Figure 2

Description: Scores by journal, which is included in Figure 2 in manuscript.

Coder name(s): Althea ArchMiller


Preamble

Load libraries

library(ezknitr)
library(knitr)
library(devtools)
library(ggplot2)

Clear environment and set seed

remove(list=ls())
set.seed(8675)

Load Data

load(file = "data/processed_data/averages_of_reviewed_studies.Rdata")

Empty dataset to fill in for plotting

plottingdata <- as.data.frame(matrix(NA, nrow = 9, ncol = 6))
colnames(plottingdata) <- c("Score", "SD", "upper", "lower", 
                            "Category", "journal")

Fill in with reproducibility of figures scores

JWM

plottingdata$Score[1] <- 
  na.exclude(mean(averages$graphsReproduced[averages$journal=="JWM"]))
plottingdata$SD[1] <- 
  sd(na.exclude(averages$graphsReproduced[averages$journal=="JWM"]))
plottingdata$Category[1] <- "Figures"
plottingdata$journal[1] <- "JWM"

WSB

plottingdata$Score[2] <- 
  mean(na.exclude(averages$graphsReproduced[averages$journal=="WSB"]))
plottingdata$SD[2] <- 
  sd(na.exclude(averages$graphsReproduced[averages$journal=="WSB"]))
plottingdata$Category[2] <- "Figures"
plottingdata$journal[2] <- "WSB"

Overall

plottingdata$Score[3] <- mean(na.exclude(averages$graphsReproduced))
plottingdata$SD[3] <- sd(na.exclude(averages$graphsReproduced))
plottingdata$Category[3] <- "Figures"
plottingdata$journal[3] <- "Overall"

Fill in with reproducibility of numbers scores

JWM

plottingdata$Score[4] <- 
  mean(na.exclude(averages$numbersReproduced[averages$journal=="JWM"]))
plottingdata$SD[4] <- 
  sd(na.exclude(averages$numbersReproduced[averages$journal=="JWM"]))
plottingdata$Category[4] <- "Numbers"
plottingdata$journal[4] <- "JWM"

WSB

plottingdata$Score[5] <- 
  mean(na.exclude(averages$numbersReproduced[averages$journal=="WSB"]))
plottingdata$SD[5] <- 
  sd(na.exclude(averages$numbersReproduced[averages$journal=="WSB"]))
plottingdata$Category[5] <- "Numbers"
plottingdata$journal[5] <- "WSB"

Overall

plottingdata$Score[6] <- mean(na.exclude(averages$numbersReproduced))
plottingdata$SD[6] <- sd(na.exclude(averages$numbersReproduced))
plottingdata$Category[6] <- "Numbers"
plottingdata$journal[6] <- "Overall"

Fill in with reproducibility of conclusions scores

JWM

plottingdata$Score[7] <- 
  mean(na.exclude(averages$conclusionsReproduced[averages$journal=="JWM"]))
plottingdata$SD[7] <- 
  sd(na.exclude(averages$conclusionsReproduced[averages$journal=="JWM"]))
plottingdata$Category[7] <- "Conclusions"
plottingdata$journal[7] <- "JWM"

WSB

plottingdata$Score[8] <- 
  mean(na.exclude(averages$conclusionsReproduced[averages$journal=="WSB"]))
plottingdata$SD[8] <- 
  sd(na.exclude(averages$conclusionsReproduced[averages$journal=="WSB"]))
plottingdata$Category[8] <- "Conclusions"
plottingdata$journal[8] <- "WSB"

Overall

plottingdata$Score[9] <- mean(na.exclude(averages$conclusionsReproduced))
plottingdata$SD[9] <- sd(na.exclude(averages$conclusionsReproduced))
plottingdata$Category[9] <- "Conclusions"
plottingdata$journal[9] <- "Overall"

Calculate lower and upper limits for all categories

plottingdata$upper <- plottingdata$Score + plottingdata$SD
plottingdata$lower <- plottingdata$Score - plottingdata$SD

Compile raw data in long format

tempdata1 <- averages[,c("studyID", "graphsReproduced", "journal")]
tempdata2 <- averages[,c("studyID", "numbersReproduced", "journal")]
tempdata3 <- averages[,c("studyID", "conclusionsReproduced", "journal")]
colnames(tempdata1) <- 
  colnames(tempdata2) <- 
  colnames(tempdata3) <- c("studyID", "Score", "journal")
tempdata1$Category <- "Figures"
tempdata2$Category <- "Numbers"
tempdata3$Category <- "Conclusions"
plottingdata.long <- rbind(tempdata1, tempdata2, tempdata3)

Create figure

ggplot(data = plottingdata.long, aes(x = Category, y = Score, 
                                     colour = journal, shape = journal))+
  geom_pointrange(data = plottingdata,
                  aes(ymin = lower, ymax = upper, shape = journal), 
                  position = position_dodge(width = 0.6))+
  geom_jitter(position = position_jitterdodge(jitter.width = 0.15, 
                                              jitter.height = 0.15, 
                                              dodge.width = 0.7), 
              color = "black")+
  #ylim(1,5)+
  theme_classic()+
  theme(legend.position = "top", legend.title = element_blank(),
        legend.text = element_text(face = "italic"))+
  xlab("Reproducibility criterion")+
  ylab("Reproducibility score")
## Warning: Removed 1 rows containing missing values (geom_point).

