Welcome

This analysis was designed to accompany the files nontarget_exp.accdb and veliger_exp.accdb. Both files are included in the R Project. However, to connect to the databases (sections 1.1.1 and 2.1.1) you will need to change the file location to the location it is stored on the device you are working from (change the pathways after “accdbpath_nt” (1.1.1) and “accdbpath_vel” (2.1.1) to reflect the location on your computer).

Set-up

rm(list=ls()) # clear memory
library(knitr)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.1     ✔ purrr   1.0.1
## ✔ tibble  3.1.8     ✔ dplyr   1.1.0
## ✔ tidyr   1.3.0     ✔ stringr 1.5.0
## ✔ readr   2.1.4     ✔ forcats 1.0.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(data.table)
## 
## Attaching package: 'data.table'
## 
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
## 
## The following object is masked from 'package:purrr':
## 
##     transpose
library(kableExtra)
## Warning in !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output
## %in% : 'length(x) = 2 > 1' in coercion to 'logical(1)'
## 
## Attaching package: 'kableExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     group_rows
library(dplyr)
library(ggplot2)
library(ggpubr)
library(RODBC)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## The following object is masked from 'package:purrr':
## 
##     some
library(FSA)
## Registered S3 methods overwritten by 'FSA':
##   method       from
##   confint.boot car 
##   hist.boot    car 
## ## FSA v0.9.4. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
## 
## Attaching package: 'FSA'
## 
## The following object is masked from 'package:car':
## 
##     bootCase
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(nlme)
## 
## Attaching package: 'nlme'
## 
## The following object is masked from 'package:lme4':
## 
##     lmList
## 
## The following object is masked from 'package:dplyr':
## 
##     collapse
library(car)
library(RColorBrewer)
library(broom)
library(viridis)
## Loading required package: viridisLite
library(rstatix)
## 
## Attaching package: 'rstatix'
## 
## The following object is masked from 'package:stats':
## 
##     filter

1. Non-target experiment

1.1 Connect to data

# Connect to non-target experiment data
driver_nt <- "Driver={Microsoft Access Driver (*.mdb, *.accdb)};" # Set up the driver info
accdbpath_nt <- "C:/Users/Dahlbergs/Dropbox/Angelique/PhD/Writing/4. Bioavailability modeling/DRUM/nontarget_exp.accdb" # This leads to the Access database containing non-target experiment data
path_nt <- paste0(driver_nt,"DBQ=", accdbpath_nt) # Set up database path
cnxn_nt <- odbcDriverConnect(path_nt) # Establish connection for database

# Note: you may need to install a driver for MS Access outside of R in order to make the connection to this database. See https://leowong.ca/blog/connect-to-microsoft-access-database-via-r/

1.2 Water temp, DO, pH, specific conductance

# Load data into R dataframes
tbl_tankData <- sqlQuery(cnxn_nt, "SELECT Tbl_WaterChemistry_Tanks.Treatment, Tbl_WaterChemistry_Tanks.Temperature, Tbl_WaterChemistry_Tanks.DO, Tbl_WaterChemistry_Tanks.pH, Tbl_WaterChemistry_Tanks.Conductance FROM Tbl_WaterChemistry_Tanks;", stringsAsFactors = FALSE) # Tank data

tbl_lakeData <- sqlQuery(cnxn_nt, "SELECT Tbl_Source.Treatment, Tbl_Source.Temperature, Tbl_Source.DO, Tbl_Source.pH, Tbl_Source.Conductance FROM Tbl_Source;", stringsAsFactors = FALSE) # Lake data
tbl_waterData <- rbind(tbl_tankData, tbl_lakeData) # Append tank and lake dataframes to create one table
tbl_waterData$Treatment <- as.factor(tbl_waterData$Treatment) # Modify variable type(s)
summary(tbl_waterData) # Examine dataframe
##    Treatment    Temperature          DO               pH         Conductance   
##  Control:180   Min.   :17.60   Min.   : 5.100   Min.   :7.190   Min.   :130.6  
##  High   :180   1st Qu.:22.80   1st Qu.: 8.012   1st Qu.:7.740   1st Qu.:155.6  
##  Lake   : 30   Median :23.90   Median : 8.440   Median :8.355   Median :164.5  
##  Low    :180   Mean   :23.81   Mean   : 8.444   Mean   :8.149   Mean   :170.9  
##  Medium :180   3rd Qu.:24.90   3rd Qu.: 8.807   3rd Qu.:8.520   3rd Qu.:181.4  
##                Max.   :30.50   Max.   :15.020   Max.   :8.800   Max.   :234.0
group_by(tbl_waterData, Treatment) %>%
  summarise(
    mean = mean(Temperature),
    sd = sd(Temperature)
  )
## # A tibble: 5 × 3
##   Treatment  mean    sd
##   <fct>     <dbl> <dbl>
## 1 Control    23.8  2.06
## 2 High       23.7  2.09
## 3 Lake       24.4  1.62
## 4 Low        23.8  2.14
## 5 Medium     23.8  2.13
group_by(tbl_waterData, Treatment) %>%
  summarise(
    mean = mean(DO),
    sd = sd(DO)
  )
## # A tibble: 5 × 3
##   Treatment  mean    sd
##   <fct>     <dbl> <dbl>
## 1 Control    8.48 1.12 
## 2 High       8.33 1.18 
## 3 Lake       8.39 0.375
## 4 Low        8.46 1.00 
## 5 Medium     8.51 1.26
group_by(tbl_waterData, Treatment) %>%
  summarise(
    mean = mean(pH),
    sd = sd(pH)
  )
## # A tibble: 5 × 3
##   Treatment  mean    sd
##   <fct>     <dbl> <dbl>
## 1 Control    8.13 0.413
## 2 High       8.16 0.392
## 3 Lake       8.60 0.149
## 4 Low        8.11 0.415
## 5 Medium     8.12 0.414
group_by(tbl_waterData, Treatment) %>%
  summarise(
    mean = mean(Conductance),
    sd = sd(Conductance)
  )
## # A tibble: 5 × 3
##   Treatment  mean    sd
##   <fct>     <dbl> <dbl>
## 1 Control    171.  23.8
## 2 High       171.  24.0
## 3 Lake       167.  22.5
## 4 Low        171.  23.5
## 5 Medium     171.  23.7
# Compare variability of different groups to determine if appropriate for ANOVA
leveneTest(tbl_waterData$Temperature~tbl_waterData$Treatment)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group   4  0.5105  0.728
##       745
leveneTest(tbl_waterData$DO~tbl_waterData$Treatment) # at least one group has a different variability range; sd above says Lake
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value   Pr(>F)   
## group   4   3.409 0.008953 **
##       745                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tbl_waterData$pH~tbl_waterData$Treatment) # at least one group has a different variability range; sd above says Lake
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value    Pr(>F)    
## group   4   11.04 1.055e-08 ***
##       745                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tbl_waterData$Conductance~tbl_waterData$Treatment)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group   4  0.0123 0.9997
##       745
# Visualize variability differences
boxplot(tbl_waterData$Temperature~tbl_waterData$Treatment)

boxplot(tbl_waterData$DO~tbl_waterData$Treatment)

boxplot(tbl_waterData$pH~tbl_waterData$Treatment)

boxplot(tbl_waterData$Conductance~tbl_waterData$Treatment)

# Consider outliers (all together to get big picture)
hist(tbl_waterData$Temperature)

hist(tbl_waterData$DO)

hist(tbl_waterData$pH) # bimodality likely due to lake values (~8.5)

hist(tbl_waterData$Conductance)

