap=first.cap, Female=temp$Female))}
    }
  }

# Time since capture (assumes week=1 or 2 does not matter...)
  cdat.NS$time.cap<-cdat.NS$year-cdat.NS$first.cap
  cdat.NS$Female<-as.factor(cdat.NS$Female)
  head(cdat.NS, 20)
           id ID year week observed first.cap Female time.cap
1   149.060    1    1    1        1         1      1        0
2   149.060    1    1    2        1         1      1        0
3   149.060    1    2    1        0         1      1        1
4   149.060    1    2    2        0         1      1        1
5   149.060    1    3    1        0         1      1        2
6   149.060    1    3    2        1         1      1        2
7   149.060    1    4    1        1         1      1        3
8   149.060    1    4    2        1         1      1        3
9   149.060    1    5    1        1         1      1        4
10  149.060    1    5    2        1         1      1        4
11  149.060    1    6    1        0         1      1        5
12  149.060    1    6    2        0         1      1        5
13  149.150    2    1    1        1         1      1        0
14  149.150    2    1    2        1         1      1        0
15  149.150    2    2    1        0         1      1        1
16  149.150    2    2    2        0         1      1        1
17  149.530    3    1    1        1         1      1        0
18  149.530    3    1    2        1         1      1        0
19  149.570    4    1    1        1         1      1        0
20  149.570    4    1    2        1         1      1        0

Plots and analyses

Lets just plot the proportion seen versus year since capture.

  par(bty="L")
  plot(0:7,prop.table(table(cdat.NS$observed, cdat.NS$time.cap), 2)[2,], ylim=c(0,1), xlab="Years since capture", ylab="Proportion observed")  

plot of chunk unnamed-chunk-12

Nothing too strong there…

Mixed models

First, look at a model with Year (as a factor), Week, ID (random)+time since capture + sex

  fit.temp1a<-glmer(observed~time.cap+as.factor(week)+as.factor(year)+(1|id)+Female, family=binomial(), data=cdat.NS)
Warning: Model failed to converge with max|grad| = 0.00455583 (tol =
0.001, component 11)
  summary(fit.temp1a)
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: observed ~ time.cap + as.factor(week) + as.factor(year) + (1 |  
    id) + Female
   Data: cdat.NS

     AIC      BIC   logLik deviance df.resid 
  1210.4   1268.3   -593.2   1186.4      908 

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-1.664 -0.840 -0.448  0.885  2.760 

Random effects:
 Groups Name        Variance Std.Dev.
 id     (Intercept) 0.306    0.553   
Number of obs: 920, groups:  id, 121

Fixed effects:
                 Estimate Std. Error z value Pr(>|z|)    
(Intercept)       -1.3392     0.3083   -4.34  1.4e-05 ***
time.cap           0.0766     0.0575    1.33   0.1826    
as.factor(week)2  -0.2528     0.1422   -1.78   0.0753 .  
as.factor(year)2   0.7576     0.2587    2.93   0.0034 ** 
as.factor(year)3   0.0273     0.2859    0.10   0.9238    
as.factor(year)4   0.5166     0.3133    1.65   0.0991 .  
as.factor(year)5   0.6659     0.3460    1.92   0.0543 .  
as.factor(year)6  -0.2579     0.3860   -0.67   0.5040    
as.factor(year)7   0.1233     0.3709    0.33   0.7396    
as.factor(year)8  -0.6050     0.4169   -1.45   0.1467    
Female1            1.0949     0.2593    4.22  2.4e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr) tim.cp as.fctr(w)2 as.fctr(y)2 as.()3 as.()4 as.()5
time.cap     0.288                                                    
as.fctr(w)2 -0.210 -0.005                                             
as.fctr(y)2 -0.546 -0.233 -0.015                                      
as.fctr(y)3 -0.509 -0.387 -0.001       0.530                          
as.fctr(y)4 -0.508 -0.469 -0.008       0.515       0.548              
as.fctr(y)5 -0.473 -0.573 -0.010       0.497       0.552  0.581       
as.fctr(y)6 -0.488 -0.663  0.003       0.475       0.552  0.585  0.628
as.fctr(y)7 -0.507 -0.661 -0.001       0.489       0.562  0.594  0.636
as.fctr(y)8 -0.460 -0.645  0.005       0.447       0.521  0.554  0.598
Female1     -0.758 -0.313 -0.017       0.178       0.171  0.201  0.188
            as.()6 as.()7 as.()8
time.cap                        
as.fctr(w)2                     
as.fctr(y)2                     
as.fctr(y)3                     
as.fctr(y)4                     
as.fctr(y)5                     
as.fctr(y)6                     
as.fctr(y)7  0.674              
as.fctr(y)8  0.635  0.653       
Female1      0.248  0.250  0.225

