function out = KitaevRaman14_8(N,bins,flag,nn,jx,jz,h) %This function was written by Brent Perreault %The basic Hamiltonian can be compared with EK Lee et al. arXiv:1308.6592v2 %output form: out = [Ev,DEp,DEm,DE,Ipp,Imm,Ipm] % Ev Energy bins for Raman Intensity. The appropriate bins for DOS are Ev/2 % DEp Density of states for the upper band % DEm DOS for lower band % DE Total Density of states % Ipp Raman Intensity for two spinons in the upper band % Imm Raman intensity for two spinons in the lower band % Ipm Raman intensity for two spinons, one from each band %additional output: %Time taken so far, and estimated end time %Plot of the densitiy of states (commented out for now) %input-parameters: % 2*N the number of points in a dimension (2*N ~ 100 takes minutes) % flag a boolean telling whether to estimate time on this run % nn the number of times that you plan to do a similar calculation (for error estimation) % type a string specifying which Raman operator % Jx the value of J_x/J_z , where J_y = J_x % bins number of bins on the energy axis (~2*N is a good choice) %Initial data %the max energy for the energy axis emax = 4*(2*jx+jz) + 8*h; %The values of the Kitaev couplings jy = jx; %Jy is always same as Jx %Jz = 1; %The 'kappa' terms characterizing the B-field term kx = 1; ky=kx; kz=kx; kx = kx*h; ky = ky*h; kz = kz*h; jxa=jx; jya=jy; jxb=jx; jyb=jy; %A convenient notation L=2*N; %Initialization of Arrays Ev = (1:bins)'*emax/bins; randy=0.14; r1 = randy; r2 = randy; r3 = randy; pts = (-N):(N-1); %We treat x and y values as corresponding to column and row values respectively y=repmat((pts+r1)/N,L,1)*pi/sqrt(2); z=repmat((pts.' + r3)/N,1,L)*pi/3; a1 = [-1,-sqrt(2),0]; a2 = [-1,sqrt(2),0]; a3 = [-1,0,3]; %The six are the six symmetric binary products of R^aa, R^ac, R^cc %h1 = {aa, aa, aa, ac, ac, cc, ab, bc}; %h2 = {aa, ac, cc, ac, cc, cc, ab, bc}; m1 = {1,1,1,3,3,5,2,4}; m2 = {1,3,5,3,5,5,2,4}; %They appear as {+,0,-,+,0,+} %Note I5 = -3I2 ; I6/9 = I1 = I3/(-3) %3/1 6/1 5/2 = -3, 9 , -3 mm = 8; %{aa,ab,ac,bc,cc} hxa = {1,sqrt(2),-1,-sqrt(2),1}./4; hya = {1,sqrt(2), 1, sqrt(2),1}./4; hxb = {1,-sqrt(2),-1, sqrt(2),1}./4; hyb = {1,-sqrt(2), 1,-sqrt(2),1}./4; hz = {0,0,0,0 ,1}; nm = 5; %Initializtion U=zeros(L,L,4,4); H=U; D=U; vm=zeros(L,L,4); vp=vm; vm2=vm; vp2=vm; gamma = zeros(size(U)); one = ones(L); gamma(:,:,1,3) = one; gamma(:,:,2,4) = one; gamma(:,:,3,1) = one; gamma(:,:,4,2) = one; R = cell(1,nm); R2=R; for n=1:nm R{n} = U; R2{n} = U; end Ipp = cell(1,mm); Imm = Ipp; Ipm = Ipp; %Dpp = Ipp; Dpm = Ipp; Dmm = Ipp; zerolist = zeros(size(Ev)); for m=1:mm Ipp{m} = zerolist; Imm{m} = zerolist; Ipm{m} = zerolist; end Dpp = zerolist; Dmm = zerolist; Dpm = zerolist; %Wpp = cell(1,mm); %Wmm = Wpp; Wpm = Wpp; %Z counts the number of k-points falling withing the actual BZ (volume of BZ) Z=0; %Now I do arithmetic as if x,y, and z were numbers but with x and a %matrices and doing only elementwise operations with them. %I only store values for a given y