# no outliers appear to be unreasonable, inaccurate, or worth excluding
# Water temperature
(aov_temp <- oneway.test(Temperature~Treatment, tbl_waterData, var.equal=T)) #Temperatures do not vary between the tanks and the lake
## 
##  One-way analysis of means
## 
## data:  Temperature and Treatment
## F = 0.6444, num df = 4, denom df = 745, p-value = 0.631
# Dissolved oxygen (DO)
(aov_do <- oneway.test(DO~Treatment, tbl_waterData, var.equal=F)) #DOs do not vary between the tanks and the lake
## 
##  One-way analysis of means (not assuming equal variances)
## 
## data:  DO and Treatment
## F = 0.72138, num df = 4.00, denom df = 241.26, p-value = 0.5781
# pH
(aov_ph <- oneway.test(pH~Treatment, tbl_waterData, var.equal=F)) #pH is not different between tanks but is different between the tanks (collectively) and lake
## 
##  One-way analysis of means (not assuming equal variances)
## 
## data:  pH and Treatment
## F = 55.853, num df = 4.00, denom df = 230.73, p-value < 2.2e-16
tbl_waterData_pH <- subset(tbl_waterData, Treatment != "Lake") # Remove the lake readings to see if all tanks are the same
leveneTest(tbl_waterData_pH$pH~tbl_waterData_pH$Treatment) # no differences
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group   3  0.4627 0.7084
##       716
(aov_phTanks <- oneway.test(pH~Treatment, tbl_waterData_pH, var.equal=T)) # Tanks are the same
## 
##  One-way analysis of means
## 
## data:  pH and Treatment
## F = 0.39548, num df = 3, denom df = 716, p-value = 0.7563
# Specific conductance
(aov_conductance <- oneway.test(Conductance~Treatment, tbl_waterData, var.equal=T)) #conductance does not vary between the tanks and the lake
## 
##  One-way analysis of means
## 
## data:  Conductance and Treatment
## F = 0.20291, num df = 4, denom df = 745, p-value = 0.9368
(games_howell_test(tbl_waterData, pH~Treatment, conf.level=0.95)) #how pH varies by tank
## # A tibble: 10 × 8
##    .y.   group1  group2 estimate conf.low conf.high    p.adj p.adj.signif
##  * <chr> <chr>   <chr>     <dbl>    <dbl>     <dbl>    <dbl> <chr>       
##  1 pH    Control High    0.0232   -0.0931    0.140  9.82e- 1 ns          
##  2 pH    Control Lake    0.465     0.351     0.578  3.38e-14 ****        
##  3 pH    Control Low    -0.0192   -0.139     0.100  9.92e- 1 ns          
##  4 pH    Control Medium -0.0148   -0.134     0.105  9.97e- 1 ns          
##  5 pH    High    Lake    0.441     0.331     0.552  7.09e-14 ****        
##  6 pH    High    Low    -0.0424   -0.159     0.0742 8.56e- 1 ns          
##  7 pH    High    Medium -0.0381   -0.155     0.0784 8.98e- 1 ns          
##  8 pH    Lake    Low    -0.484    -0.598    -0.370  5.88e-14 ****        
##  9 pH    Lake    Medium -0.480    -0.593    -0.366  3.77e-15 ****        
## 10 pH    Low     Medium  0.00439  -0.115     0.124  1   e+ 0 ns

1.3 Total ammonia nitrogen (TAN) in tanks

tbl_tan <- sqlQuery(cnxn_nt, "SELECT Tbl_WaterChemistry_TotalAmmoniaNitrogen.Day, Tbl_WaterChemistry_TotalAmmoniaNitrogen.Flush, Tbl_WaterChemistry_TotalAmmoniaNitrogen.Treatment, Tbl_WaterChemistry_TotalAmmoniaNitrogen.TAN FROM Tbl_WaterChemistry_TotalAmmoniaNitrogen;", stringsAsFactors = FALSE) # Load data into R dataframes
tbl_tan$Flush <- as.factor(tbl_tan$Flush) #change variables to categorical
tbl_tan$Treatment <- as.factor(tbl_tan$Treatment)
tbl_tan$Day <- as.factor(tbl_tan$Day)
group_by(tbl_tan, Treatment, Flush) %>%
  summarise(
    mean = mean(TAN),
    sd = sd(TAN)
  )
## `summarise()` has grouped output by 'Treatment'. You can override using the
## `.groups` argument.
## # A tibble: 8 × 4
## # Groups:   Treatment [4]
##   Treatment Flush        mean     sd
##   <fct>     <fct>       <dbl>  <dbl>
## 1 Control   Post-flush 0.0712 0.0331
## 2 Control   Pre-flush  0.304  0.159 
## 3 High      Post-flush 0.0754 0.0424
## 4 High      Pre-flush  0.301  0.204 
## 5 Low       Post-flush 0.0782 0.0337
## 6 Low       Pre-flush  0.318  0.177 
## 7 Medium    Post-flush 0.0866 0.0481
## 8 Medium    Pre-flush  0.332  0.215
group_by(tbl_tan, Treatment) %>%
  summarise(
    mean = mean(TAN),
    sd = sd(TAN)
  )
## # A tibble: 4 × 3
##   Treatment  mean    sd
##   <fct>     <dbl> <dbl>
## 1 Control   0.211 0.170
## 2 High      0.211 0.194
## 3 Low       0.222 0.182
## 4 Medium    0.234 0.207
# Compare variability of different groups to determine if appropriate for ANOVA
leveneTest(tbl_tan$TAN~tbl_tan$Treatment) # Variance does not differ
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  3  0.0808 0.9703
##       76
leveneTest(tbl_tan$TAN~tbl_tan$Flush) # Variance differs
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value    Pr(>F)    
## group  1  26.391 2.005e-06 ***
##       78                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Visualize variability differences
boxplot(tbl_tan$TAN~tbl_tan$Treatment)

boxplot(tbl_tan$TAN~tbl_tan$Flush)

(aov_tan_treat <- oneway.test(TAN~Treatment, tbl_tan, var.equal=T)) # No difference between treatments when not accounting for pre- and post-flush
## 
##  One-way analysis of means
## 
## data:  TAN and Treatment
## F = 0.065478, num df = 3, denom df = 76, p-value = 0.978
(aov_tan_flush <- oneway.test(TAN~Flush, tbl_tan, var.equal=F)) # Difference between pre- and post-flush when not accounting for treatments
## 
##  One-way analysis of means (not assuming equal variances)
## 
## data:  TAN and Flush
## F = 73.669, num df = 1.000, denom df = 52.935, p-value = 1.339e-11
(aov_tan <- aov(TAN ~ Treatment + Flush + Treatment:Flush, tbl_tan))
## Call:
##    aov(formula = TAN ~ Treatment + Flush + Treatment:Flush, data = tbl_tan)
## 
## Terms:
##                 Treatment     Flush Treatment:Flush Residuals
## Sum of Squares  0.0069920 1.0674760       0.0009912 1.6367149
## Deg. of Freedom         3         1               3        72
## 
## Residual standard error: 0.1507719
## Estimated effects may be unbalanced
summary(aov_tan)
##                 Df Sum Sq Mean Sq F value   Pr(>F)    
## Treatment        3  0.007  0.0023   0.103    0.958    
## Flush            1  1.067  1.0675  46.959 2.06e-09 ***
## Treatment:Flush  3  0.001  0.0003   0.015    0.998    
## Residuals       72  1.637  0.0227                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.4 Copper analysis

tbl_copper <- sqlQuery(cnxn_nt, "SELECT [Tbl_Copper_ICP].Day, [Tbl_Copper_ICP].Dose, [Tbl_Copper_ICP].[Tank #], [Tbl_Copper_ICP].Treatment, [Tbl_Copper_ICP].[Cu (ppb)]
FROM [Tbl_Copper_ICP];", stringsAsFactors = FALSE) # Load copper data into R dataframes

colnames(tbl_copper) = c("day", "dose", "tank", "treatment", "Cu") # rename columns
colnames(tbl_copper) = c("day", "dose", "tank", "treatment", "Cu") # rename columns
tbl_copper <- subset(tbl_copper, treatment!="Lake") # remove lake measurements
tbl_copper$dose <- as.factor(tbl_copper$dose) # Modify variable type(s)
tbl_copper$treatment <- as.factor(tbl_copper$treatment)
tbl_copper$day <- as.factor(tbl_copper$day)
tbl_copper$tank <- as.factor(tbl_copper$tank)
group_by(tbl_copper, dose, treatment) %>%
  summarise(
    mean = mean(Cu, na.rm=T),
    sd = sd(Cu, na.rm=T)
  )
## `summarise()` has grouped output by 'dose'. You can override using the
## `.groups` argument.
## # A tibble: 8 × 4
## # Groups:   dose [2]
##   dose      treatment  mean    sd
##   <fct>     <fct>     <dbl> <dbl>
## 1 Post-dose Control    6.74  9.31
## 2 Post-dose High      35.0  12.0 
## 3 Post-dose Low        9.80  2.36
## 4 Post-dose Medium    23.7   6.36
## 5 Pre-dose  Control    6.15  7.16
## 6 Pre-dose  High      30.5   9.06
## 7 Pre-dose  Low        8.20  1.95
## 8 Pre-dose  Medium    20.2   5.78
group_by(tbl_copper, treatment) %>%
  summarise(
    mean = mean(Cu, na.rm=T),
    sd = sd(Cu, na.rm=T)
  )
## # A tibble: 4 × 3
##   treatment  mean    sd
##   <fct>     <dbl> <dbl>
## 1 Control    6.36  7.64
## 2 High      32.8  10.8 
## 3 Low        8.98  2.30
## 4 Medium    22.0   6.30
# Compare variability of different groups to determine if appropriate for ANOVA
leveneTest(tbl_copper$Cu~tbl_copper$treatment) # variance differs
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value    Pr(>F)    
## group   3  26.733 9.676e-16 ***
##       389                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tbl_copper$Cu~tbl_copper$dose) # variance differs
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value   Pr(>F)   
## group   1  6.7953 0.009489 **
##       391                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Visualize variability differences
boxplot(tbl_copper$Cu~tbl_copper$treatment)

boxplot(tbl_copper$Cu~tbl_copper$dose)