plot of chunk figure2


Footer

devtools::session_info()
## - Session info ----------------------------------------------------------
##  setting  value                       
##  version  R version 3.4.3 (2017-11-30)
##  os       Windows >= 8 x64            
##  system   x86_64, mingw32             
##  ui       RStudio                     
##  language (EN)                        
##  collate  English_United States.1252  
##  ctype    English_United States.1252  
##  tz       America/Chicago             
##  date     2019-11-27                  
## 
## - Packages --------------------------------------------------------------
##  package     * version date       lib source        
##  assertthat    0.2.0   2017-04-11 [1] CRAN (R 3.4.4)
##  backports     1.1.2   2017-12-13 [1] CRAN (R 3.4.4)
##  bindr         0.1.1   2018-03-13 [1] CRAN (R 3.4.4)
##  bindrcpp      0.2.2   2018-03-29 [1] CRAN (R 3.4.4)
##  callr         3.1.0   2018-12-10 [1] CRAN (R 3.4.4)
##  cli           1.1.0   2019-03-19 [1] CRAN (R 3.4.4)
##  colorspace    1.3-2   2016-12-14 [1] CRAN (R 3.4.4)
##  crayon        1.3.4   2017-09-16 [1] CRAN (R 3.4.4)
##  desc          1.2.0   2018-05-01 [1] CRAN (R 3.4.4)
##  devtools    * 2.0.1   2018-10-26 [1] CRAN (R 3.4.4)
##  digest        0.6.18  2018-10-10 [1] CRAN (R 3.4.4)
##  dplyr         0.7.8   2018-11-10 [1] CRAN (R 3.4.4)
##  evaluate      0.12    2018-10-09 [1] CRAN (R 3.4.4)
##  ezknitr     * 0.6     2016-09-16 [1] CRAN (R 3.4.4)
##  fs            1.2.6   2018-08-23 [1] CRAN (R 3.4.4)
##  ggplot2     * 3.1.0   2018-10-25 [1] CRAN (R 3.4.4)
##  glue          1.3.0   2018-07-17 [1] CRAN (R 3.4.4)
##  gtable        0.2.0   2016-02-26 [1] CRAN (R 3.4.4)
##  highr         0.7     2018-06-09 [1] CRAN (R 3.4.4)
##  knitr       * 1.21    2018-12-10 [1] CRAN (R 3.4.4)
##  labeling      0.3     2014-08-23 [1] CRAN (R 3.4.1)
##  lazyeval      0.2.1   2017-10-29 [1] CRAN (R 3.4.4)
##  magrittr      1.5     2014-11-22 [1] CRAN (R 3.4.3)
##  memoise       1.1.0   2017-04-21 [1] CRAN (R 3.4.4)
##  munsell       0.5.0   2018-06-12 [1] CRAN (R 3.4.4)
##  pillar        1.3.0   2018-07-14 [1] CRAN (R 3.4.4)
##  pkgbuild      1.0.2   2018-10-16 [1] CRAN (R 3.4.4)
##  pkgconfig     2.0.2   2018-08-16 [1] CRAN (R 3.4.4)
##  pkgload       1.0.2   2018-10-29 [1] CRAN (R 3.4.4)
##  plyr          1.8.4   2016-06-08 [1] CRAN (R 3.4.4)
##  prettyunits   1.0.2   2015-07-13 [1] CRAN (R 3.4.4)
##  processx      3.3.0   2019-03-10 [1] CRAN (R 3.4.4)
##  ps            1.2.1   2018-11-06 [1] CRAN (R 3.4.4)
##  purrr         0.2.5   2018-05-29 [1] CRAN (R 3.4.4)
##  R.methodsS3   1.7.1   2016-02-16 [1] CRAN (R 3.4.1)
##  R.oo          1.22.0  2018-04-22 [1] CRAN (R 3.4.4)
##  R.utils       2.7.0   2018-08-27 [1] CRAN (R 3.4.4)
##  R6            2.3.0   2018-10-04 [1] CRAN (R 3.4.4)
##  Rcpp          1.0.0   2018-11-07 [1] CRAN (R 3.4.4)
##  remotes       2.1.0   2019-06-24 [1] CRAN (R 3.4.3)
##  rlang         0.3.4   2019-04-07 [1] CRAN (R 3.4.4)
##  rprojroot     1.3-2   2018-01-03 [1] CRAN (R 3.4.4)
##  rstudioapi    0.8     2018-10-02 [1] CRAN (R 3.4.4)
##  scales        1.0.0   2018-08-09 [1] CRAN (R 3.4.4)
##  sessioninfo   1.1.1   2018-11-05 [1] CRAN (R 3.4.4)
##  stringi       1.2.4   2018-07-20 [1] CRAN (R 3.4.4)
##  stringr       1.3.1   2018-05-10 [1] CRAN (R 3.4.4)
##  testthat      2.1.1   2019-04-23 [1] CRAN (R 3.4.4)
##  tibble        1.4.2   2018-01-22 [1] CRAN (R 3.4.4)
##  tidyselect    0.2.5   2018-10-11 [1] CRAN (R 3.4.4)
##  usethis     * 1.4.0   2018-08-14 [1] CRAN (R 3.4.4)
##  withr         2.1.2   2018-03-15 [1] CRAN (R 3.4.4)
##  xfun          0.4     2018-10-23 [1] CRAN (R 3.4.4)
##  yaml          2.2.0   2018-07-25 [1] CRAN (R 3.4.4)
## 
## [1] C:/Users/aarchmil/Documents/R/win-library/3.4
## [2] C:/Program Files/R/R-3.4.3/library

spun with: ezknitr::ezspin(file = “programs/03_scores_by_journal_figure.R”, keep_md = FALSE, out_dir = “html_reports”, fig_dir = “figures”)