This readme.txt file was generated on 20241009 by Michael Chen Recommended citation for the data: Chen, Michael; Lee, Sanghyun; Kang, Peter. (2024). Microfluidic Experiments and Numerical Simulations of Inertia-induced Mixing and Reaction Maximization in Laminar Porous Media Flows. Retrieved from the Data Repository for the University of Minnesota (DRUM), https://doi.org/10.13020/r573-jw75 ------------------- GENERAL INFORMATION ------------------- 1. Title of Dataset: Microfluidic Experiments and Numerical Simulations of Inertia-induced Mixing and Reaction Maximization in Laminar Porous Media Flows 2. Author Information Principal Investigator Contact Information Name: Michael A. Chen Institution: University of Minnesota-Twin Cities Address: N/A Email: machen27@protonmail.com ORCID: 0000-0002-9461-4710 Co-investigator Contact Information Name: Sanghyun Lee Institution: University of Massachusetts, Amherst Address: N101B Morrill Science Center IV North, Department of Microbiology, University of Massachusetts Amherst Email: sanghyunlee@umass.edu ORCID: 0000-0002-1226-1959 Co-investigator Contact Information Name: Peter K. Kang Institution: University of Minnesota-Twin Cities and Saint Anthony Falls Laboratory Address: 375-02 John T. Tate Hall, 116 Church Street SE, Minneapolis, MN 55455 Email: pkkang@umn.edu ORCID: 0000-0002-4961-6899 3. Date published or finalized for release: Pending. 4. Date of data collection (single date, range, approximate date): Mar. 2020-Sept 2024 5. Geographic location of data collection (where was data collected?): Tate Hall, University of Minnesota-Twin Cities, Minneapolis, MN, USA 6. Information about funding sources that supported the collection of the data: - US Department of Energy Energy Frontier Research Center on Geo-processes in Mineral Carbon Storage , DE-SC0023429 - National Science Foundation Postdoctoral Fellowship Award EAR-952686 - National Science Foundation Grant No. EAR-2046015 - American Chemical Society Petroleum Research Fund - National Science Foundation National Nanotechnology Coordinated Infrastructure Award Number ECCS-2025124 for fabrication of microfluidic devices used in experiments. 7. Overview of the data (abstract): Solute transport and biogeochemical reactions in porous and fractured media flows are controlled by mixing, as are subsurface engineering operations such as contaminant remediation, geothermal energy production, and carbon sequestration. A porous media flow is generally regarded as slow, so the effects of fluid inertia on mixing and reaction are typically ignored. Here, we demonstrate through microfluidic experiments and numerical simulations of mixing-induced reaction, that inertial recirculating flows readily emerge in laminar porous media flows and dramatically alter mixing and reaction dynamics. An optimal Reynolds number that maximizes the reaction rate is observed for individual pore throats of different sizes. This reaction maximization is attributed to the effects of recirculation flows on reactant availability, mixing, and reaction completion, which depend on the topology of recirculation relative to the boundary of the reactants or mixing interface. Recirculation enhances mixing and reactant availability, but a further increase in flow velocity reduces the residence time in recirculation, leading to a decrease in reaction rate. The reaction maximization is also confirmed in a flow channel with grain inclusions and a randomized porous media. Interestingly, the domain-wide reaction rate shows a dramatic increase with increasing Re in the randomized porous media case. This is because fluid inertia induces complex three-dimensional flows in a randomized porous media, which significantly increases transverse spreading and mixing. This study shows how inertial flows control reaction dynamics at the pore scale and beyond, thus having major implications for a wide range of environmental systems. The data set consists of zip archives of the primary experimental data, simulation data, as well as analysis scripts used in support of a manuscript describing the impacts of inertial recirculation flows in porous media described in the abstract. The manuscript is currently under review and this posting will be updated with an appropriate link when published. A README file is provided to orient users to the data and analysis scripts. -------------------------- SHARING/ACCESS INFORMATION -------------------------- 1. Licenses/restrictions placed on the data: Data may be used only in non-commercial applications with attribution. http://creativecommons.org/licenses/by-nc-sa/4.0/ 2. Links to publications that cite or use the data: Pending. 