Sensitivity Analysis

Including:

Preamble

Load Libraries

library(ezknitr)
library(knitr)
library(metafor)
library(ggplot2)

Clear environment

remove(list=ls())

Document settings

opts_chunk$set(fig.width = 6, fig.height = 4)

Load data

load(file="data/output_data/data_cleaned.R")

Tests of effect sizes versus study year

Rust

rust.v.year <- rma.uni(yi = yi, vi = vi, data=rust.data.SMD[rust.data.SMD$studyYear!=2009&
                                                              rust.data.SMD$studyYear!=2010&
                                                              rust.data.SMD$studyYear!=2011,],
                       method = "REML",
                       mods = ~studyYear)
rust.v.year.cat <- rma.uni(yi = yi, vi = vi, data=rust.data.SMD[rust.data.SMD$studyYear!=2009&
                                                                  rust.data.SMD$studyYear!=2010&
                                                                  rust.data.SMD$studyYear!=2011,],
                             method = "REML",
                             mods = ~as.character(studyYear)-1)
summary(rust.v.year)
## 
## Mixed-Effects Model (k = 324; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -518.7071  1037.4142  1043.4142  1054.7378  1043.4896  
## 
## tau^2 (estimated amount of residual heterogeneity):     0.6334 (SE = 0.1024)
## tau (square root of estimated tau^2 value):             0.7959
## I^2 (residual heterogeneity / unaccounted variability): 49.28%
## H^2 (unaccounted variability / sampling variability):   1.97
## R^2 (amount of heterogeneity accounted for):            12.24%
## 
## Test for Residual Heterogeneity: 
## QE(df = 322) = 643.7100, p-val < .0001
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 16.1462, p-val < .0001
## 
## Model Results:
## 
##             estimate       se     zval    pval      ci.lb      ci.ub     
## intrcpt    -208.1511  51.4684  -4.0442  <.0001  -309.0274  -107.2749  ***
## studyYear     0.1030   0.0256   4.0182  <.0001     0.0528     0.1533  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Yield

yield.v.year <- rma.uni(yi = yi, vi = vi, data=yield.data.SMD,
                       method = "REML",
                       mods = ~studyYear)
yield.v.year.cat <- rma.uni(yi = yi, vi = vi, data=yield.data.SMD,
                             method = "REML",
                             mods = ~as.character(studyYear)-1)
summary(yield.v.year)
## 
## Mixed-Effects Model (k = 513; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -536.9279  1073.8559  1079.8559  1092.5650  1079.9032  
## 
## tau^2 (estimated amount of residual heterogeneity):     0.0000 (SE = 0.0338)
## tau (square root of estimated tau^2 value):             0.0006
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            78.09%
## 
## Test for Residual Heterogeneity: 
## QE(df = 511) = 428.9720, p-val = 0.9965
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 27.5830, p-val < .0001
## 
## Model Results:
## 
##            estimate       se     zval    pval    ci.lb     ci.ub     
## intrcpt    130.4474  24.7084   5.2795  <.0001  82.0198  178.8750  ***
## studyYear   -0.0646   0.0123  -5.2520  <.0001  -0.0887   -0.0405  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

100-seed-weight

seedwt.v.year <- rma.uni(yi = yi, vi = vi, data=seedwt.data.SMD,
                       method = "REML",
                       mods = ~studyYear)
seedwt.v.year.cat <- rma.uni(yi = yi, vi = vi, data=seedwt.data.SMD,
                             method = "REML",
                             mods = ~as.character(studyYear)-1)
summary(seedwt.v.year)
## 
## Mixed-Effects Model (k = 207; tau^2 estimator: REML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -177.8704   355.7407   361.7407   371.7098   361.8601  
## 
## tau^2 (estimated amount of residual heterogeneity):     0 (SE = 0.0527)
## tau (square root of estimated tau^2 value):             0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability):   1.00
## R^2 (amount of heterogeneity accounted for):            NA%
## 
## Test for Residual Heterogeneity: 
## QE(df = 205) = 105.1426, p-val = 1.0000
## 
## Test of Moderators (coefficient(s) 2): 
## QM(df = 1) = 15.5938, p-val < .0001
## 
## Model Results:
## 
##            estimate       se     zval    pval    ci.lb     ci.ub     
## intrcpt    155.9732  39.3587   3.9629  <.0001  78.8316  233.1149  ***
## studyYear   -0.0774   0.0196  -3.9489  <.0001  -0.1158   -0.0390  ***
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Combine data for ggplot2