# ANOVAs (out of curiosity)
(aov_cu_dose <- oneway.test(Cu~dose, tbl_copper, var.equal=F))
## 
##  One-way analysis of means (not assuming equal variances)
## 
## data:  Cu and dose
## F = 8.6822, num df = 1.00, denom df = 379.21, p-value = 0.003412
(aov_cu_treat <- oneway.test(Cu~treatment, tbl_copper, var.equal=F))
## 
##  One-way analysis of means (not assuming equal variances)
## 
## data:  Cu and treatment
## F = 326.22, num df = 3.000, denom df = 56.028, p-value < 2.2e-16
(aov_cu <- aov(Cu ~ treatment + dose + treatment:dose, tbl_copper))
## Call:
##    aov(formula = Cu ~ treatment + dose + treatment:dose, data = tbl_copper)
## 
## Terms:
##                 treatment     dose treatment:dose Residuals
## Sum of Squares   38691.76   951.45         151.41  20248.60
## Deg. of Freedom         3        1              3       385
## 
## Residual standard error: 7.252157
## Estimated effects may be unbalanced
## 135 observations deleted due to missingness
summary(aov_cu)
##                 Df Sum Sq Mean Sq F value   Pr(>F)    
## treatment        3  38692   12897  245.22  < 2e-16 ***
## dose             1    951     951   18.09 2.65e-05 ***
## treatment:dose   3    151      50    0.96    0.412    
## Residuals      385  20249      53                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 135 observations deleted due to missingness
tbl_copper_preDose <- filter(tbl_copper, dose == "Pre-dose")
tbl_copper_postDose <- filter(tbl_copper, dose == "Post-dose")

# Compare variability of different groups to determine if appropriate for ANOVA
leveneTest(tbl_copper_preDose$Cu~tbl_copper_preDose$treatment) # variance differs
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value    Pr(>F)    
## group   3  13.234 6.701e-08 ***
##       195                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tbl_copper_postDose$Cu~tbl_copper_postDose$treatment) # variance differs
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value    Pr(>F)    
## group   3  8.1089 4.136e-05 ***
##       190                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Visualize variability differences
boxplot(tbl_copper_preDose$Cu~tbl_copper_preDose$treatment)

boxplot(tbl_copper_postDose$Cu~tbl_copper_postDose$treatment)

(aov_cu_preDose <- oneway.test(Cu~treatment, tbl_copper_preDose, var.equal=F))
## 
##  One-way analysis of means (not assuming equal variances)
## 
## data:  Cu and treatment
## F = 185.7, num df = 3.00, denom df = 33.14, p-value < 2.2e-16
(aov_cu_postDose <- oneway.test(Cu~treatment, tbl_copper_postDose, var.equal=F))
## 
##  One-way analysis of means (not assuming equal variances)
## 
## data:  Cu and treatment
## F = 157.58, num df = 3.000, denom df = 18.186, p-value = 3.367e-13
(plot_copper <- tbl_copper %>%
  ggplot(aes(x=treatment, y=Cu)) +
  geom_boxplot(aes(fill=dose)) +
  labs(x = NULL) +
  theme_classic() +
  theme(legend.position = "none") +
  fill_palette("jco") +
  labs(x="", y="Copper (ppb)")
)
## Warning: Removed 135 rows containing non-finite values (`stat_boxplot()`).

1.5 Daphnia (only) survival

tbl_survivalDaphnia <- sqlQuery(cnxn_nt, "SELECT Tbl_Mortality_Daphnia.[Tank #], Tbl_Mortality_Daphnia.Treatment, Tbl_Mortality_Daphnia.[Exposure Day], Tbl_Mortality_Daphnia.Survival FROM Tbl_Mortality_Daphnia;", stringsAsFactors = FALSE) # Load data into R dataframes
colnames(tbl_survivalDaphnia) = c("tank", "treatGroup", "treatDay", "survival") # change column names
tbl_survivalDaphnia$treatGroup <- as.factor(tbl_survivalDaphnia$treatGroup) #Make categorical
tbl_survivalDaphnia$treatDay <- as.factor(tbl_survivalDaphnia$treatDay) #Make categorical
tbl_survivalDaphnia$treatGroup <- factor(tbl_survivalDaphnia$treatGroup, levels=c("Control", "Low", "Medium", "High")) #Reorder treatment groups to make figure better
tbl_survivalDaphnia$survival <- round((tbl_survivalDaphnia$survival/100), 2)
# Mean survival by treatment group and day
(tbl_survivalDaphnia_summary <- data.frame(
  group_by(tbl_survivalDaphnia, treatGroup, treatDay) %>%
    summarise(
      mean = mean(survival),
      sd = sd(survival)
    )))
## `summarise()` has grouped output by 'treatGroup'. You can override using the
## `.groups` argument.
##    treatGroup treatDay      mean        sd
## 1     Control        4 0.5000000        NA
## 2     Control        7 0.6500000        NA
## 3     Control       10 0.6333333 0.1437591
## 4     Control       14 0.6083333 0.1655798
## 5         Low        4 0.7500000        NA
## 6         Low        7 0.7000000        NA
## 7         Low       10 0.7583333 0.1068488
## 8         Low       14 0.6416667 0.1158303
## 9      Medium        4 0.4500000        NA
## 10     Medium        7 0.3500000        NA
## 11     Medium       10 0.1916667 0.3513071
## 12     Medium       14 0.0750000 0.1837117
## 13       High        4 0.0000000        NA
## 14       High        7 0.0000000        NA
## 15       High       10 0.0000000 0.0000000
## 16       High       14 0.0000000 0.0000000
# Mean survival by treatment group
(tbl_survivalDaphnia_means <- data.frame(
  group_by(tbl_survivalDaphnia, treatGroup) %>%
    summarise(
      mean = mean(survival),
      sd = sd(survival)
    )))
##   treatGroup      mean        sd
## 1    Control 0.6142857 0.1406422
## 2        Low 0.7035714 0.1134499
## 3     Medium 0.1714286 0.2708351
## 4       High 0.0000000 0.0000000

1.6 All invertebrate & fish survival

tbl_survivalInverts <- sqlQuery(cnxn_nt, "SELECT qry_mortality_inverts_byTank.[Tank #], qry_mortality_inverts_byTank.Treatment, qry_mortality_inverts_byTank.Species, qry_mortality_inverts_byTank.[Total mortality], [tbl_inverts].[total_pertank]-[qry_mortality_inverts_bytank].[total mortality] AS Survival, Tbl_Inverts.Total_perTank, Round(([tbl_inverts].[total_pertank]-[qry_mortality_inverts_bytank].[total mortality])/[tbl_inverts].[total_pertank]*100,2) AS SurvivalPercent, qry_mortality_inverts_byTank.[Exposure Day] FROM Tbl_Inverts INNER JOIN qry_mortality_inverts_byTank ON (Tbl_Inverts.Species_name = qry_mortality_inverts_byTank.Species) AND (Tbl_Inverts.Treatment_id = qry_mortality_inverts_byTank.Treatment) WHERE ((Not (qry_mortality_inverts_byTank.[Exposure Day])='10'));", stringsAsFactors = FALSE) # Load invert data into R dataframes