3. Was data derived from another source? No. 4. Terms of Use: Data Repository for the U of Minnesota (DRUM) By using these files, users agree to the Terms of Use. https://conservancy.umn.edu/pages/policies/#drum-terms-of-use --------------------- DATA & FILE OVERVIEW --------------------- # File list * is used to represent any number of characters in a file name. 1. DataProcessingScripts.zip: Script files used for processing experimental data and images A. DataHelper.py: Helper functions for other scripts B. HistogramPlotting.py: Used for plotting multiple data series produced by SimulationHistogram.py C. ImageHistogram.py: Used for analyzing experimental data sets (i.e. collected in a single experiment). D. ImageHistogramPlotting.py: Used for plotting multiple experimental data sets after running ImageHistogram.py E. SimulationHistogram.py: Code for calculating results from simulation data targeted on a specific area and parameter of interest. F. StreamlineResidenceTime.py: Code which is used for calculating streamline residence times. G. SummaryDataPlotting.py: Pure plotting function used to produce plots in manuscript from an excel table contianing summarized results. H. UpdateEnv.yml: Anaconda python environment package specification. 2. SimulationData_d*.zip: Zip archives containing the COMSOL simulation data exports used for processing model results. Individual files within the archive provide details on the simulation performed have the '.chem.txt' file extension. d indicates the pore throat diameter in microns. r indicates the given grain radius in microns. Re gives the channel Re number (particle Re*1.25). k gives the reaction rate constant. The archives are divided by size of pore throat, and where necessary, ranges of Re number, to accommodate upload size limits. 3. ExperimentalImages_*.zip: Raw experimental image files (.tif) that can be analyzed with ImageHistogram.py. The archive name briefly describes the case used. In some cases, rotations were applied to align the flow axis with the image frame or images of large fields were stitched using FIJI. Images with stitching will be indicated in the file name. No other transformations were applied to these images. Images are of chemiluminsecence unless otherwise indicated. 4. RawSimulationImage.zip: Images produced from Comsol simulations and used in manuscript. 5. StreamlineData_d*.zip: Zip archives COMSOL data exports of 10000 streamlines used for analysis of residence time. # File relationships: Unzipped data from 2. are fed into script 1E, for initial processing, which slices the data sets into user input region of interest and calculates various quantities of interest written to a folder specified by the user. These results can be passed to script 1B for aggregation and plotting. Data from images data sets (3.) can be passed to script 1C and those results to 1D for plotting. All scripts in zip archive 1 use 1A as helper functions as import. -------------------------- METHODOLOGICAL INFORMATION -------------------------- 1. Description of methods used for collection/generation of data: Experimental images are produced from an inverted fluorescence microscope (TI2-E, Nikon). Except for stitching or rotations, no other processing is performed on the images used. 2. Methods for processing the data: The scripts described in file archive 1 are used for data processing, as described. The scripts are generally organized around input parameters at the top and the main running script at the bottom. The flow of scripts from data source to results is described in the Data & File Overview. 3. Instrument- or software-specific information needed to interpret the data: FIJI, Anaconda Python. Environment configuration for python is included in the DataProcessingScripts folder. 4. Standards and calibration information, if appropriate: None were required. Images are taken as is. 5. Environmental/experimental conditions: Experiments were perfromed at room temperature and pressure 6. Describe any quality-assurance procedures performed on the data: Simulation data replicates experimental conditions and generally match. 