# Yield data
pred.yr.yield <- predict(yield.v.year, newmods = seq(from=2004, to=2014, by=0.1))
pred.yr.yield <- as.data.frame(cbind(seq(from=2004, to=2014, by=0.1),
                                     pred.yr.yield$pred,
                                     pred.yr.yield$ci.lb,
                                     pred.yr.yield$ci.ub))
colnames(pred.yr.yield) <- c("x", "mean", "pLL", "pUL")
pred.yr.yield$dependent <- "Yield"
coef.yield.year.cat <- as.data.frame(cbind(yield.v.year.cat$b, 
                                           yield.v.year.cat$ci.lb, 
                                           yield.v.year.cat$ci.ub))
coef.yield.year.cat$dependent <- "Yield"

# Rust data
pred.yr.rust <- predict(rust.v.year, newmods = seq(from=2004, to=2014, by=0.1))
pred.yr.rust <- as.data.frame(cbind(seq(from=2004, to=2014, by=0.1),
                                     pred.yr.rust$pred,
                                     pred.yr.rust$ci.lb,
                                     pred.yr.rust$ci.ub))
colnames(pred.yr.rust) <- c("x", "mean", "pLL", "pUL")
pred.yr.rust$dependent <- "Rust"
coef.rust.year.cat <- as.data.frame(cbind(rust.v.year.cat$b, 
                                          rust.v.year.cat$ci.lb, 
                                          rust.v.year.cat$ci.ub))
coef.rust.year.cat$dependent <- "Rust"

# 100-seed-weight
pred.yr.seedwt <- predict(seedwt.v.year, newmods = seq(from=2004, to=2014, by=0.1))
pred.yr.seedwt <- as.data.frame(cbind(seq(from=2004, to=2014, by=0.1),
                                     pred.yr.seedwt$pred,
                                     pred.yr.seedwt$ci.lb,
                                     pred.yr.seedwt$ci.ub))
colnames(pred.yr.seedwt) <- c("x", "mean", "pLL", "pUL")
pred.yr.seedwt$dependent <- "100sw"
pred.app <- rbind(pred.yr.yield, pred.yr.rust, pred.yr.seedwt)
coef.seedwt.year.cat <- as.data.frame(cbind(seedwt.v.year.cat$b, 
                                      seedwt.v.year.cat$ci.lb, 
                                      seedwt.v.year.cat$ci.ub))
coef.seedwt.year.cat$dependent <- "100sw"

# Bind categorical data together
year.cat <- rbind(coef.seedwt.year.cat, 
                          coef.rust.year.cat,
                          coef.yield.year.cat)
colnames(year.cat) <- c("mean", "LL", "UL", "dependent")
year.cat$Year[year.cat$dependent=="Yield"] <- 
  sort(unique(yield.data.SMD$studyYear))
year.cat$Year[year.cat$dependent=="Rust"] <- 
  sort(unique(rust.data.SMD$studyYear[rust.data.SMD$studyYear!=2009&
                                        rust.data.SMD$studyYear!=2010&
                                        rust.data.SMD$studyYear!=2011]))
year.cat$Year[year.cat$dependent=="100sw"] <- 
  sort(unique(seedwt.data.SMD$studyYear))

ggplot(data=pred.app, aes(x = x, y=mean))+
  geom_line(aes(color=dependent))+
  geom_ribbon(aes(ymin=pLL, ymax=pUL, fill=dependent), alpha=0.4)+
  geom_point(data=year.cat,
             aes(x=as.numeric(Year), y=mean, colour=dependent, shape=dependent))+
  geom_hline(yintercept = 0, lty=2, color="grey")+
  geom_errorbar(data=year.cat, 
                aes(x=Year, ymin=LL, ymax=UL, color=dependent) ,width=0.4)+
  theme_bw()+
  xlab("Study Year")+
  ylab("Standardized Mean Difference")+
  theme(legend.position="none")