tbl_survivalFish <- sqlQuery(cnxn_nt, "SELECT qry_mortality_fish_byTank.[Tank #], qry_mortality_fish_byTank.Treatment, qry_mortality_fish_byTank.Species_code, qry_mortality_fish_byTank.[Total mortality], [tbl_fish].[total_pertank]-[qry_mortality_fish_bytank].[total mortality] AS Survival, Tbl_Fish.Total_perTank, Round(([tbl_fish].[total_pertank]-[qry_mortality_fish_bytank].[total mortality])/[tbl_fish].[total_pertank]*100,2) AS SurvivalPercent FROM qry_mortality_fish_byTank INNER JOIN Tbl_Fish ON (qry_mortality_fish_byTank.Species_code = Tbl_Fish.Species_code) AND (qry_mortality_fish_byTank.Treatment = Tbl_Fish.Treatment_id);", stringsAsFactors = FALSE) # Load fish data into R dataframes
colnames(tbl_survivalInverts) = c("tank", "treatGroup", "species", "cumMort", "survivalNum", "total", "survival", "Day") #remame columns
tbl_survivalInverts <- subset(tbl_survivalInverts, select=-(Day)) #remove day as a column (all inverts are day 14, end of study)
colnames(tbl_survivalFish) = c("tank", "treatGroup", "species", "cumMort", "survivalNum", "total", "survival") #rename columns
tbl_survivalFish <- subset(tbl_survivalFish, species!="WAE") #remove walleye
tbl_survivalData <- rbind(tbl_survivalInverts, tbl_survivalFish) #combine fish and invert tables
tbl_survivalData <- subset(tbl_survivalData, select=-(cumMort)) #remove column
tbl_survivalData <- subset(tbl_survivalData, select=-(survivalNum)) #remove column
tbl_survivalData$survival <- round((tbl_survivalData$survival/100), 2) #round values
tbl_survivalDaphnia_end <- subset(tbl_survivalDaphnia, treatDay=="14") # Only going to compare end-of-study survival
tbl_survivalDaphnia_end <- subset(tbl_survivalDaphnia_end, select=-(treatDay)) # remove treatment day
tbl_survivalDaphnia_end <- data.frame(append(tbl_survivalDaphnia_end, c(species="Daphnia"), after=1)) # add species name
tbl_survivalDaphnia_end <- data.frame(append(tbl_survivalDaphnia_end, c(total="20"), after=2))
tbl_survivalData <- rbind(tbl_survivalData, tbl_survivalDaphnia_end)# add daphnia survival to master survival table
tbl_survivalData$species <- as.factor(tbl_survivalData$species) #Make categorical
tbl_survivalData$treatGroup <- as.factor(tbl_survivalData$treatGroup) #Make categorical
tbl_survivalData$treatGroup <- gsub("Control", "Ctrl", tbl_survivalData$treatGroup) #for consistency with Daphnia
tbl_survivalData$treatGroup <- gsub("Medium", "Med", tbl_survivalData$treatGroup) #for consistency with Daphnia
tbl_survivalData$treatGroup <- factor(tbl_survivalData$treatGroup, levels=c("Ctrl", "Low", "Med", "High")) #Reorder treatment groups to make figure better
tbl_survivalData$species <- factor(tbl_survivalData$species, levels=c("Fatmucket", "Snail", "ZM", "BLG", "FHM", "LMB", "Daphnia")) #Reorder treatment groups to make figure better
tbl_survivalData$species <- factor(tbl_survivalData$species, levels=c("ZM", "Daphnia", "Fatmucket", "Snail", "LMB", "BLG", "FHM")) #Reorder treatment groups to make figure better
tbl_survivalData$total <- as.numeric(tbl_survivalData$total)
(group_by(tbl_survivalData, treatGroup, species) %>%
  summarise(
    mean = mean(survival),
    sd = sd(survival)
  ))
## `summarise()` has grouped output by 'treatGroup'. You can override using the
## `.groups` argument.
## # A tibble: 28 × 4
## # Groups:   treatGroup [4]
##    treatGroup species    mean     sd
##    <fct>      <fct>     <dbl>  <dbl>
##  1 Ctrl       ZM        0.993 0.0163
##  2 Ctrl       Daphnia   0.608 0.166 
##  3 Ctrl       Fatmucket 1     0     
##  4 Ctrl       Snail     0.967 0.0516
##  5 Ctrl       LMB       0.91  0.156 
##  6 Ctrl       BLG       1     0     
##  7 Ctrl       FHM       1     0     
##  8 Low        ZM        1     0     
##  9 Low        Daphnia   0.642 0.116 
## 10 Low        Fatmucket 1     0     
## # … with 18 more rows
# Subset data
tbl_survivalData_zm <- subset(tbl_survivalData, species=="ZM")
tbl_survivalData_daph <- subset(tbl_survivalData, species=="Daphnia")
tbl_survivalData_bms <- subset(tbl_survivalData, species=="Snail")
tbl_survivalData_lmb <- subset(tbl_survivalData, species=="LMB")
tbl_survivalData_blg <- subset(tbl_survivalData, species=="BLG")
tbl_survivalData_fhm <- subset(tbl_survivalData, species=="FHM")

# Compare variability of different groups to determine if appropriate for ANOVA
leveneTest(tbl_survivalData_zm$survival~tbl_survivalData_zm$treatGroup) # variance differs
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value  Pr(>F)  
## group  3   4.065 0.02086 *
##       20                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(tbl_survivalData_zm$survival~tbl_survivalData_zm$treatGroup) # Visualize variability differences

hist(tbl_survivalData_zm$survival~tbl_survivalData_zm$treatGroup) # Consider outliers (to get big picture)

leveneTest(tbl_survivalData_daph$survival~tbl_survivalData_daph$treatGroup) # variance does not differ
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  3  1.4452 0.2594
##       20
boxplot(tbl_survivalData_daph$survival~tbl_survivalData_daph$treatGroup) # Visualize variability differences

hist(tbl_survivalData_daph$survival~tbl_survivalData_daph$treatGroup) # Consider outliers (to get big picture)

leveneTest(tbl_survivalData_bms$survival~tbl_survivalData_bms$treatGroup) # variance differs
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value   Pr(>F)   
## group  3  5.1979 0.008111 **
##       20                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(tbl_survivalData_bms$survival~tbl_survivalData_bms$treatGroup) # Visualize variability differences

hist(tbl_survivalData_bms$survival~tbl_survivalData_bms$treatGroup) # Consider outliers (to get big picture)

leveneTest(tbl_survivalData_lmb$survival~tbl_survivalData_lmb$treatGroup) # variance does not differ
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  3  0.3592 0.7842
##        8
boxplot(tbl_survivalData_lmb$survival~tbl_survivalData_lmb$treatGroup) # Visualize variability differences

hist(tbl_survivalData_lmb$survival~tbl_survivalData_lmb$treatGroup) # Consider outliers (to get big picture)

leveneTest(tbl_survivalData_blg$survival~tbl_survivalData_blg$treatGroup) # variance does not differ
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  3       1 0.4411
##        8
boxplot(tbl_survivalData_blg$survival~tbl_survivalData_blg$treatGroup) # Visualize variability differences

hist(tbl_survivalData_blg$survival~tbl_survivalData_blg$treatGroup) # Consider outliers (to get big picture)

leveneTest(tbl_survivalData_fhm$survival~tbl_survivalData_fhm$treatGroup) # variance does not differ
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  3     0.9 0.4823
##        8
boxplot(tbl_survivalData_fhm$survival~tbl_survivalData_fhm$treatGroup) # Visualize variability differences

hist(tbl_survivalData_fhm$survival~tbl_survivalData_fhm$treatGroup) # Consider outliers (to get big picture)

# Zebra mussels
aov_zm <- oneway.test(survival~treatGroup, tbl_survivalData_zm, var.equal=F)
gamesHowell_zm <- tbl_survivalData_zm %>% games_howell_test(survival~treatGroup) #Games-Howell test since inequal variances

# Daphnia
aov_daph <- aov(survival~treatGroup, tbl_survivalData_daph)
summary(aov_daph)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## treatGroup   3 2.0911  0.6970   37.38 2.17e-08 ***
## Residuals   20 0.3729  0.0186                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(tukey_daph <- TukeyHSD(aov_daph)) # Tukey test since equal variances
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = survival ~ treatGroup, data = tbl_survivalData_daph)
## 
## $treatGroup
##                  diff        lwr        upr     p adj
## Low-Ctrl   0.03333333 -0.1873265  0.2539932 0.9739120
## Med-Ctrl  -0.53333333 -0.7539932 -0.3126735 0.0000079
## High-Ctrl -0.60833333 -0.8289932 -0.3876735 0.0000011
## Med-Low   -0.56666667 -0.7873265 -0.3460068 0.0000033
## High-Low  -0.64166667 -0.8623265 -0.4210068 0.0000005
## High-Med  -0.07500000 -0.2956598  0.1456598 0.7778685
# Banded mystery snails
aov_bms <- oneway.test(survival~treatGroup, tbl_survivalData_bms, var.equal=F)
gamesHowell_bms <- tbl_survivalData_bms %>% games_howell_test(survival~treatGroup) #Games-Howell test since inequal variances