7. People involved with sample collection, processing, analysis and/or submission: Michael Chen performed experiments and simulations, captured images, analyzed data, and prepared the submission. Sanghyun Lee performed simulations and prepared the submission. Peter Kang guided experimental and simulation direction, analyzed data, and prepared the submission. ----------------------------------------- DATA-SPECIFIC INFORMATION FOR: Simulation file names ----------------------------------------- File names take the form, where <> are filled in depending on the simulation parameters used to produce the data. ___c_k_r_d_Re..txt ----------------------------------------- DATA-SPECIFIC INFORMATION FOR: Unzipped files ending in '.velStreamline.txt' ----------------------------------------- Rows: Points on prescribed streamlines colored by velocity magnitude Column headers: - x: X coordinate of point in model units (um) - y: Y coordinate of point in model units (um) - z: Z coordinate of point in model units (um) - Streamline: Which streamline the point belongs to. Plotting all points of a given streamline will reproduce the streamline calculated from COMSOL and can be used to visualize the flow field. - Color: Velocity magnitude in m/s along streamline ----------------------------------------- DATA-SPECIFIC INFORMATION FOR: Unzipped files ending in '.chemdata.txt' ----------------------------------------- Rows: Export of grid elements and properties of the fluid and chemistry at that element. Column headers: - x: X coordinate of grid element (um) - y: Y coordinate of grid element (um) - z: Z coordinate of grid element (um) - meshelement: Simulation grid element number - meshvol: Simulation grid element volume in m^3 - u: Velocity field, x component in m/s - v: Velocity field, y component in m/s - w: Velocity field, z component in m/s - p: Fluid Pressure in Pa - spf.U: Velocity magnitude in m/s - spf.out1.Mflow: Mass flow in kg/s - c_H2O2: Concentration of H2O2 in mol/m^3 - c_TCPO: Concentration of TCPO in mol/m^3 - c_product: Concentration of product in mol/m^3 - k: Reaction rate constant in m^3/(s*mol). Note that the rate constant is fixed for all grid elements. ----------------------------------------- DATA TREE ----------------------------------------- README_ChenV2.txt +---DataProcessingScripts | DataHelper.py | HistogramPlotting.py | ImageHistogram.py | ImageHistogramPlotting.py | SimulationHistogram.py | StreamlineResidenceTime.py | SummaryDataPlotting.py | updateEnv.yml | +---ExperimentalImages_100umPoreThroat | 2PD4_P7_A3_3c_10.002q.nd2 - C=0.tif | 2PD4_P7_A3_3c_10.002q.nd2 - C=1.tif | 2PD4_P7_A3_3c_10.002q.nd2 - C=2.tif | 2PD4_P7_A3_3c_10.002q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_10.002q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_10.002q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_10.002q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_10.002q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_10.002q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_100q.nd2 - C=0.tif | 2PD4_P7_A3_3c_100q.nd2 - C=1.tif | 2PD4_P7_A3_3c_100q.nd2 - C=2.tif | 2PD4_P7_A3_3c_100q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_100q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_100q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_100q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_100q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_100q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_150q.nd2 - C=0.tif | 2PD4_P7_A3_3c_150q.nd2 - C=1.tif | 2PD4_P7_A3_3c_150q.nd2 - C=2.tif | 2PD4_P7_A3_3c_150q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_150q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_150q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_150q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_150q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_150q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_200q.nd2 - C=0.tif | 2PD4_P7_A3_3c_200q.nd2 - C=1.tif | 2PD4_P7_A3_3c_200q.nd2 - C=2.tif | 2PD4_P7_A3_3c_200q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_200q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_200q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_200q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_200q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_200q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_250q.nd2 - C=0.tif | 2PD4_P7_A3_3c_250q.nd2 - C=1.tif | 2PD4_P7_A3_3c_250q.nd2 - C=2.tif | 2PD4_P7_A3_3c_250q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_250q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_250q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_250q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_250q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_250q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_300q.nd2 - C=0.tif | 2PD4_P7_A3_3c_300q.nd2 - C=1.tif | 2PD4_P7_A3_3c_300q.nd2 - C=2.tif | 2PD4_P7_A3_3c_300q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_300q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_300q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_300q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_300q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_300q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_350q.nd2 - C=0.tif | 2PD4_P7_A3_3c_350q.nd2 - C=1.tif | 2PD4_P7_A3_3c_350q.nd2 - C=2.tif | 2PD4_P7_A3_3c_350q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_350q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_350q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_350q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_350q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_350q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_400q.nd2 - C=0.tif | 2PD4_P7_A3_3c_400q.nd2 - C=1.tif | 2PD4_P7_A3_3c_400q.nd2 - C=2.tif | 2PD4_P7_A3_3c_400q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_400q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_400q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_400q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_400q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_400q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_450q.nd2 - C=0.tif | 2PD4_P7_A3_3c_450q.nd2 - C=1.tif | 2PD4_P7_A3_3c_450q.nd2 - C=2.tif | 2PD4_P7_A3_3c_450q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_450q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_450q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_450q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_450q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_450q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_500q.nd2 - C=0.tif | 2PD4_P7_A3_3c_500q.nd2 - C=1.tif | 2PD4_P7_A3_3c_500q.nd2 - C=2.tif | 2PD4_P7_A3_3c_500q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_500q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_500q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_500q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_500q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_500q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_50q.nd2 - C=0.tif | 2PD4_P7_A3_3c_50q.nd2 - C=1.tif | 2PD4_P7_A3_3c_50q.nd2 - C=2.tif | 2PD4_P7_A3_3c_50q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_50q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_50q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_50q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_50q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_50q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_550q.nd2 - C=0.tif | 2PD4_P7_A3_3c_550q.nd2 - C=1.tif | 2PD4_P7_A3_3c_550q.nd2 - C=2.tif | 2PD4_P7_A3_3c_550q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_550q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_550q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_550q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_550q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_550q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_600q003.nd2 - C=0.tif | 2PD4_P7_A3_3c_600q003.nd2 - C=1.tif | 2PD4_P7_A3_3c_600q003.nd2 - C=2.tif | 2PD4_P7_A3_3c_600q004.nd2 - C=0.tif | 2PD4_P7_A3_3c_600q004.nd2 - C=1.tif | 2PD4_P7_A3_3c_600q004.nd2 - C=2.tif | 2PD4_P7_A3_3c_600q005.nd2 - C=0.tif | 2PD4_P7_A3_3c_600q005.nd2 - C=1.tif | 2PD4_P7_A3_3c_600q005.nd2 - C=2.tif | 2PD4_P7_A3_3c_650q.nd2 - C=0.tif | 2PD4_P7_A3_3c_650q.nd2 - C=1.tif | 2PD4_P7_A3_3c_650q.nd2 - C=2.tif | 2PD4_P7_A3_3c_650q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_650q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_650q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_650q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_650q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_650q002.nd2 - C=2.tif | 2PD4_P7_A3_3c_700q.nd2 - C=0.tif | 2PD4_P7_A3_3c_700q.nd2 - C=1.tif | 2PD4_P7_A3_3c_700q.nd2 - C=2.tif | 2PD4_P7_A3_3c_700q001.nd2 - C=0.tif | 2PD4_P7_A3_3c_700q001.nd2 - C=1.tif | 2PD4_P7_A3_3c_700q001.nd2 - C=2.tif | 2PD4_P7_A3_3c_700q002.nd2 - C=0.tif | 2PD4_P7_A3_3c_700q002.nd2 - C=1.tif | 2PD4_P7_A3_3c_700q002.nd2 - C=2.tif | +---ExperimentalImages_25umPoreThroat | 2PD3_A2_3c_10.002q001.nd2 - C=0.tif | 2PD3_A2_3c_10.002q001.nd2 - C=1.tif | 2PD3_A2_3c_10.002q001.nd2 - C=2.tif | 2PD3_A2_3c_10.002q003.nd2 - C=0.tif | 2PD3_A2_3c_10.002q003.nd2 - C=1.tif | 2PD3_A2_3c_10.002q003.nd2 - C=2.tif | 2PD3_A2_3c_100q.nd2 - C=0.tif | 2PD3_A2_3c_100q.nd2 - C=1.tif | 2PD3_A2_3c_100q.nd2 - C=2.tif | 2PD3_A2_3c_100q001.nd2 - C=0.tif | 2PD3_A2_3c_100q001.nd2 - C=1.tif | 2PD3_A2_3c_100q001.nd2 - C=2.tif | 2PD3_A2_3c_100q002.nd2 - C=0.tif | 2PD3_A2_3c_100q002.nd2 - C=1.tif | 2PD3_A2_3c_100q002.nd2 - C=2.tif | 2PD3_A2_3c_100q003.nd2 - C=0.tif | 2PD3_A2_3c_100q003.nd2 - C=1.tif | 2PD3_A2_3c_100q003.nd2 - C=2.tif | 2PD3_A2_3c_150q.nd2 - C=0.tif | 2PD3_A2_3c_150q.nd2 - C=1.tif | 2PD3_A2_3c_150q.nd2 - C=2.tif | 2PD3_A2_3c_150q001.nd2 - C=0.tif | 2PD3_A2_3c_150q001.nd2 - C=1.tif | 2PD3_A2_3c_150q001.nd2 - C=2.tif | 2PD3_A2_3c_150q003.nd2 - C=0.tif | 2PD3_A2_3c_150q003.nd2 - C=1.tif | 2PD3_A2_3c_150q003.nd2 - C=2.tif | 2PD3_A2_3c_200q.nd2 - C=0.tif | 2PD3_A2_3c_200q.nd2 - C=1.tif | 2PD3_A2_3c_200q.nd2 - C=2.tif | 2PD3_A2_3c_200q001.nd2 - C=0.tif | 2PD3_A2_3c_200q001.nd2 - C=1.tif | 2PD3_A2_3c_200q001.nd2 - C=2.tif | 2PD3_A2_3c_200q002.nd2 - C=0.tif | 2PD3_A2_3c_200q002.nd2 - C=1.tif | 2PD3_A2_3c_200q002.nd2 - C=2.tif | 2PD3_A2_3c_250q.nd2 - C=0.tif | 2PD3_A2_3c_250q.nd2 - C=1.tif | 2PD3_A2_3c_250q.nd2 - C=2.tif | 2PD3_A2_3c_250q001.nd2 - C=0.tif | 2PD3_A2_3c_250q001.nd2 - C=1.tif | 2PD3_A2_3c_250q001.nd2 - C=2.tif | 2PD3_A2_3c_250q002.nd2 - C=0.tif | 2PD3_A2_3c_250q002.nd2 - C=1.tif | 2PD3_A2_3c_250q002.nd2 - C=2.tif | 2PD3_A2_3c_300q.nd2 - C=0.tif | 2PD3_A2_3c_300q.nd2 - C=1.tif | 2PD3_A2_3c_300q.nd2 - C=2.tif | 2PD3_A2_3c_300q001.nd2 - C=0.tif | 2PD3_A2_3c_300q001.nd2 - C=1.tif | 2PD3_A2_3c_300q001.nd2 - C=2.tif | 2PD3_A2_3c_300q002.nd2 - C=0.tif | 2PD3_A2_3c_300q002.nd2 - C=1.tif | 2PD3_A2_3c_300q002.nd2 - C=2.tif | 2PD3_A2_3c_350q.nd2 - C=0.tif | 2PD3_A2_3c_350q.nd2 - C=1.tif | 2PD3_A2_3c_350q.nd2 - C=2.tif | 2PD3_A2_3c_350q001.nd2 - C=0.tif | 2PD3_A2_3c_350q001.nd2 - C=1.tif | 2PD3_A2_3c_350q001.nd2 - C=2.tif | 2PD3_A2_3c_350q002.nd2 - C=0.tif | 2PD3_A2_3c_350q002.nd2 - C=1.tif | 2PD3_A2_3c_350q002.nd2 - C=2.tif | 2PD3_A2_3c_400q.nd2 - C=0.tif | 2PD3_A2_3c_400q.nd2 - C=1.tif | 2PD3_A2_3c_400q.nd2 - C=2.tif | 2PD3_A2_3c_400q001.nd2 - C=0.tif | 2PD3_A2_3c_400q001.nd2 - C=1.tif | 2PD3_A2_3c_400q001.nd2 - C=2.tif | 2PD3_A2_3c_400q002.nd2 - C=0.tif | 2PD3_A2_3c_400q002.nd2 - C=1.tif | 2PD3_A2_3c_400q002.nd2 - C=2.tif | 2PD3_A2_3c_450q.nd2 - C=0.tif | 2PD3_A2_3c_450q.nd2 - C=1.tif | 2PD3_A2_3c_450q.nd2 - C=2.tif | 2PD3_A2_3c_450q001.nd2 - C=0.tif | 2PD3_A2_3c_450q001.nd2 - C=1.tif | 2PD3_A2_3c_450q001.nd2 - C=2.tif | 2PD3_A2_3c_450q002.nd2 - C=0.tif | 2PD3_A2_3c_450q002.nd2 - C=1.tif | 2PD3_A2_3c_450q002.nd2 - C=2.tif | 2PD3_A2_3c_500q.nd2 - C=0.tif | 2PD3_A2_3c_500q.nd2 - C=1.tif | 2PD3_A2_3c_500q.nd2 - C=2.tif | 2PD3_A2_3c_500q001.nd2 - C=0.tif | 2PD3_A2_3c_500q001.nd2 - C=1.tif | 2PD3_A2_3c_500q001.nd2 - C=2.tif | 2PD3_A2_3c_500q002.nd2 - C=0.tif | 2PD3_A2_3c_500q002.nd2 - C=1.tif | 2PD3_A2_3c_500q002.nd2 - C=2.tif | 2PD3_A2_3c_50q002.nd2 - C=0.tif | 2PD3_A2_3c_50q002.nd2 - C=1.tif | 2PD3_A2_3c_50q002.nd2 - C=2.tif | 2PD3_A2_3c_50q003.nd2 - C=0.tif | 2PD3_A2_3c_50q003.nd2 - C=1.tif | 2PD3_A2_3c_50q003.nd2 - C=2.tif | 2PD3_A2_3c_50q004.nd2 - C=0.tif | 2PD3_A2_3c_50q004.nd2 - C=1.tif | 2PD3_A2_3c_50q004.nd2 - C=2.tif | 2PD3_A2_3c_50q005.nd2 - C=0.tif | 2PD3_A2_3c_50q005.nd2 - C=1.tif | 2PD3_A2_3c_50q005.nd2 - C=2.tif | 2PD3_A2_3c_550q.nd2 - C=0.tif | 2PD3_A2_3c_550q.nd2 - C=1.tif | 2PD3_A2_3c_550q.nd2 - C=2.tif | 2PD3_A2_3c_550q001.nd2 - C=0.tif | 2PD3_A2_3c_550q001.nd2 - C=1.tif | 2PD3_A2_3c_550q001.nd2 - C=2.tif | 2PD3_A2_3c_550q002.nd2 - C=0.tif | 2PD3_A2_3c_550q002.nd2 - C=1.tif | 2PD3_A2_3c_550q002.nd2 - C=2.tif | 2PD3_A2_3c_600q.nd2 - C=0.tif | 2PD3_A2_3c_600q.nd2 - C=1.tif | 2PD3_A2_3c_600q.nd2 - C=2.tif | 2PD3_A2_3c_600q001.nd2 - C=0.tif | 2PD3_A2_3c_600q001.nd2 - C=1.tif | 2PD3_A2_3c_600q001.nd2 - C=2.tif | 2PD3_A2_3c_600q002.nd2 - C=0.tif | 2PD3_A2_3c_600q002.nd2 - C=1.tif | 2PD3_A2_3c_600q002.nd2 - C=2.tif | 2PD3_A2_3c_650q.nd2 - C=0.tif | 2PD3_A2_3c_650q.nd2 - C=1.tif | 2PD3_A2_3c_650q.nd2 - C=2.tif | 2PD3_A2_3c_650q001.nd2 - C=0.tif | 2PD3_A2_3c_650q001.nd2 - C=1.tif | 2PD3_A2_3c_650q001.nd2 - C=2.tif | 2PD3_A2_3c_650q002.nd2 - C=0.tif | 2PD3_A2_3c_650q002.nd2 - C=1.tif | 2PD3_A2_3c_650q002.nd2 - C=2.tif | +---ExperimentalImages_Fracture | MPD2_P1_A3_3c_100q004.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_100q004.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_100q004.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_200q.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_200q.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_200q.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_200q001.