## R version 4.0.3 (2020-10-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Catalina 10.15.7
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] conflicted_1.0.4 forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2
## [5] purrr_0.3.4 readr_1.4.0 tidyr_1.1.2 tibble_3.0.4
## [9] tidyverse_1.3.0 psych_2.0.9 exact2x2_1.6.5 exactci_1.3-3
## [13] ssanv_1.1 sjlabelled_1.1.7 sjmisc_2.8.6 sjPlot_2.8.9
## [17] knitr_1.36 nnet_7.3-15 MASS_7.3-53.1 scales_1.1.1
## [21] ggplot2_3.3.5
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-149 fs_1.5.0 lubridate_1.7.9 insight_0.14.5
## [5] httr_1.4.2 tools_4.0.3 backports_1.1.10 bslib_0.3.1
## [9] R6_2.5.0 DBI_1.1.0 colorspace_1.4-1 withr_2.4.2
## [13] tidyselect_1.1.0 mnormt_2.0.2 emmeans_1.6.2-1 compiler_4.0.3
## [17] cli_3.1.0 rvest_0.3.6 performance_0.8.0 xml2_1.3.2
## [21] sandwich_3.0-0 bayestestR_0.11.5 sass_0.4.0 mvtnorm_1.1-1
## [25] digest_0.6.27 minqa_1.2.4 rmarkdown_2.11 pkgconfig_2.0.3
## [29] htmltools_0.5.2 lme4_1.1-25 dbplyr_1.4.4 fastmap_1.1.0
## [33] rlang_0.4.12 readxl_1.3.1 rstudioapi_0.13 jquerylib_0.1.4
## [37] generics_0.0.2 zoo_1.8-8 jsonlite_1.7.1 magrittr_2.0.1
## [41] parameters_0.15.0 Matrix_1.2-18 Rcpp_1.0.7 munsell_0.5.0
## [45] lifecycle_1.0.1 stringi_1.5.3 multcomp_1.4-15 yaml_2.2.1
## [49] grid_4.0.3 blob_1.2.1 parallel_4.0.3 crayon_1.3.4
## [53] lattice_0.20-41 ggeffects_1.0.2 haven_2.4.3 splines_4.0.3
## [57] sjstats_0.18.0 hms_0.5.3 tmvnsim_1.0-2 pillar_1.4.6
## [61] boot_1.3-25 estimability_1.3 effectsize_0.5 codetools_0.2-16
## [65] reprex_0.3.0 glue_1.4.2 evaluate_0.14 modelr_0.1.8
## [69] vctrs_0.3.4 nloptr_1.2.2.2 cellranger_1.1.0 gtable_0.3.0
## [73] datawizard_0.2.1 assertthat_0.2.1 cachem_1.0.6 xfun_0.28
## [77] xtable_1.8-4 broom_0.7.10 coda_0.19-4 survival_3.2-7
## [81] memoise_2.0.0 statmod_1.4.35 TH.data_1.0-10 ellipsis_0.3.1
## # A tibble: 2 x 5
## Var1 Category No Yes Percent
## <fct> <chr> <int> <int> <dbl>
## 1 2005-2009 Statistics 369 1 0.00270
## 2 2015-2019 Statistics 532 7 0.0130
## Log Mod Set Caus Prob
## Action 0.002702703 0.002702703 0.000000000 0.000000000 0.000000000
## Decision 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## Epistemology 0.008108108 0.024324324 0.000000000 0.000000000 0.010810811
## Language 0.029729730 0.013513514 0.005405405 0.000000000 0.002702703
## Logic 0.021621622 0.005405405 0.002702703 0.000000000 0.000000000
## Metaphysics 0.021621622 0.021621622 0.013513514 0.002702703 0.000000000
## Mind 0.002702703 0.002702703 