# Largemouth bass
aov_lmb <- aov(survival~treatGroup, tbl_survivalData_lmb)
summary(aov_lmb)
##             Df Sum Sq Mean Sq F value Pr(>F)
## treatGroup   3 0.0246 0.00820   0.296  0.827
## Residuals    8 0.2217 0.02771
(tukey_lmb <- TukeyHSD(aov_lmb)) # Tukey test since equal variances
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = survival ~ treatGroup, data = tbl_survivalData_lmb)
## 
## $treatGroup
##                  diff        lwr       upr     p adj
## Low-Ctrl  -0.11000000 -0.5452398 0.3252398 0.8484462
## Med-Ctrl  -0.11000000 -0.5452398 0.3252398 0.8484462
## High-Ctrl -0.08666667 -0.5219065 0.3485732 0.9169023
## Med-Low    0.00000000 -0.4352398 0.4352398 1.0000000
## High-Low   0.02333333 -0.4119065 0.4585732 0.9980479
## High-Med   0.02333333 -0.4119065 0.4585732 0.9980479
# Bluegill
aov_blg <- aov(survival~treatGroup, tbl_survivalData_blg)
summary(aov_blg)
##             Df   Sum Sq   Mean Sq F value Pr(>F)
## treatGroup   3 0.002500 0.0008333       1  0.441
## Residuals    8 0.006667 0.0008333
(tukey_blg <- TukeyHSD(aov_blg)) # Tukey test since equal variances
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = survival ~ treatGroup, data = tbl_survivalData_blg)
## 
## $treatGroup
##                    diff         lwr        upr     p adj
## Low-Ctrl  -3.333333e-02 -0.10881349 0.04214683 0.5252407
## Med-Ctrl  -6.661338e-16 -0.07548016 0.07548016 1.0000000
## High-Ctrl -6.661338e-16 -0.07548016 0.07548016 1.0000000
## Med-Low    3.333333e-02 -0.04214683 0.10881349 0.5252407
## High-Low   3.333333e-02 -0.04214683 0.10881349 0.5252407
## High-Med   0.000000e+00 -0.07548016 0.07548016 1.0000000
# Fathead minnow
aov_fhm <- aov(survival~treatGroup, tbl_survivalData_fhm, )
summary(aov_blg)
##             Df   Sum Sq   Mean Sq F value Pr(>F)
## treatGroup   3 0.002500 0.0008333       1  0.441
## Residuals    8 0.006667 0.0008333
(tukey_fhm <- TukeyHSD(aov_fhm)) # Tukey test since equal variances
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = survival ~ treatGroup, data = tbl_survivalData_fhm)
## 
## $treatGroup
##                    diff        lwr       upr     p adj
## Low-Ctrl  -1.000000e-01 -0.3614709 0.1614709 0.6297636
## Med-Ctrl  -4.440892e-16 -0.2614709 0.2614709 1.0000000
## High-Ctrl -1.000000e-01 -0.3614709 0.1614709 0.6297636
## Med-Low    1.000000e-01 -0.1614709 0.3614709 0.6297636
## High-Low   0.000000e+00 -0.2614709 0.2614709 1.0000000
## High-Med  -1.000000e-01 -0.3614709 0.1614709 0.6297636

1.7 GLM

1.7.1 Modify data

tbl_survivalData <- subset(tbl_survivalData, species!="Fatmucket") #Fatmuckets survived in every case in this trial, so we will omit them from this process
tbl_waterDataAvgs <- sqlQuery(cnxn_nt, "SELECT lu_treatments.Treatment, Tbl_WaterChemistry_Avgs.[Avg Temp], Tbl_WaterChemistry_Avgs.[Avg DO], Tbl_WaterChemistry_Avgs.[Avg pH], Tbl_WaterChemistry_Avgs.[Avg Conductance] FROM lu_treatments INNER JOIN Tbl_WaterChemistry_Avgs ON lu_treatments.Treatments_ID = Tbl_WaterChemistry_Avgs.Treatment_id;", stringsAsFactors = FALSE) # Load invert data into R dataframes

colnames(tbl_waterDataAvgs) = c("treatGroup", "temp", "DO", "pH", "specCond") # rename columns
tbl_waterDataAvgs$treatGroup <- as.factor(tbl_waterDataAvgs$treatGroup)
tbl_waterDataAvgs$treatGroup <- gsub("Control", "Ctrl", tbl_waterDataAvgs$treatGroup) #for consistency
tbl_waterDataAvgs$treatGroup <- gsub("Medium", "Med", tbl_waterDataAvgs$treatGroup) #for consistency
summary(tbl_waterDataAvgs)
##   treatGroup             temp             DO             pH       
##  Length:5           Min.   :23.73   Min.   :8.31   Min.   :8.120  
##  Class :character   1st Qu.:23.74   1st Qu.:8.39   1st Qu.:8.120  
##  Mode  :character   Median :23.78   Median :8.46   Median :8.130  
##                     Mean   :23.89   Mean   :8.43   Mean   :8.226  
##                     3rd Qu.:23.82   3rd Qu.:8.48   3rd Qu.:8.160  
##                     Max.   :24.38   Max.   :8.51   Max.   :8.600  
##     specCond    
##  Min.   :167.3  
##  1st Qu.:170.8  
##  Median :170.9  
##  Mean   :170.3  
##  3rd Qu.:171.2  
##  Max.   :171.4

1.7.2 Explore variables that might affect survival

tbl_survivalWaterChem <- merge(tbl_waterDataAvgs, tbl_survivalData, by = "treatGroup") # A quick scan of the resulting table indicates the merge worked correctly, woohoo! Also: the number of rows match the original number in tbl_survivalData, a good thing

# Temperature
(plot_survival_temp <- tbl_survivalWaterChem %>%
    ggplot(aes(x=temp, y=survival)) +
    geom_point(aes(color=treatGroup), varwidth = TRUE) +
    labs(x = NULL) +
    facet_wrap(~species, nrow=2) +
    ylim(0,1) +
    theme_classic() +
    theme(legend.position = "none") +
    fill_palette("jco") +
    geom_smooth(method = "lm") +
    labs(x="", y="Survival")) # Do not need to include temperature
## Warning in geom_point(aes(color = treatGroup), varwidth = TRUE): Ignoring
## unknown parameters: `varwidth`
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 37 rows containing missing values (`geom_smooth()`).
## Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning
## -Inf

## Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning
## -Inf

# Dissolved oxygen
(plot_survival_DO <- tbl_survivalWaterChem %>%
    ggplot(aes(x=DO, y=survival)) +
    geom_point(aes(color=treatGroup), varwidth = TRUE) +
    labs(x = NULL) +
    facet_wrap(~species, nrow=2) +
    ylim(0,1) +
    theme_classic() +
    theme(legend.position = "none") +
    fill_palette("jco") +
    geom_smooth(method = "lm") +
    labs(x="", y="Survival")) # Do not need to include DO
## Warning in geom_point(aes(color = treatGroup), varwidth = TRUE): Ignoring
## unknown parameters: `varwidth`
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 10 rows containing missing values (`geom_smooth()`).
## no non-missing arguments to max; returning -Inf
## no non-missing arguments to max; returning -Inf

# pH
(plot_survival_pH <- tbl_survivalWaterChem %>%
    ggplot(aes(x=pH, y=survival)) +
    geom_point(aes(color=treatGroup), varwidth = TRUE) +
    labs(x = NULL) +
    facet_wrap(~species, nrow=2) +
    ylim(0,1) +
    theme_classic() +
    theme(legend.position = "none") +
    fill_palette("jco") +
    geom_smooth(method = "lm") +
    labs(x="", y="Survival")) # Do not need to include pH
## Warning in geom_point(aes(color = treatGroup), varwidth = TRUE): Ignoring
## unknown parameters: `varwidth`
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 14 rows containing missing values (`geom_smooth()`).
## no non-missing arguments to max; returning -Inf
## no non-missing arguments to max; returning -Inf

# Specific conductance
(plot_survival_specCond <- tbl_survivalWaterChem %>%
    ggplot(aes(x=specCond, y=survival)) +
    geom_point(aes(color=treatGroup), varwidth = TRUE) +
    labs(x = NULL) +
    facet_wrap(~species, nrow=2) +
    ylim(0,1) +
    theme_classic() +
    theme(legend.position = "none") +
    fill_palette("jco") +
    geom_smooth(method = "lm") +
    labs(x="", y="Survival")) # Do not need to include specific conductance
## Warning in geom_point(aes(color = treatGroup), varwidth = TRUE): Ignoring
## unknown parameters: `varwidth`
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 28 rows containing missing values (`geom_smooth()`).
## no non-missing arguments to max; returning -Inf
## no non-missing arguments to max; returning -Inf