Pretty big year-to-year variation, females also more likely to be seen. Week also marginallky significant. Lets turn year and week into a random effects.

  fit.temp1a<-glmer(observed~time.cap+(1|year/week)+(1|id)+Female, family=binomial(), data=cdat.NS)
  summary(fit.temp1a)
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: observed ~ time.cap + (1 | year/week) + (1 | id) + Female
   Data: cdat.NS

     AIC      BIC   logLik deviance df.resid 
  1211.0   1240.0   -599.5   1199.0      914 

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-1.737 -0.834 -0.467  0.864  2.804 

Random effects:
 Groups    Name        Variance Std.Dev.
 id        (Intercept) 0.3217   0.567   
 week:year (Intercept) 0.2207   0.470   
 year      (Intercept) 0.0225   0.150   
Number of obs: 920, groups:  id, 121; week:year, 16; year, 8

Fixed effects:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.2896     0.2674   -4.82  1.4e-06 ***
time.cap      0.0475     0.0501    0.95     0.34    
Female1       1.1593     0.2577    4.50  6.8e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
         (Intr) tim.cp
time.cap -0.220       
Female1  -0.681 -0.272

Now, consider a random slope for time since capture along with the other randome effects Big difference between males and females, and significant animal-to-animal variation. No strong signature wrt time since capture.

  fit.temp2<-glmer(observed~time.cap+(1+time.cap|id)+Female+(1|year/week), family=binomial(), data=cdat.NS)
  summary(fit.temp2)
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
 Family: binomial  ( logit )
Formula: 
observed ~ time.cap + (1 + time.cap | id) + Female + (1 | year/week)
   Data: cdat.NS

     AIC      BIC   logLik deviance df.resid 
  1214.9   1253.5   -599.4   1198.9      912 

Scaled residuals: 
   Min     1Q Median     3Q    Max 
-1.754 -0.830 -0.463  0.865  2.799 

Random effects:
 Groups    Name        Variance Std.Dev. Corr
 id        (Intercept) 0.263788 0.5136       
           time.cap    0.000499 0.0223   1.00
 week:year (Intercept) 0.222075 0.4712       
 year      (Intercept) 0.021419 0.1464       
Number of obs: 920, groups:  id, 121; week:year, 16; year, 8

Fixed effects:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -1.2755     0.2669   -4.78  1.8e-06 ***
time.cap      0.0462     0.0507    0.91     0.36    
Female1       1.1454     0.2565    4.47  8.0e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
         (Intr) tim.cp
time.cap -0.226       
Female1  -0.686 -0.249

Lets create a plot to look at individual-level variation in predicted probabilities of detectoin. Appears to be significant variation among individuals in their propensity to be detected.

  b.id<-ranef(fit.temp2)$id 
  names(b.id)<-c("Int", "beta.time.cap")
  b.id$id<-rownames(b.id)
  beta.hat<-fixef(fit.temp2)
  cdat.NS.new<-merge(cdat.NS, b.id, by="id", all=T)
  cdat.NS.new$phat<-plogis(cdat.NS.new$Int+beta.hat[1]+cdat.NS.new$time.cap*(cdat.NS.new$beta.time.cap+beta.hat[2]))