and then reduce the information into %a histogram before looping back to keep from overloading the memory %My computer handles about 2 to 5 * 10^8 doubles at once in memory so I %expect this code to max out the memory around N~3000 for ind = pts x = (ind + r2)*29*pi/(36*N); %I display an estimate of the end time aleph = 1 + round( (70/N)^2 ); %iterations for ~1 second of computation, or one iteration, which ever takes longer %Or an iteration, which ever is longer if (ind == -N+2) && flag %the first few may be slower due to initialization, start from the third one cl1 = clock; end if (ind == -N+2+aleph) && flag cl2 = clock; time = (cl2-cl1)*(2*N)/aleph*nn; %cl = cl1 + time*(2*N-2)/(2*N); format shortg disp('approximate time to take:') disp( datestr(time(6)/24/3600, 'DD-HH:MM:SS') ) format end %Only values above the line below are in the BZ (which is part of the %rectangle I have created in x,y,z space. %If this value is not positive I negate the energies out of the hist sn = sign( 29*pi/(36) - abs(x) - abs(y)/sqrt(2) - abs(z)/3 ); p1 = exp(1i*(x*a1(1)+y*a1(2)+z*a1(3))); p2 = exp(1i*(x*a2(1)+y*a2(2)+z*a2(3))); p3 = exp(1i*(x*a3(1)+y*a3(2)+z*a3(3))); A = (jxa + jya.*p1)./p3; B = (jxb + jyb.*p2); d = ky*(1-p2) + kx*(p2-p3);%%%%%%%%%%%%%% Need to be revised in new coords. a = kz*( p2.*conj(p1) - p1.*conj(p2) );%%%%%%%%%%%% b = -kz*( p3 - conj(p3) );%%%%%%%%%%%%%%% % DD = [jz,(jxa + jya.*p1)./p3 ; (jxb + jyb.*p2),jz]; %delta = ky + kx*p2 - ky*p1 - kx*p3 - kz*p3 + kz*conj(p3); %Call the script that creates H and diagonalizes it giving U, U2 (for %-k) and the diagonal energy matrix D. % if h == 0 % diag3D15h0; % else diag3D15; % end % em = D(:,:,1,1); % ep = D(:,:,2,2); % H = [(1i*(1/4)).*(a+(-1).*b+(1i*(-2)).*jz),(1/4).*(A+conj( ... % B)),(1i*(1/4)).*(a+b),(1/4).*((-1).*A+(1i*2).*d+conj( ... % B)); % % (1/4).*(B+conj(A)),(1i*(-1/4)).*(a+(-1).*b+(1i*2) ... % .*jz),(1/4).*((-1).*B+conj(A)+(1i*(-2)).*conj(d)),(1i* ... % (1/4)).*(a+b); % % (1i*(1/4)).*(a+b),(1/4).*(A+(1i*2).*d+( ... % -1).*conj(B)),(1i*(1/4)).*(a+(-1).*b+(1i*2).*jz),(1/4) ... % .*((-1).*A+(-1).*conj(B)); % % (1/4).*(B+(-1).*conj(A)+(1i*(-2)) ... % .*conj(d)),(1i*(1/4)).*(a+b),(1/4).*((-1).*B+(-1).*conj(A)), ... % (1i*(1/4)).*((-1).*a+b+(1i*2).*jz)]; % %A = (jxa + jya.*p1)./p3; %B = (jxb + jyb.*p2); %Raman operators (They are nm deep in cell space) Ac = (jxa*hxa + jya*hya*p1)./p3; Bc = (jxb*hxb + jyb*hyb.*p2); dc = 0*hz; %This term is assumed zero here ac = 0*hz; bc = 0*hz; jzc = jz*hz; for n=1:nm R{n}(:,:,1,1) = 1i*(ac{n}-bc{n}-2i*jzc{n}); R{n}(:,:,1,2) = Ac{n}+conj(Bc{n}); R{n}(:,:,1,3) = 1i*(ac{n}+bc{n}); R{n}(:,:,1,4) = -Ac{n}+2i*dc{n}+conj(Bc{n}); R{n}(:,:,2,1) = Bc{n}+conj(Ac{n}); R{n}(:,:,2,2) = -1i*(ac{n}-bc{n}+2i*jzc{n}); R{n}(:,:,2,3) = -Bc{n}+conj(Ac{n})-2i*conj(dc{n}); R{n}(:,:,2,4) = 1i*(ac{n}+bc{n}); R{n}(:,:,3,1) = 1i*(ac{n}+bc{n}); R{n}(:,:,3,2) = Ac{n}+2i*dc{n}-conj(Bc{n}); R{n}(:,:,3,3) = 1i*(ac{n}-bc{n}+2i*jzc{n}); R{n}(:,:,3,4) = -Ac{n}-conj(Bc{n}); R{n}(:,:,4,1) = Bc{n}-conj(Ac{n})-2i*conj(dc{n}); R{n}(:,:,4,2) = 