0.002702703 0.000000000 0.000000000
## Science 0.002702703 0.000000000 0.000000000 0.000000000 0.008108108
## Value 0.005405405 0.008108108 0.002702703 0.000000000 0.000000000
## Dec Stats
## Action 0.000000000 0.000000000
## Decision 0.002702703 0.000000000
## Epistemology 0.000000000 0.002702703
## Language 0.000000000 0.000000000
## Logic 0.000000000 0.000000000
## Metaphysics 0.000000000 0.000000000
## Mind 0.000000000 0.000000000
## Science 0.000000000 0.000000000
## Value 0.002702703 0.000000000
## Log Mod Set Caus Prob
## Action 0.001855288 0.001855288 0.000000000 0.003710575 0.000000000
## Decision 0.001855288 0.000000000 0.000000000 0.000000000 0.001855288
## Epistemology 0.012987013 0.018552876 0.001855288 0.000000000 0.025974026
## Language 0.022263451 0.001855288 0.003710575 0.000000000 0.000000000
## Logic 0.020408163 0.007421150 0.003710575 0.000000000 0.000000000
## Metaphysics 0.035250464 0.024118738 0.018552876 0.005565863 0.007421150
## Mind 0.001855288 0.001855288 0.001855288 0.001855288 0.000000000
## Science 0.001855288 0.003710575 0.001855288 0.001855288 0.011131725
## Value 0.007421150 0.003710575 0.005565863 0.000000000 0.003710575
## Dec Stats
## Action 0.001855288 0.003710575
## Decision 0.022263451 0.001855288
## Epistemology 0.005565863 0.000000000
## Language 0.000000000 0.000000000
## Logic 0.000000000 0.000000000
## Metaphysics 0.000000000 0.001855288
## Mind 0.000000000 0.001855288
## Science 0.001855288 0.001855288
## Value 0.011131725 0.005565863
FormalModel <- glm(Formal ~ year, data= data)
summary(FormalModel)
##
## Call:
## glm(formula = Formal ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.2274 -0.2216 -0.1987 -0.1872 0.8128
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.560329 5.416186 -1.027 0.305
## year 0.002867 0.002691 1.065 0.287
##
## (Dispersion parameter for gaussian family taken to be 0.1661282)
##
## Null deviance: 150.87 on 908 degrees of freedom
## Residual deviance: 150.68 on 907 degrees of freedom
## AIC: 951.98
##
## Number of Fisher Scoring iterations: 2
exp(confint(FormalModel))
## Waiting for profiling to be done...
## 2.5 % 97.5 %
## (Intercept) 0.00000009438748 156.835912
## year 0.99759599228188 1.008173
table(data$TimePeriod, data$Formal)
##
## 0 1
## 2005-2009 301 69
## 2015-2019 417 122
##
## Call:
## glm(formula = Logic ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.1577 -0.1537 -0.1476 -0.1435 0.8565
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.194112 4.744615 0.462 0.644