# Does tank row (top or bottom) matter?
tbl_survivalData$tankRow = NA
tbl_survivalData$tankRow[tbl_survivalData$tank %in% 1:12] <- "Top"
tbl_survivalData$tankRow[tbl_survivalData$tank %in% 13:24] <- "Bottom"

(plot_survival_tankRow <- tbl_survivalData %>%
    ggplot(aes(x=tankRow, y=survival)) +
    geom_boxplot(aes(fill=treatGroup), varwidth = TRUE) +
    labs(x = NULL) +
    facet_wrap(~species, nrow=2) +
    ylim(0,1) +
    theme_classic() +
    theme(legend.position = "none") +
    fill_palette("jco") +
    labs(x="", y="Survival"))

# Probably don't need to include whether a tank was on the top or bottom row
# Does tank location (which side of the mobile lab a tank was on) matter?
tbl_survivalData$tankPos = NA
tbl_survivalData$tankPos[tbl_survivalData$tank %in% 1:12] <- tbl_survivalData$tank[tbl_survivalData$tank %in% 1:12]
tbl_survivalData$tankPos[tbl_survivalData$tank %in% 13:24] <- tbl_survivalData$tank[tbl_survivalData$tank %in% 13:24] - 12

(plot_survival_tankPos <- tbl_survivalData %>%
  ggplot(aes(x=tankPos, y=survival)) +
  geom_point(aes(color=treatGroup)) +
  labs(x = NULL) +
  facet_wrap(~species, nrow=2) +
  ylim(0,1) +
  theme_classic() +
  theme(legend.position = "none") +
  fill_palette("jco") +
  labs(x="", y="Survival")) +
  geom_smooth(method = "lm")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 25 rows containing missing values (`geom_smooth()`).
## Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning
## -Inf

# Probably don't need to include which side of the mobile lab the tank was located on (or where in that gradient it fell)
# Does the exact mix of fish matter?
tbl_survivalData$tankFish = NA
tbl_survivalData$tankFish[tbl_survivalData$tank %in% c(15, 7, 8, 14, 13, 21)] <- 1 # tanks with blg + lmb
tbl_survivalData$tankFish[tbl_survivalData$tank %in% c(19, 20, 6, 24, 3, 22)] <- 2 # tanks with blg + wae
tbl_survivalData$tankFish[tbl_survivalData$tank %in% c(18, 17, 2, 4, 23, 16)] <- 3 # tanks with fhm + lmb
tbl_survivalData$tankFish[tbl_survivalData$tank %in% c(5, 9, 10, 1, 12, 11)] <- 4 # tanks with fhm + wae

tbl_survivalData$tankFish <- as.factor(tbl_survivalData$tankFish) #Make categorical

(plot_survival_tankFish <- tbl_survivalData %>%
    ggplot(aes(x=tankFish, y=survival)) +
    geom_boxplot(aes(fill=treatGroup)) +
    labs(x = NULL) +
        ylim(0,1) +
    theme_classic() +
    theme(legend.position = "none") +
    fill_palette("jco") +
    labs(x="", y="Survival"))

# Probably don't need to include the exact mix of fish in each tank

# Separating out BLG vs. FHM
tbl_survivalData$BLGvFHM = NA
tbl_survivalData$BLGvFHM[tbl_survivalData$tank %in% c(15, 7, 8, 14, 13, 21, 19, 20, 6, 24, 3, 22)] <- 1 # tanks with BLG
tbl_survivalData$BLGvFHM[tbl_survivalData$tank %in% c(18, 17, 2, 4, 23, 16, 5, 9, 10, 1, 12, 11)] <- 2 # tanks with FHM
tbl_survivalData$BLGvFHM <- as.factor(tbl_survivalData$BLGvFHM) #Make categorical

(plot_survival_BLGvFHM <- tbl_survivalData %>%
    ggplot(aes(x=BLGvFHM, y=survival)) +
    geom_boxplot(aes(fill=treatGroup)) +
    labs(x = NULL) +
    ylim(0,1) +
    theme_classic() +
    theme(legend.position = "none") +
    fill_palette("jco") +
    labs(x="", y="Survival"))

# Probably don't need to include BLG vs FHM

1.7.2.5 Other factors

Other factors considered: time frame (don’t think it’s meaningful because of species-specificity), location in the tank (only would apply to fish, and we’re already not using data from WAE, so likely not that helpful)

1.7.3 Modify the data structure

# First,we need to stretch our data out
entiretankcol = integer(0) #Make an empty space that stores numbers
entiretreatgroup = character(0) #Make an empty space that stores text
entirespeciesgroup = character(0)
entiresurvival = integer(0)

for(i in 1:nrow(tbl_survivalWaterChem)) {
  # Make a pool of values from 1 to nrow(data) and let i equal each value in that pool one at a time until it has run out
  # print(i) # Show me what i equals this time
  # Use the value in this row of total to stretch the value in this row of tank a number of times equal to the number of individuals we had:
  tanklong = rep(tbl_survivalWaterChem$tank[i], each= as.numeric(tbl_survivalWaterChem$total[i]))
  #print(length(tanklong)) # Show me the length of what I made this time
  treatgrouplong = rep(as.character(tbl_survivalWaterChem$treatGroup[i]), each = as.numeric(tbl_survivalWaterChem$total[i]))
  speciesgrouplong = rep(as.character(tbl_survivalWaterChem$species[i]), each = as.numeric(tbl_survivalWaterChem$total[i]))
 
  # let's do this one step at a time:
  times1 = round(tbl_survivalWaterChem$survival[i] * as.numeric(tbl_survivalWaterChem$total[i])) # For this row, multiple survival value * total value to get number of organisms that survived and round to ensure it's a whole number
  times2 = round(((1-tbl_survivalWaterChem$survival[i]) * as.numeric(tbl_survivalWaterChem$total[i]))) # Get the inverse of that using some subtraction
  tmp1 = rep(1, times = times1) # Store these values so that we can use them in the times arguments of rep
  tmp2 = rep(0, each = times2)
  survivallong = c( # Stick together 1s = to # of survivals and 0s = # of non-survivals
    rep(1, times = times1),
    rep(x=0, times = times2)
  )
  
  entiretankcol = c(entiretankcol, tanklong) # Stick what we've made together with what we've made in all the previous loops
  entiretreatgroup = c(entiretreatgroup, treatgrouplong)
  entirespeciesgroup = c(entirespeciesgroup, speciesgrouplong)
  entiresurvival = c(entiresurvival, survivallong)
  
  #print(length(entiresurvival)) # To debug a for loop, print thing to see if they look like they should. 
  # i is an object that takes on each value in the pool (right side of the for call) one at a time as we move through the loops. so first time through, i = 1, second time through i = 2 .... which means I can use i as a "what is the current row?" 
}

#Put it all together! left of = is the name of the new column, right of = is what is getting stored in it. 
tbl_survivalDataLong = data.frame(tank = entiretankcol,
                              treatGroup= entiretreatgroup,
                              species = entirespeciesgroup,
                              survival = entiresurvival)
# Note: ultimately, we opted to use more specific copper concentrations than the treatGroup number (see below), but this work led up to that