plot of chunk figEffectsVsYear

Influence diagnostics

Rust

# Model with all of the data points included
overall.std.rust <- rma.uni(yi = yi, vi = vi, data = rust.data.SMD, method="ML")
summary(overall.std.rust)
## 
## Random-Effects Model (k = 324; tau^2 estimator: ML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -528.6158   581.6922  1061.2317  1068.7932  1061.2691  
## 
## tau^2 (estimated amount of total heterogeneity): 0.7169 (SE = 0.1088)
## tau (square root of estimated tau^2 value):      0.8467
## I^2 (total heterogeneity / total variability):   52.39%
## H^2 (total variability / sampling variability):  2.10
## 
## Test for Heterogeneity: 
## Q(df = 323) = 680.9467, p-val < .0001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##  -1.3496   0.0659 -20.4871   <.0001  -1.4787  -1.2205      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Testing the influence of each data point
inf.rust <- influence.rma.uni(overall.std.rust) # Test the influence
plot(inf.rust) # Plot the influence 

plot of chunk rustInfluence

rust.data.SMD[inf.rust$is.infl==TRUE,c(1:3,47:50)] # Records that are influential
##   FID           Reference ReferenceNumb growthStateClean     scale m1i m2i
## 1 582 Sikora et al ref 74            74               2+ Scale 0-8 5.0 100
## 2 583 Sikora et al ref 74            74               2+ Scale 0-8 5.0 100
## 3 584 Sikora et al ref 74            74               2+ Scale 0-8 2.5 100
## 4 585 Sikora et al ref 74            74               2+ Scale 0-8 2.5 100
## 5 588 Sikora et al ref 74            74               2+ Scale 0-8 5.0 100
## 6 589 Sikora et al ref 74            74               2+ Scale 0-8 5.0 100
rust.is.infl <- rust.data.SMD$FID[inf.rust$is.infl==TRUE]
# Re-run analysis without the influential datapoints
overall.std.rust.noinfl <- rma.uni(yi = yi, vi = vi, 
                            data = rust.data.SMD[!rust.data.SMD$FID %in% rust.is.infl,], method="ML")
summary(overall.std.rust.noinfl)
## 
## Random-Effects Model (k = 318; tau^2 estimator: ML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -496.5243   526.1320   997.0486  1004.5727   997.0867  
## 
## tau^2 (estimated amount of total heterogeneity): 0.4778 (SE = 0.0901)
## tau (square root of estimated tau^2 value):      0.6913
## I^2 (total heterogeneity / total variability):   42.31%
## H^2 (total variability / sampling variability):  1.73
## 
## Test for Heterogeneity: 
## Q(df = 317) = 572.4466, p-val < .0001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##  -1.2544   0.0604 -20.7795   <.0001  -1.3727  -1.1361      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Yield

# Model with all of the data points included
overall.std.yield <- rma.uni(yi = yi, vi = vi, data = yield.data.SMD, method="ML")
summary(overall.std.yield)
## 
## Random-Effects Model (k = 513; tau^2 estimator: ML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -551.9523   456.5556  1107.9046  1116.3852  1107.9282  
## 
## tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0337)
## tau (square root of estimated tau^2 value):      0.0025
## I^2 (total heterogeneity / total variability):   0.00%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity: 
## Q(df = 512) = 456.5550, p-val = 0.9623
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##   0.6800   0.0328  20.7501   <.0001   0.6158   0.7443      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Testing the influence of each data point
inf.yield <- influence.rma.uni(overall.std.yield) # Test the influence
plot(inf.yield) # Plot the influence 

plot of chunk yieldInfluence

yield.data.SMD[inf.yield$is.infl==TRUE,c(1:3,48:51)] # Records that are influential
##   FID           Reference ReferenceNumb yield.kg.ha yieldCont.kg.ha
## 1 583 Sikora et al ref 74            74    6032.325        3517.175
## 2 584 Sikora et al ref 74            74    5548.125        3517.175
## 3 585 Sikora et al ref 74            74    5097.550        3517.175
## 4 586 Sikora et al ref 74            74    5400.175        3517.175
## 5 587 Sikora et al ref 74            74    5198.425        3517.175
## 6 588 Sikora et al ref 74            74    5655.725        3517.175
## 7 589 Sikora et al ref 74            74    6193.725        3517.175
##        m1i     sd1i
## 1 6032.325 1206.465
## 2 5548.125 1109.625
## 3 5097.550 1019.510
## 4 5400.175 1080.035
## 5 5198.425 1039.685
## 6 5655.725 1131.145
## 7 6193.725 1238.745
yield.is.infl <- yield.data.SMD$FID[inf.yield$is.infl==TRUE]
# Re-run analysis without the influential datapoints
overall.std.yield.noinfl <- rma.uni(yi = yi, vi = vi, 
                                   data = yield.data.SMD[!yield.data.SMD$FID %in% yield.is.infl,], method="ML")
summary(overall.std.yield.noinfl)
## 
## Random-Effects Model (k = 506; tau^2 estimator: ML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -520.9695   398.1567  1045.9390  1054.3921  1045.9629  
## 
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0348)
## tau (square root of estimated tau^2 value):      0
## I^2 (total heterogeneity / total variability):   0.00%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity: 
## Q(df = 505) = 398.1567, p-val = 0.9998
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##   0.6377   0.0333  19.1759   <.0001   0.5725   0.7029      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