## year -0.001016 0.002357 -0.431 0.667
##
## (Dispersion parameter for gaussian family taken to be 0.1274848)
##
## Null deviance: 115.65 on 908 degrees of freedom
## Residual deviance: 115.63 on 907 degrees of freedom
## AIC: 711.31
##
## Number of Fisher Scoring iterations: 2
## Waiting for profiling to be done...
## 2.5 % 97.5 %
## (Intercept) 0.0008208564 98065.06425
## year 0.9943805509 1.00361
ProbModel <- glm(Probability ~ year, data= data)
summary(ProbModel)
##
## Call:
## glm(formula = Probability ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.10100 -0.08974 -0.07848 -0.03343 0.97783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -11.267085 3.307159 -3.407 0.000686 ***
## year 0.005631 0.001643 3.427 0.000637 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.06193934)
##
## Null deviance: 56.906 on 908 degrees of freedom
## Residual deviance: 56.179 on 907 degrees of freedom
## AIC: 55.154
##
## Number of Fisher Scoring iterations: 2
confint(ProbModel)
## 2.5 % 97.5 %
## (Intercept) -17.748997420 -4.785172102
## year 0.002410505 0.008850601
exp(confint(ProbModel))
## 2.5 % 97.5 %
## (Intercept) 0.0000000195753 0.008352686
## year 1.0024134126886 1.008889883
noDec <- filter(data, Decision != "Yes")
ProbModel <- glm(Probability ~ year, data= noDec)
summary(ProbModel)
##
## Call:
## glm(formula = Probability ~ year, data = noDec)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.06339 -0.05737 -0.05134 -0.02726 0.97876
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.015201 2.779887 -2.164 0.0307 *
## year 0.003011 0.001381 2.180 0.0295 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.04288306)
##
## Null deviance: 38.198 on 887 degrees of freedom
## Residual deviance: 37.994 on 886 degrees of freedom
## AIC: -272.53
##
## Number of Fisher Scoring iterations: 2
confint(ProbModel)
## 2.5 % 97.5 %
## (Intercept) -11.4636794315 -0.566721589
## year 0.0003039303 0.005717454
exp(confint(ProbModel))
## 2.5 % 97.5 %
## (Intercept) 0.00001050479 0.5673825
## year 1.00030397651 1.0057338
## Logic
## Probability Absent Present
## Absent 304 55
## Present 9 2
##
## Exact McNemar test (with central confidence intervals)
##
## data: OldFreqs
## b = 55, c = 9, p-value = 0.000000003542
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 2.996214 14.066124
## sample estimates:
## odds ratio
## 6.111111
## Logic
## Probability Absent Present
## Absent 421 68
## Present 39 11
##
## Exact McNemar test (with central confidence intervals)
##
## data: NowFreqs
## b = 68, c = 39, p-value = 0.006518
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.159364 2.655239
## sample estimates:
## odds ratio
## 1.74359
withoutAdvanced <- data %>%
filter(LogLevel != 3)
ProbModel <- glm(Probability ~ year, data= withoutAdvanced)
summary(ProbModel)
##
## Call:
## glm(formula = Probability ~ year, data = withoutAdvanced)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.09763 -0.08699 -0.07635 -0.03378 0.97686
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10.645350 3.306997 -3.219 0.00133 **
## year 0.005321 0.001643 3.239 0.00125 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.06040846)
##
## Null deviance: 54.216 on 888 degrees of freedom
## Residual deviance: 53.582 on 887 degrees of freedom
## AIC: 31.78
##
## Number of Fisher Scoring iterations: 2
confint(ProbModel)
## 2.5 % 97.5 %
## (Intercept) -17.126945635 -4.163754681
## year 0.002100944 0.008540942
exp(confint(ProbModel))
## 2.5 % 97.5 %
## (Intercept) 0.00000003646381 0.01554907
## year 1.00210315288999 1.00857752
withoutAdvanced <- data %>%
filter(ProbLevel != 3)
ProbModel <- glm(Probability ~ year, data= withoutAdvanced)
summary(ProbModel)