mod1 = glm(survival ~ species + treatGroup + species*treatGroup, family = "binomial", data = tbl_survivalDataLong)
summary(mod1)
## 
## Call:
## glm(formula = survival ~ species + treatGroup + species * treatGroup, 
##     family = "binomial", data = tbl_survivalDataLong)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.1656   0.0001   0.1638   0.4590   2.2761  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    1.957e+01  1.963e+03   0.010    0.992
## speciesDaphnia                -1.913e+01  1.963e+03  -0.010    0.992
## speciesFHM                     2.250e-08  2.777e+03   0.000    1.000
## speciesLMB                    -1.724e+01  1.963e+03  -0.009    0.993
## speciesSnail                  -1.620e+01  1.963e+03  -0.008    0.993
## speciesZM                     -1.456e+01  1.963e+03  -0.007    0.994
## treatGroupHigh                 5.825e-08  2.777e+03   0.000    1.000
## treatGroupLow                 -1.620e+01  1.963e+03  -0.008    0.993
## treatGroupMed                  2.626e-08  2.777e+03   0.000    1.000
## speciesDaphnia:treatGroupHigh -2.001e+01  2.945e+03  -0.007    0.995
## speciesFHM:treatGroupHigh     -1.737e+01  3.401e+03  -0.005    0.996
## speciesLMB:treatGroupHigh     -7.958e-01  2.777e+03   0.000    1.000
## speciesSnail:treatGroupHigh   -3.434e+00  2.777e+03  -0.001    0.999
## speciesZM:treatGroupHigh      -2.947e+00  2.777e+03  -0.001    0.999
## speciesDaphnia:treatGroupLow   1.634e+01  1.963e+03   0.008    0.993
## speciesFHM:treatGroupLow      -1.170e+00  2.777e+03   0.000    1.000
## speciesLMB:treatGroupLow       1.526e+01  1.963e+03   0.008    0.994
## speciesSnail:treatGroupLow     1.691e+01  1.963e+03   0.009    0.993
## speciesZM:treatGroupLow        3.076e+01  2.151e+03   0.014    0.989
## speciesDaphnia:treatGroupMed  -2.953e+00  2.777e+03  -0.001    0.999
## speciesFHM:treatGroupMed      -1.767e-08  3.927e+03   0.000    1.000
## speciesLMB:treatGroupMed      -9.410e-01  2.777e+03   0.000    1.000
## speciesSnail:treatGroupMed    -4.229e-01  2.777e+03   0.000    1.000
## speciesZM:treatGroupMed       -6.999e-01  2.777e+03   0.000    1.000
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1911.74  on 1739  degrees of freedom
## Residual deviance:  862.09  on 1716  degrees of freedom
## AIC: 910.09
## 
## Number of Fisher Scoring iterations: 18
mod2 = glm(survival ~ species + treatGroup, family = "binomial", data = tbl_survivalDataLong)
summary(mod2)
## 
## Call:
## glm(formula = survival ~ species + treatGroup, family = "binomial", 
##     data = tbl_survivalDataLong)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.7332   0.0415   0.2162   0.4537   1.9533  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     7.05871    1.04240   6.772 1.27e-11 ***
## speciesDaphnia -6.74641    1.03199  -6.537 6.27e-11 ***
## speciesFHM     -1.89655    1.09923  -1.725 0.084467 .  
## speciesLMB     -3.43006    1.03531  -3.313 0.000923 ***
## speciesSnail   -3.31421    1.02997  -3.218 0.001292 ** 
## speciesZM      -1.44838    1.03643  -1.397 0.162274    
## treatGroupHigh -3.38842    0.29197 -11.605  < 2e-16 ***
## treatGroupLow  -0.09135    0.24682  -0.370 0.711315    
## treatGroupMed  -2.05924    0.26593  -7.744 9.66e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1911.74  on 1739  degrees of freedom
## Residual deviance:  958.13  on 1731  degrees of freedom
## AIC: 976.13
## 
## Number of Fisher Scoring iterations: 7
tbl_survivalData$treatGroup <- gsub("Ctrl", 0, tbl_survivalData$treatGroup) #instead of categories, convert treatments to dosed values
tbl_survivalData$treatGroup <- gsub("Low", 10, tbl_survivalData$treatGroup)
tbl_survivalData$treatGroup <- gsub("Med", 25, tbl_survivalData$treatGroup)
tbl_survivalData$treatGroup <- gsub("High", 40, tbl_survivalData$treatGroup)
tbl_survivalData$treatGroup <- as.numeric(tbl_survivalData$treatGroup)