100-seed-weight

# Model with all of the data points included
overall.std.seedwt <- rma.uni(yi = yi, vi = vi, data = seedwt.data.SMD, method="ML")
summary(overall.std.seedwt)
## 
## Random-Effects Model (k = 207; tau^2 estimator: ML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -186.8635   120.7364   377.7269   384.3924   377.7858  
## 
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0524)
## tau (square root of estimated tau^2 value):      0
## I^2 (total heterogeneity / total variability):   0.00%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity: 
## Q(df = 206) = 120.7364, p-val = 1.0000
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##   0.5499   0.0509  10.8022   <.0001   0.4502   0.6497      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Testing the influence of each data point
inf.seedwt <- influence.rma.uni(overall.std.seedwt) # Test the influence
plot(inf.seedwt) # Plot the influence 

plot of chunk seedwtInfluence

seedwt.data.SMD[inf.seedwt$is.infl==TRUE,c(1:3,47:50)] # Records that are influential
## [1] FID              Reference        ReferenceNumb    growthStateClean
## [5] m1i              sd1i             m2i             
## <0 rows> (or 0-length row.names)
# No record were found to be influential!

Cercospora

# Model with all of the data points included
overall.std.cerco <- rma.uni(yi = yi, vi = vi, data = cerco.data.MD, method="ML")
summary(overall.std.cerco)
## 
## Random-Effects Model (k = 40; tau^2 estimator: ML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -154.8307    14.4324   313.6613   317.0391   313.9856  
## 
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 56.4276)
## tau (square root of estimated tau^2 value):      0
## I^2 (total heterogeneity / total variability):   0.00%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity: 
## Q(df = 39) = 14.4324, p-val = 0.9999
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##  -9.6508   2.5198  -3.8300   0.0001 -14.5894  -4.7121      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Testing the influence of each data point
inf.cerco <- influence.rma.uni(overall.std.cerco) # Test the influence
plot(inf.cerco) # Plot the influence 

plot of chunk cercoInfluence

cerco.data.MD[inf.cerco$is.infl==TRUE,c(1:3,47:50)] # Records that are influential
## [1] FID              Reference        ReferenceNumb    growthStateClean
## [5] scale            m1i              m2i             
## <0 rows> (or 0-length row.names)
# No record were found to be influential!

Target Spot

# Model with all of the data points included
overall.std.target.spot <- rma.uni(yi = yi, vi = vi, data = target.spot.data.MD, method="ML")
summary(overall.std.target.spot)
## 
## Random-Effects Model (k = 31; tau^2 estimator: ML)
## 
##    logLik   deviance        AIC        BIC       AICc  
## -139.3531    57.4842   282.7062   285.5742   283.1348  
## 
## tau^2 (estimated amount of total heterogeneity): 269.9597 (SE = 119.3699)
## tau (square root of estimated tau^2 value):      16.4304
## I^2 (total heterogeneity / total variability):   57.44%
## H^2 (total variability / sampling variability):  2.35
## 
## Test for Heterogeneity: 
## Q(df = 30) = 72.8437, p-val < .0001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
## -18.9129   3.8936  -4.8575   <.0001 -26.5442 -11.2816      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Testing the influence of each data point
inf.target.spot <- influence.rma.uni(overall.std.target.spot) # Test the influence
plot(inf.target.spot) # Plot the influence 

plot of chunk targetSpotInfluence

target.spot.data.MD[inf.target.spot$is.infl==TRUE,c(1:3,47:50)] # Records that are influential
## [1] FID              Reference        ReferenceNumb    growthStateClean
## [5] scale            m1i              m2i             
## <0 rows> (or 0-length row.names)
target.spot.is.infl <- target.spot.data.MD$FID[inf.target.spot$is.infl==TRUE]
# No record were found to be influential!