##
## Call:
## glm(formula = Probability ~ year, data = withoutAdvanced)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.07791 -0.06988 -0.06186 -0.02975 0.97827
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.023895 2.999292 -2.675 0.00760 **
## year 0.004013 0.001490 2.693 0.00721 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.05040602)
##
## Null deviance: 45.429 on 895 degrees of freedom
## Residual deviance: 45.063 on 894 degrees of freedom
## AIC: -130.19
##
## Number of Fisher Scoring iterations: 2
confint(ProbModel)
## 2.5 % 97.5 %
## (Intercept) -13.902400214 -2.145389778
## year 0.001092424 0.006933136
exp(confint(ProbModel))
## 2.5 % 97.5 %
## (Intercept) 0.0000009167783 0.1170224
## year 1.0010930213055 1.0069572
##
## Call:
## glm(formula = Nonmodal ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.08110 -0.08011 -0.07911 -0.07514 0.92586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.922428 3.569592 -0.258 0.796
## year 0.000497 0.001773 0.280 0.779
##
## (Dispersion parameter for gaussian family taken to be 0.07215951)
##
## Null deviance: 65.454 on 908 degrees of freedom
## Residual deviance: 65.449 on 907 degrees of freedom
## AIC: 193.98
##
## Number of Fisher Scoring iterations: 2
Odds ratio and confidence interval
## [1] 1.000497
## 2.5 % 97.5 %
## (Intercept) 0.0003638751 434.347253
## year 0.9970259050 1.003981
##
## Call:
## glm(formula = Modal ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.07404 -0.06726 -0.05708 -0.05369 0.94970
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.473791 3.169707 1.096 0.273
## year -0.001696 0.001575 -1.077 0.282
##
## (Dispersion parameter for gaussian family taken to be 0.05689767)
##
## Null deviance: 51.672 on 908 degrees of freedom
## Residual deviance: 51.606 on 907 degrees of freedom
## AIC: -22.021
##
## Number of Fisher Scoring iterations: 2
Odds ratio and confidence interval
## [1] 0.9983058
## 2.5 % 97.5 %
## (Intercept) 0.06465309 16095.611914
## year 0.99522956 1.001392
##
## Call:
## glm(formula = Set ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.03457 -0.03295 -0.03133 -0.02487 0.97674
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.5961673 2.2577626 -0.707 0.480
## year 0.0008077 0.0011216 0.720 0.472
##
## (Dispersion parameter for gaussian family taken to be 0.02886775)
##
## Null deviance: 26.198 on 908 degrees of freedom
## Residual deviance: 26.183 on 907 degrees of freedom
## AIC: -638.8
##
## Number of Fisher Scoring iterations: 2
Odds ratio and confidence interval
## [1] 1.000808
## 2.5 % 97.5 %
## (Intercept) 0.002426511 16.927951
## year 0.998610367 1.003011
##
## Call:
## glm(formula = Prob ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.04360 -0.03971 -0.03583 -0.02029 0.98360
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.878176 2.334296 -1.661 0.0970 .
## year 0.001942 0.001160 1.675 0.0943 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.03085802)
##
## Null deviance: 28.075 on 908 degrees of freedom
## Residual deviance: 27.988 on 907 degrees of freedom
## AIC: -578.2
##
## Number of Fisher Scoring iterations: 2
Odds ratio and confidence interval
## [1] 1.001944
## 2.5 % 97.5 %
## (Intercept) 0.0002131934 2.007639
## year 0.9996696777 1.004224
##
## Call:
## glm(formula = Decision ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.04000 -0.03439 -0.02877 -0.00632 0.99930
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.6274915 1.9896648 -2.828 0.00478 **
## year 0.0028071 0.0009884 2.840 0.00461 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.022419)
##
## Null deviance: 20.515 on 908 degrees of freedom
## Residual deviance: 20.334 on 907 degrees of freedom
## AIC: -868.61
##
## Number of Fisher Scoring iterations: 2
Odds ratio and confidence interval