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_200q001.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_200q001.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_200q002.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_200q002.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_200q002.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_200q003.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_200q003.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_200q003.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_300q.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_300q.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_300q.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_300q001.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_300q001.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_300q001.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_300q002.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_300q002.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_300q002.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_400q.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_400q.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_400q.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_400q001.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_400q001.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_400q001.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_500q.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_500q.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_500q.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_500q001.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_500q001.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_500q001.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_600q.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_600q.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_600q.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_600q001.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_600q001.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_600q001.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_700q.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_700q.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_700q.nd2_stitched_C=2.tif | MPD2_P1_A3_3c_800q.nd2_stitched_C=0.tif | MPD2_P1_A3_3c_800q.nd2_stitched_C=1.tif | MPD2_P1_A3_3c_800q.nd2_stitched_C=2.tif | +---ExperimentalImages_RandomPM_Chemiluminescence | MPD3B_C1_3c_batch_0.697q002.nd2 - C=0.tif | MPD3B_C1_3c_batch_0.697q002.nd2 - C=1.tif | MPD3B_C1_3c_batch_0.697q002.nd2 - C=2.tif | MPD3B_C1_3c_batch_10.002q.nd2 - C=0.tif | MPD3B_C1_3c_batch_10.002q.nd2 - C=1.tif | MPD3B_C1_3c_batch_10.002q.nd2 - C=2.tif | MPD3B_C1_3c_batch_1000q001.nd2 - C=0.tif | MPD3B_C1_3c_batch_1000q001.nd2 - C=1.tif | MPD3B_C1_3c_batch_1000q001.nd2 - C=2.tif | MPD3B_C1_3c_batch_100q.nd2 - C=0.tif | MPD3B_C1_3c_batch_100q.nd2 - C=1.tif | MPD3B_C1_3c_batch_100q.nd2 - C=2.tif | MPD3B_C1_3c_batch_1q001.nd2 - C=0.tif | MPD3B_C1_3c_batch_1q001.nd2 - C=1.tif | MPD3B_C1_3c_batch_1q001.nd2 - C=2.tif | MPD3B_C1_3c_batch_3000q.nd2 - C=0.tif | MPD3B_C1_3c_batch_3000q.nd2 - C=1.tif | MPD3B_C1_3c_batch_3000q.nd2 - C=2.tif | MPD3B_C1_3c_batch_300q004.nd2 - C=0.tif | MPD3B_C1_3c_batch_300q004.nd2 - C=1.tif | MPD3B_C1_3c_batch_300q004.nd2 - C=2.tif | MPD3B_C1_3c_batch_5.001q.nd2 - C=0.tif | MPD3B_C1_3c_batch_5.001q.nd2 - C=1.tif | MPD3B_C1_3c_batch_5.001q.nd2 - C=2.tif | MPD3B_C1_3c_batch_5000q001.nd2 - C=0.tif | MPD3B_C1_3c_batch_5000q001.nd2 - C=1.tif | MPD3B_C1_3c_batch_5000q001.nd2 - C=2.tif | MPD3B_C1_3c_batch_500q003.nd2 - C=0.tif | MPD3B_C1_3c_batch_500q003.nd2 - C=1.tif | MPD3B_C1_3c_batch_500q003.nd2 - C=2.tif | MPD3B_C1_3c_batch_700q002.nd2 - C=0.tif | MPD3B_C1_3c_batch_700q002.nd2 - C=1.tif | MPD3B_C1_3c_batch_700q002.nd2 - C=2.tif | +---ExperimentalImages_RandomPM_Tracer | MPD3A_C1_2x_0.697q003.nd2 - C=0.tif | MPD3A_C1_2x_0.697q003.nd2 - C=1.tif | MPD3A_C1_2x_0.697q004.nd2 - C=0.tif | MPD3A_C1_2x_0.697q004.nd2 - C=1.tif | MPD3A_C1_2x_100q002.nd2 - C=0.tif | MPD3A_C1_2x_100q002.nd2 - C=1.tif | MPD3A_C1_2x_10q005.nd2 - C=0.tif | MPD3A_C1_2x_10q005.nd2 - C=1.tif | MPD3A_C1_2x_10q006.nd2 - C=0.tif | MPD3A_C1_2x_10q006.nd2 - C=1.tif | MPD3A_C1_2x_10q007.nd2 - C=0.tif | MPD3A_C1_2x_10q007.nd2 - C=1.tif | MPD3A_C1_2x_1100q.nd2 - C=0.tif | MPD3A_C1_2x_1100q.nd2 - C=1.tif | MPD3A_C1_2x_1100q001.nd2 - C=0.tif | MPD3A_C1_2x_1100q001.nd2 - C=1.tif | MPD3A_C1_2x_2000q.nd2 - C=0.tif | MPD3A_C1_2x_2000q.nd2 - C=1.tif | MPD3A_C1_2x_2000q001.nd2 - C=0.tif | MPD3A_C1_2x_2000q001.nd2 - C=1.tif | MPD3A_C1_2x_200q.nd2 - C=0.tif | MPD3A_C1_2x_200q.nd2 - C=1.tif | MPD3A_C1_2x_200q001.nd2 - C=0.tif | MPD3A_C1_2x_200q001.nd2 - C=1.tif | MPD3A_C1_2x_300q.nd2 - C=0.tif | MPD3A_C1_2x_300q.nd2 - C=1.tif | MPD3A_C1_2x_300q001.nd2 - C=0.tif | MPD3A_C1_2x_300q001.nd2 - C=1.tif | MPD3A_C1_2x_4000q.nd2 - C=0.tif | MPD3A_C1_2x_4000q.nd2 - C=1.tif | MPD3A_C1_2x_4000q001.nd2 - C=0.tif | MPD3A_C1_2x_4000q001.nd2 - C=1.tif | MPD3A_C1_2x_400q.nd2 - C=0.tif | MPD3A_C1_2x_400q.nd2 - C=1.tif | MPD3A_C1_2x_400q001.nd2 - C=0.tif | MPD3A_C1_2x_400q001.nd2 - C=1.tif | MPD3A_C1_2x_5000q.nd2 - C=0.tif | MPD3A_C1_2x_5000q.nd2 - C=1.tif | MPD3A_C1_2x_5000q001.nd2 - C=0.tif | MPD3A_C1_2x_5000q001.nd2 - C=1.tif | MPD3A_C1_2x_500q.nd2 - C=0.tif | MPD3A_C1_2x_500q.nd2 - C=1.tif | MPD3A_C1_2x_500q001.nd2 - C=0.tif | MPD3A_C1_2x_500q001.nd2 - C=1.tif | MPD3A_C1_2x_50q.nd2 - C=0.tif | MPD3A_C1_2x_50q.nd2 - C=1.tif | MPD3A_C1_2x_50q001.nd2 - C=0.tif | MPD3A_C1_2x_50q001.nd2 - C=1.tif | MPD3A_C1_2x_7500q.nd2 - C=0.tif | MPD3A_C1_2x_7500q.nd2 - C=1.tif | MPD3A_C1_2x_7500q001.nd2 - C=0.tif | MPD3A_C1_2x_7500q001.nd2 - C=1.tif | MPD3A_C1_2x_800q.nd2 - C=0.tif | MPD3A_C1_2x_800q.nd2 - C=1.tif | MPD3A_C1_2x_800q001.nd2 - C=0.tif | MPD3A_C1_2x_800q001.nd2 - C=1.tif | +---Raw Simulation Images | SimImage_Re100_SingleStreamline_z=50.svg | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re100_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re100_cConst_viridisChannel.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re100_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re100_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re10_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re10_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re10_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re125_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re125_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re150_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re150_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re1_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re1_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re1_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re200_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re200_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re200_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re250_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re250_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re30_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re30_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re30_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re50_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re50_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re50_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re70_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d100_Re70_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re100_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re100_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re100_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re10_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re10_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re10_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re125_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re125_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re150_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re150_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re1_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re1_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re1_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re200_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re200_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re200_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re250_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re250_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re30_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re30_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re50_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re50_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re50_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re70_cConst_poreThroat.