Test for the effects of pseudoreplication

Do analysis results change if random-effects model with study-level clustering is incorporated?

Rust

rust.pseudorep <- rma.mv(yi = yi, V = vi, data=rust.data.SMD,
                         random = ~1|Reference)
summary(rust.pseudorep)
## 
## Multivariate Meta-Analysis Model (k = 324; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc  
## -370.8220   741.6441   745.6441   753.1994   745.6816  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed     factor
## sigma^2    1.2148  1.1022     34     no  Reference
## 
## Test for Heterogeneity: 
## Q(df = 323) = 680.9467, p-val < .0001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##  -1.4105   0.1964  -7.1824   <.0001  -1.7954  -1.0256      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Yield

yield.pseudorep <- rma.mv(yi = yi, V = vi, data=yield.data.SMD,
                         random = ~1|Reference)
summary(yield.pseudorep)
## 
## Multivariate Meta-Analysis Model (k = 513; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc  
## -446.1894   892.3788   896.3788   904.8555   896.4024  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed     factor
## sigma^2    0.3453  0.5876     57     no  Reference
## 
## Test for Heterogeneity: 
## Q(df = 512) = 456.5550, p-val = 0.9623
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##   0.6693   0.0864   7.7434   <.0001   0.4999   0.8387      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

100-seed-weight

seedwt.pseudorep <- rma.mv(yi = yi, V = vi, data=seedwt.data.SMD,
                         random = ~1|Reference)
summary(seedwt.pseudorep)
## 
## Multivariate Meta-Analysis Model (k = 207; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc  
## -166.5192   333.0384   337.0384   343.6941   337.0975  
## 
## Variance Components: 
## 
##             estim    sqrt  nlvls  fixed     factor
## sigma^2    0.1965  0.4433     22     no  Reference
## 
## Test for Heterogeneity: 
## Q(df = 206) = 120.7364, p-val = 1.0000
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##   0.5165   0.1096   4.7136   <.0001   0.3017   0.7313      *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cercospora

cerco.pseudorep <- rma.mv(yi = yi, V = vi, data=cerco.data.MD,
                         random = ~1|Reference)
summary(cerco.pseudorep)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc  
## -150.0619   300.1238   304.1238   307.4509   304.4571  
## 
## Variance Components: 
## 
##              estim    sqrt  nlvls  fixed     factor
## sigma^2    43.1053  6.5655      4     no  Reference
## 
## Test for Heterogeneity: 
## Q(df = 39) = 14.4324, p-val = 0.9999
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
##  -9.1675   4.1492  -2.2095   0.0271 -17.2997  -1.0353        * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Target spot

target.spot.pseudorep <- rma.mv(yi = yi, V = vi, data=target.spot.data.MD,
                         random = ~1|Reference)
summary(target.spot.pseudorep)
## 
## Multivariate Meta-Analysis Model (k = 31; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc  
## -113.7684   227.5369   231.5369   234.3392   231.9813  
## 
## Variance Components: 
## 
##               estim     sqrt  nlvls  fixed     factor
## sigma^2    509.8941  22.5808      4     no  Reference
## 
## Test for Heterogeneity: 
## Q(df = 30) = 72.8437, p-val < .0001
## 
## Model Results:
## 
## estimate       se     zval     pval    ci.lb    ci.ub          
## -15.7447  11.5871  -1.3588   0.1742 -38.4551   6.9656          
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Footer

Spun with ezspin(“programs/sensitivity_analysis.R”, out_dir=“output”, fig_dir=“figures”, keep_md=FALSE)

Session Info:

sessionInfo()
## R version 3.3.0 (2016-05-03)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: OS X 10.10.5 (Yosemite)
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] ggplot2_2.1.0 doBy_4.5-15   metafor_1.9-8 Matrix_1.2-6  knitr_1.13   
## [6] ezknitr_0.4  
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_0.12.5       lattice_0.20-33   R.methodsS3_1.7.1
##  [4] MASS_7.3-45       plyr_1.8.4        grid_3.3.0       
##  [7] gtable_0.2.0      formatR_1.4       magrittr_1.5     
## [10] scales_0.4.0      evaluate_0.9      stringi_1.1.1    
## [13] R.oo_1.20.0       R.utils_2.3.0     labeling_0.3     
## [16] tools_3.3.0       stringr_1.0.0     munsell_0.4.3    
## [19] markdown_0.7.7    colorspace_1.2-6