1i*(ac{n}+bc{n}); R{n}(:,:,4,3) = -Bc{n}-conj(Ac{n}); R{n}(:,:,4,4) = 1i*(-ac{n}+bc{n}+2i*jzc{n}); %Now take -k % R2{n} = conj(R{n}); % R2{n}(:,:,4,1) = -Ac{n}+2i*delta{n}+conj(Bc{n}); % R2{n}(:,:,3,2) = conj(Ac{n})-2i*conj(deltac{n})-Bc{n}; % R2{n}(:,:,1,4) = conj( -Ac{n}+2i*deltac{n}+conj(Bc{n}) ); % R2{n}(:,:,2,3) = conj( conj(Ac{n})-2i*conj(deltac{n})-Bc{n} ); R{n} = R{n}/2; %R2{n} = R2{n}/4; end %Finding R in diagonal space (of H), call it RR RR = mult4( permute(conj(U),[1 2 4 3]) , mult4(R,U) ); %RR2 = mult4( permute(conj(U2),[1 2 4 3]) , mult4(R2,U2) ); D2 = mult4( permute(conj(U),[1 2 4 3]) , mult4(H,U) ); Errs = abs(D2 - D); err = max(max(max(max(Errs)))); if err>10^(-6) disp(err) end % The following check is not the requirement - need to implement -k in one of them, turns out U = conj(u2) % Errs2 = abs(U2 - U); % err2 = max(max(max(max(Errs2)))); % if err2>10^(-6) % disp(err2) % end if emax/2 < max(ep,em) disp([ep,emax,Jx,Jz]) end %The six binary combinations from above. for m=1:mm %Store the relevant information Wmm = pi*real(RR{m1{m}}(:,:,1,3).*RR{m2{m}}(:,:,3,1) ... + RR{m2{m}}(:,:,1,3).*RR{m1{m}}(:,:,3,1)); %These are right now, but not in earlier versions (mm <-> pp) Wpp = pi*real(RR{m1{m}}(:,:,2,4).*RR{m2{m}}(:,:,4,2) ... + RR{m2{m}}(:,:,2,4).*RR{m1{m}}(:,:,4,2)); Wpm = pi*real(RR{m1{m}}(:,:,1,4).*RR{m2{m}}(:,:,4,1)... +RR{m2{m}}(:,:,1,4).*RR{m1{m}}(:,:,4,1) ... + RR{m1{m}}(:,:,2,3).*RR{m2{m}}(:,:,3,2) ... + RR{m2{m}}(:,:,2,3).*RR{m1{m}}(:,:,3,2) ); %disp(max(max(2*ep(sn>=0)))) %Histogram it [histw, histv] = histwv(4*ep(sn>=0),Wpp(sn>=0),0,emax,bins); Ipp{m} = Ipp{m} + histw; Dpp = Dpp + histv; [histw, histv] = histwv(4*em(sn>=0),Wmm(sn>=0),0,emax,bins); Imm{m} = Imm{m} + histw; Dmm = Dmm + histv; [histw, histv] = histwv(2*ep(sn>=0)+2*em(sn>=0),Wpm(sn>=0),0,emax,bins); Ipm{m} = Ipm{m} + histw; Dpm = Dpm + histv; end %Add one to the number of BZ points counted if the point is indeed in %the BZ Z=Z+size(sn(sn(:)>=0),1); %Z should approximately be 18/29*L^3; end %Normalize the results by the BZ volume ddd = sum(Dmm)*(emax)/bins; Dpp=Dpp./ddd; Dmm=Dmm./ddd; Dpm =Dpm./ddd; %Note: the 1-particles DOS is D = 2*(Dmm+Dpp) on Ev/2, which will integrate to 2. %1 = 2*sum(Dmm)*(Ev(max)/2)/bins = sum(Dmm)*(Ev(max))/bins Ipp=Ipp./ddd; Ipm=Ipm./ddd; Imm=Imm./ddd; % Dpp=Dpp*bins./(Z*emax*mm ); % Dmm=Dmm*bins./(Z*emax*mm ); % Dpm =Dpm *bins./(Z*emax*mm ); % % Ipp=Ipp*bins./(Z*2*emax*mm ); % Ipm=Ipm*bins./(Z*2*emax*mm ); % Imm=Imm*bins./(Z*2*emax*mm ); out = cell(1,10); out{1} = Ev; out{2} = [Dpp,Dmm,Dpm]; for m=1:mm out{m+2} = [Ipp{m},Imm{m},Ipm{m}]; end %Note that Intensity should be plotted against Ev while DOS against Ev/2 %(otherwise it is the two-particle DOS %DEp(1)=0; DEm(1)=0; % Plot % figure; % hold on; % plot(Ev,Ipp,Ev,Imm,Ev,Ipm,Ev,Ipp+Imm+Ipm); % title(['Raman Spectrum for HyperHoneycomb Kitaev spinons: bins = ',num2str(bins),', N= ',num2str(N)]) % xlabel('E'); % ylabel('I(E)'); % hold off;