# Similar plots  
  qplot(time.cap, phat, data=cdat.NS.new, geom=c("line", "point"), group=id, colour=Female, xlab="Years since capture", ylab="Predicted probability of being observed")

plot of chunk unnamed-chunk-16

# Look at distribution of p_observed across individuals  
  pobs<-summaryBy(Female+observed~id, data=cdat.NS)
  pobs[,2]<-pobs[,2]-1
  pobs[,2]<-as.character(pobs[,2])
  ggplot(pobs, aes(observed.mean))+geom_histogram(aes(y=..density..), binwidth=0.01)+facet_grid(Female.mean~.)
Warning: position_stack requires constant width: output may be incorrect
Warning: position_stack requires constant width: output may be incorrect

plot of chunk unnamed-chunk-16

Now, combine everything into 1 plot

  #x11(width=4, height=4)
  par(mfrow=c(2,2), bty="L", cex.lab=1.8, cex.axis=1.8, mar=c(5,6,4.1,2.1) , xpd=T, oma=c(0,1,0,0)) 
  with(cdat.MSH,plot(time.cap, phat, type="n", xlab="Years since capture", ylab="Probability of detection"))
  uid<-unique(cdat.MSH$id)
  luid<-length(uid)
  cols<-c("black", "gray")
  lwds<-c(2,1)
  for(i in 1:luid){
    tempdat<-cdat.MSH[cdat.MSH$i==uid[i],]
    with(tempdat,lines(time.cap, phat, col=cols[as.numeric(IAdF)], lwd=lwds[as.numeric(IAdF)]))
  }
  legend("top", inset=-3, col=c("black", "gray"), lty=1, lwd=c(2,1),bty="n", legend=c("No", "Yes"), title="Adult Female", ncol=2, cex=1.4)
  mtext(outer=F, line=2, side=3, cex=1.4, "A)", adj=0)

# Look at distribution of p_observed across individuals  
  pobs.MSH<-with(cdat.MSH, tapply(observed,id,mean))
  hist(pobs.MSH, xlab="", ylab="Distribution", main="")
  mtext(outer=F, line=2, side=3, cex=1.4, "B) Proportion of times observed", adj=0)

  with(cdat.NS.new,plot(time.cap, phat, type="n", xlab="Years since capture", ylab="Probability of Detection"))
  uid<-unique(cdat.NS.new$id)
  luid<-length(uid)
  cols<-c("black", "gray")
  lwds<-c(2,1)
  for(i in 1:luid){
    tempdat<-cdat.NS.new[cdat.NS.new$i==uid[i],]
    with(tempdat,lines(time.cap, phat,lwd=lwds[as.numeric(Female)], col=cols[as.numeric(Female)]))
  }
  mtext(outer=F, line=2, side=3, cex=1.4, "C)", adj=0)

# Look at distribution of p_observed across individuals  
  pobs.NS<-with(cdat.NS.new, tapply(observed,id,mean))
  hist(pobs.NS, xlab="", ylab="Distribution", main="")
  mtext(outer=F, line=2, side=3, cex=1.4, "D) Proportion of times observed", adj=0)

plot of chunk unnamed-chunk-17

# Print out Session info
  sessionInfo()
R version 3.1.1 (2014-07-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] splines   stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] RMark_2.1.8     MuMIn_1.10.5    AICcmodavg_2.00 gplots_2.14.1  
 [5] knitr_1.6       mosaic_0.9.1-3  lattice_0.20-29 dplyr_0.2      
 [9] car_2.0-21      doBy_4.5-10     MASS_7.3-33     survival_2.37-7
[13] nlme_3.1-117    ggplot2_1.0.0   lme4_1.1-7      Rcpp_0.11.2    
[17] Matrix_1.1-4   

loaded via a namespace (and not attached):
 [1] assertthat_0.1     bitops_1.0-6       caTools_1.17      
 [4] coda_0.16-1        colorspace_1.2-4   digest_0.6.4      
 [7] evaluate_0.5.5     expm_0.99-1.1      formatR_1.0       
[10] gdata_2.13.3       ggdendro_0.1-14    grid_3.1.1        
[13] gridExtra_0.9.1    gtable_0.1.2       gtools_3.4.1      
[16] htmltools_0.2.4    KernSmooth_2.23-12 labeling_0.3      
[19] markdown_0.7.4     matrixcalc_1.0-3   mime_0.1.2        
[22] minqa_1.2.3        mosaicData_0.9.1   msm_1.4           
[25] munsell_0.4.2      mvtnorm_1.0-0      nloptr_1.0.4      
[28] nnet_7.3-8         parallel_3.1.1     plyr_1.8.1        
[31] proto_0.3-10       reshape2_1.4       rmarkdown_0.2.49  
[34] scales_0.2.4       snowfall_1.84-6    stringr_0.6.2     
[37] tools_3.1.1        yaml_2.1.13