## [1] 1.002811
## 2.5 % 97.5 %
## (Intercept) 0.00007284601 0.1776713
## year 1.00087020054 1.0047556
##
## Call:
## glm(formula = Statistics ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.01409 -0.01233 -0.01058 -0.00355 0.99470
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.7595067 1.2411039 -1.418 0.157
## year 0.0008785 0.0006165 1.425 0.155
##
## (Dispersion parameter for gaussian family taken to be 0.008723136)
##
## Null deviance: 7.9296 on 908 degrees of freedom
## Residual deviance: 7.9119 on 907 degrees of freedom
## AIC: -1726.6
##
## Number of Fisher Scoring iterations: 2
Odds ratio and confidence interval
## [1] 1.000879
## 2.5 % 97.5 %
## (Intercept) 0.01511564 1.960133
## year 0.99967009 1.002089
##
## Call:
## glm(formula = Causal ~ year, data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.01141 -0.01018 -0.00895 -0.00402 0.99598
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.2325464 1.1621602 -1.061 0.289
## year 0.0006161 0.0005773 1.067 0.286
##
## (Dispersion parameter for gaussian family taken to be 0.007648714)
##
## Null deviance: 6.9461 on 908 degrees of freedom
## Residual deviance: 6.9374 on 907 degrees of freedom
## AIC: -1846.1
##
## Number of Fisher Scoring iterations: 2
Odds ratio and confidence interval
## [1] 1.000616
## 2.5 % 97.5 %
## (Intercept) 0.02988679 2.844098
## year 0.99948471 1.001749
agreement(data$Logic_1, data$Logic_2)
## agreement kappa
## 1 0.9192825 0.8063302
agreement(data$Probability_1, data$Probability_2)
## agreement kappa
## 1 0.9327354 0.8392986
agreement(data$c_1, data$c_2)
## agreement kappa
## 1 0.9820628 0.6574501
agreement(data$p_1, data$p_2)
## agreement kappa
## 1 0.9282511 0.7081629
agreement(data$d_1, data$d_2)
## agreement kappa
## 1 0.9461883 0.7093831
agreement(data$t_1, data$t_2)
## Warning in cohen.kappa1(x, w = w, n.obs = n.obs, alpha = alpha, levels =
## levels): upper or lower confidence interval exceed abs(1) and set to +/- 1.
## agreement kappa
## 1 0.9955157 0.9310238
agreement(data$l_1, data$l_2)
## agreement kappa
## 1 0.7713004 0.5163101
agreement(data$m_1, data$m_2)
## agreement kappa
## 1 0.8430493 0.5856999
agreement(data$s_1, data$s_2)
## agreement kappa
## 1 0.8430493 0.3367043
agreement(data$act_1, data$act_2)
## agreement kappa
## 1 0.9506726 0.5360318
agreement(data$dec_1, data$dec_2)
## agreement kappa
## 1 0.9641256 0.6737381
agreement(data$epi_1, data$epi_2)
## agreement kappa
## 1 0.9013453 0.7219136
agreement(data$lan_1, data$lan_2)
## agreement kappa
## 1 0.9058296 0.6706519
agreement(data$log_1, data$log_2)
## agreement kappa
## 1 0.9058296 0.5352784
agreement(data$met_1, data$met_2)
## agreement kappa
## 1 0.9147982 0.7929029
agreement(data$min_1, data$min_2)
## agreement kappa
## 1 0.9596413 0.5874615
agreement(data$sci_1, data$sci_2)
## agreement kappa
## 1 0.9461883 0.618912
agreement(data$val_1, data$val_2)
## agreement kappa
## 1 0.9461883 0.7395874
cor.test(data$level_1, data$level_2, method = "spearman")
## Warning in cor.test.default(data$level_1, data$level_2, method = "spearman"):
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: data$level_1 and data$level_2
## S = 585529, p-value < 0.00000000000000022
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.6831935
data <- data %>%
mutate(
Formal1 = case_when(
level_1 == 0 ~ 0,
TRUE ~ 1),
Formal2 = case_when(
level_2 == 0 ~ 0,
TRUE ~ 1)
)
table(data$Formal1, data$Formal2)
##
## 0 1
## 0 17 17
## 1 17 172
agreement(data$Formal1, data$Formal2)
## agreement kappa
## 1 0.8475336 0.4100529
Formal <- data %>%
filter(level_resolved != 0)
cor.test(Formal$level_1, Formal$level_2, method = "spearman")
## Warning in cor.test.default(Formal$level_1, Formal$level_2, method =
## "spearman"): Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: Formal$level_1 and Formal$level_2
## S = 492706, p-value < 0.00000000000000022
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.5757215