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d25_Re70_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d50_Re2.5_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d50_Re2.5_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d50_Re200_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d50_Re250_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d50_Re250_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d50_Re30_Streamlines.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d50_Re50_dCdtTherm.png | SimImage_SingleThroat_v6_ExF_c3_k2000_r100_d50_Re50_Streamlines.png | +---SimulationData_25um | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re1.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re10.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re100.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re125.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re150.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re200.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re250.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re30.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re50.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re70.chemdata.txt | +---SimulationData_d100 | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re1.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re10.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re100.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re125.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re150.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re200.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re250.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re30.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re50.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re70.chemdata.txt | +---SimulationData_d50 | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re10.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re100.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re125.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re2.5.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re200.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re25.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re250.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re30.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re50.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re62.5.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re75.chemdata.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re87.5.chemdata.txt | +---StreamlineData_d100 | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re1.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re10.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re100.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re125.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re150.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re200.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re250.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re30.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re50.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d100_Re70.velStreamline.txt | +---StreamlineData_d25 | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re1.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re10.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re100.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re125.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re150.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re200.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re250.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re30.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re50.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d25_Re70.velStreamline.txt | +---StreamlineData_d50_highRe | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re100.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re125.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re200.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re250.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re75.velStreamline.txt | TwoPillar_v6_ExF_c3_k2000_r100_d50_Re87.5.velStreamline.txt | \---StreamlineData_d50_lowRe TwoPillar_v6_ExF_c3_k2000_r100_d50_Re10.velStreamline.txt TwoPillar_v6_ExF_c3_k2000_r100_d50_Re2.5.velStreamline.txt TwoPillar_v6_ExF_c3_k2000_r100_d50_Re25.velStreamline.txt TwoPillar_v6_ExF_c3_k2000_r100_d50_Re30.velStreamline.txt TwoPillar_v6_ExF_c3_k2000_r100_d50_Re50.velStreamline.txt TwoPillar_v6_ExF_c3_k2000_r100_d50_Re62.5.velStreamline.txt