mod3 = glm(survival ~ species + treatGroup + species*treatGroup, family = "binomial", data = tbl_survivalDataLong)
summary(mod3)
## 
## Call:
## glm(formula = survival ~ species + treatGroup + species * treatGroup, 
##     family = "binomial", data = tbl_survivalDataLong)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.1656   0.0001   0.1638   0.4590   2.2761  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    1.957e+01  1.963e+03   0.010    0.992
## speciesDaphnia                -1.913e+01  1.963e+03  -0.010    0.992
## speciesFHM                     2.250e-08  2.777e+03   0.000    1.000
## speciesLMB                    -1.724e+01  1.963e+03  -0.009    0.993
## speciesSnail                  -1.620e+01  1.963e+03  -0.008    0.993
## speciesZM                     -1.456e+01  1.963e+03  -0.007    0.994
## treatGroupHigh                 5.825e-08  2.777e+03   0.000    1.000
## treatGroupLow                 -1.620e+01  1.963e+03  -0.008    0.993
## treatGroupMed                  2.626e-08  2.777e+03   0.000    1.000
## speciesDaphnia:treatGroupHigh -2.001e+01  2.945e+03  -0.007    0.995
## speciesFHM:treatGroupHigh     -1.737e+01  3.401e+03  -0.005    0.996
## speciesLMB:treatGroupHigh     -7.958e-01  2.777e+03   0.000    1.000
## speciesSnail:treatGroupHigh   -3.434e+00  2.777e+03  -0.001    0.999
## speciesZM:treatGroupHigh      -2.947e+00  2.777e+03  -0.001    0.999
## speciesDaphnia:treatGroupLow   1.634e+01  1.963e+03   0.008    0.993
## speciesFHM:treatGroupLow      -1.170e+00  2.777e+03   0.000    1.000
## speciesLMB:treatGroupLow       1.526e+01  1.963e+03   0.008    0.994
## speciesSnail:treatGroupLow     1.691e+01  1.963e+03   0.009    0.993
## speciesZM:treatGroupLow        3.076e+01  2.151e+03   0.014    0.989
## speciesDaphnia:treatGroupMed  -2.953e+00  2.777e+03  -0.001    0.999
## speciesFHM:treatGroupMed      -1.767e-08  3.927e+03   0.000    1.000
## speciesLMB:treatGroupMed      -9.410e-01  2.777e+03   0.000    1.000
## speciesSnail:treatGroupMed    -4.229e-01  2.777e+03   0.000    1.000
## speciesZM:treatGroupMed       -6.999e-01  2.777e+03   0.000    1.000
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1911.74  on 1739  degrees of freedom
## Residual deviance:  862.09  on 1716  degrees of freedom
## AIC: 910.09
## 
## Number of Fisher Scoring iterations: 18
mod4 = glm(survival ~ species + treatGroup, family = "binomial", tbl_survivalDataLong)
summary(mod4)
## 
## Call:
## glm(formula = survival ~ species + treatGroup, family = "binomial", 
##     data = tbl_survivalDataLong)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.7332   0.0415   0.2162   0.4537   1.9533  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     7.05871    1.04240   6.772 1.27e-11 ***
## speciesDaphnia -6.74641    1.03199  -6.537 6.27e-11 ***
## speciesFHM     -1.89655    1.09923  -1.725 0.084467 .  
## speciesLMB     -3.43006    1.03531  -3.313 0.000923 ***
## speciesSnail   -3.31421    1.02997  -3.218 0.001292 ** 
## speciesZM      -1.44838    1.03643  -1.397 0.162274    
## treatGroupHigh -3.38842    0.29197 -11.605  < 2e-16 ***
## treatGroupLow  -0.09135    0.24682  -0.370 0.711315    
## treatGroupMed  -2.05924    0.26593  -7.744 9.66e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1911.74  on 1739  degrees of freedom
## Residual deviance:  958.13  on 1731  degrees of freedom
## AIC: 976.13
## 
## Number of Fisher Scoring iterations: 7
tbl_copperMod = tbl_copper%>% 
  group_by(dose, treatment, tank) %>%
  summarize(avg.Cu = mean(Cu, na.rm=TRUE)) %>% 
  arrange(tank) %>% 
  filter(dose=="Post-dose") %>% 
  ungroup() %>% 
  select(tank, avg.Cu)
## `summarise()` has grouped output by 'dose', 'treatment'. You can override using
## the `.groups` argument.
tbl_copperMod$tank = as.numeric(as.character(tbl_copperMod$tank))
tbl_copperMod
## # A tibble: 24 × 2
##     tank avg.Cu
##    <dbl>  <dbl>
##  1     1  24.0 
##  2     2   9.49
##  3     3  10.1 
##  4     4  30.1 
##  5     5   2.27
##  6     6  32.9 
##  7     7  13.1 
##  8     8  21.4 
##  9     9  24.3 
## 10    10  34.0 
## # … with 14 more rows
tbl_copperMod$avg.Cu[tbl_copperMod$tank == 12] = 3.995
tbl_copperMod$avg.Cu[tbl_copperMod$tank == 16] = (2.573+5.040)/2
tbl_copperMod$avg.Cu[tbl_copperMod$tank == 14] = mean(tbl_copperMod$avg.Cu[tbl_copperMod$tank %in% c(5,7,12,16,22)])
tbl_allDataLong = left_join(tbl_survivalDataLong, tbl_copperMod, by="tank")
tbl_allDataLong$species <- as.factor(tbl_allDataLong$species) #Make categorical
# Mean survival by avgCu and species
(tbl_survival_byCu <- data.frame(
  group_by(tbl_allDataLong, species, avg.Cu) %>%
    summarise(
      mean = mean(survival),
      sd = sd(survival)
    )))
## `summarise()` has grouped output by 'species'. You can override using the
## `.groups` argument.
##     species    avg.Cu      mean        sd
## 1       BLG  2.965691 1.0000000 0.0000000
## 2       BLG  5.227892 1.0000000 0.0000000
## 3       BLG  9.645886 0.9000000 0.3162278
## 4       BLG  9.700738 1.0000000 0.0000000
## 5       BLG 10.138460 1.0000000 0.0000000
## 6       BLG 13.097929 1.0000000 0.0000000
## 7       BLG 21.376097 1.0000000 0.0000000
## 8       BLG 24.137183 1.0000000 0.0000000
## 9       BLG 25.211172 1.0000000 0.0000000
## 10      BLG 32.927156 1.0000000 0.0000000
## 11      BLG 37.686515 1.0000000 0.0000000
## 12      BLG 38.245350 1.0000000 0.0000000
## 13  Daphnia  2.274342 0.3500000 0.4893605
## 14  Daphnia  2.965691 0.5000000 0.5129892
## 15  Daphnia  3.806500 0.8000000 0.4103913
## 16  Daphnia  3.995000 0.7500000 0.4442617
## 17  Daphnia  5.227892 0.6500000 0.4893605
## 18  Daphnia  9.489672 0.8000000 0.4103913
## 19  Daphnia  9.528870 0.6000000 0.5026247
## 20  Daphnia  9.645886 0.5500000 0.5104178
## 21  Daphnia  9.700738 0.5000000 0.5129892
## 22  Daphnia 10.138460 0.6500000 0.4893605
## 23  Daphnia 10.358596 0.7500000 0.4442617
## 24  Daphnia 13.097929 0.6000000 0.5026247
## 25  Daphnia 21.376097 0.0000000 0.0000000
## 26  Daphnia 23.252782 0.0000000 0.0000000
## 27  Daphnia 23.996212 0.0000000 0.0000000
## 28  Daphnia 24.137183 0.0000000 0.0000000
## 29  Daphnia 24.328356 0.4500000 0.5104178
## 30  Daphnia 25.211172 0.0000000 0.0000000
## 31  Daphnia 30.085990 0.0000000 0.0000000
## 32  Daphnia 32.927156 0.0000000 0.0000000
## 33  Daphnia 34.003533 0.0000000 0.0000000
## 34  Daphnia 37.059681 0.0000000 0.0000000
## 35  Daphnia 37.686515 0.0000000 0.0000000
## 36  Daphnia 38.245350 0.0000000 0.0000000
## 37      FHM  2.274342 1.0000000 0.0000000
## 38      FHM  3.806500 1.0000000 0.0000000
## 39      FHM  3.995000 1.0000000 0.0000000
## 40      FHM  9.489672 1.0000000 0.0000000
## 41      FHM  9.528870 0.8000000 0.4216370
## 42      FHM 10.358596 0.9000000 0.3162278
## 43      FHM 23.252782 1.0000000 0.0000000
## 44      FHM 23.996212 1.0000000 0.0000000
## 45      FHM 24.328356 1.0000000 0.0000000
## 46      FHM 30.085990 1.0000000 0.0000000
## 47      FHM 34.003533 1.0000000 0.0000000
## 48      FHM 37.059681 0.7000000 0.4830459
## 49      LMB  3.806500 1.0000000 0.0000000
## 50      LMB  5.227892 1.0000000 0.0000000
## 51      LMB  9.489672 0.8000000 0.4140393
## 52      LMB  9.700738 1.0000000 0.0000000
## 53      LMB 10.358596 0.6000000 0.5070926
## 54      LMB 13.097929 0.7333333 0.4577377
## 55      LMB 21.376097 0.8000000 0.4140393
## 56      LMB 23.252782 1.0000000 0.0000000
## 57      LMB 25.211172 0.6000000 0.5070926
## 58      LMB 30.085990 0.8666667 0.3518658
## 59      LMB 37.059681 0.7333333 0.4577377
## 60      LMB 38.245350 0.8666667 0.3518658
## 61    Snail  2.274342 1.0000000 0.0000000
## 62    Snail  2.965691 0.9000000 0.3162278
## 63    Snail  3.806500 1.0000000 0.0000000
## 64    Snail  3.995000 0.9000000 0.3162278
## 65    Snail  5.227892 1.0000000 0.0000000
## 66    Snail  9.489672 0.9000000 0.3162278
## 67    Snail  9.528870 1.0000000 0.0000000
## 68    Snail  9.645886 1.0000000 0.0000000
## 69    Snail  9.700738 1.0000000 0.0000000
## 70    Snail 10.138460 1.0000000 0.0000000
## 71    Snail 10.358596 1.0000000 0.0000000
## 72    Snail 13.097929 1.0000000 0.0000000
## 73    Snail 21.376097 1.0000000 0.0000000
## 74    Snail 23.252782 0.9000000 0.3162278
## 75    Snail 23.996212 1.0000000 0.0000000
## 76    Snail 24.137183 0.8000000 0.4216370
## 77    Snail 24.328356 1.0000000 0.0000000
## 78    Snail 25.211172 1.0000000 0.0000000
## 79    Snail 30.085990 1.0000000 0.0000000
## 80    Snail 32.927156 0.4000000 0.5163978
## 81    Snail 34.003533 0.9000000 0.3162278
## 82    Snail 37.059681 0.4000000 0.5163978
## 83    Snail 37.686515 0.1000000 0.3162278
## 84    Snail 38.245350 0.1000000 0.3162278
## 85       ZM  2.274342 1.0000000 0.0000000
## 86       ZM  2.965691 0.9600000 0.2000000
## 87       ZM  3.806500 1.0000000 0.0000000
## 88       ZM  3.995000 1.0000000 0.0000000
## 89       ZM  5.227892 1.0000000 0.0000000
## 90       ZM  9.489672 1.0000000 0.0000000
## 91       ZM  9.528870 1.0000000 0.0000000
## 92       ZM  9.645886 1.0000000 0.0000000
## 93       ZM  9.700738 1.0000000 0.0000000
## 94       ZM 10.138460 1.0000000 0.0000000
## 95       ZM 10.358596 1.0000000 0.0000000
## 96       ZM 13.097929 1.0000000 0.0000000
## 97       ZM 21.376097 1.0000000 0.0000000
## 98       ZM 23.252782 1.0000000 0.0000000
## 99       ZM 23.996212 1.0000000 0.0000000
## 100      ZM 24.137183 0.9200000 0.2768875
## 101      ZM 24.328356 1.0000000 0.0000000
## 102      ZM 25.211172 1.0000000 0.0000000
## 103      ZM 30.085990 1.0000000 0.0000000
## 104      ZM 32.927156 0.8400000 0.3741657
## 105      ZM 34.003533 0.9600000 0.2000000
## 106      ZM 37.059681 0.8800000 0.3316625
## 107      ZM 37.686515 0.8800000 0.3316625
## 108      ZM 38.245350 0.7600000 0.4358899
tbl_survival_byCu$species <- gsub("BLG", "Bluegill", tbl_survival_byCu$species)
tbl_survival_byCu$species <- gsub("FHM", "Fathead minnow", tbl_survival_byCu$species)
tbl_survival_byCu$species <- gsub("LMB", "Largemouth bass", tbl_survival_byCu$species)
tbl_survival_byCu$species <- gsub("Snail", "Banded mystery snail", tbl_survival_byCu$species)
tbl_survival_byCu$species <- gsub("ZM", "Zebra mussel", tbl_survival_byCu$species)
colnames(tbl_survival_byCu) = c("Species", "avg.Cu", "mean", "sd") # change column names

(Plot_observedSurvival <- ggplot(tbl_survival_byCu, aes(x=avg.Cu, y=mean, color=Species, fill=Species)) +
  geom_point() +
  geom_smooth(se=F ,method = "glm", method.args=list(family="binomial")) +
  theme_classic() +
  theme(legend.position = "none") +
  #annotate("segment", x=8.39, xend=8.39, y=0.48, yend=0.52, color="black", size=2)+ #8.39 is the mean LC50 from EPA data on daphnia
  #annotate("rect", xmin=3.9, xmax=12.88, ymin=0.48, ymax=0.52, alpha=0.2, color="black", fill="black")+ #daphnia LC50 stdev is 4.49
  ylim(ymin=0, ymax=1) +
  xlab("Copper concentration (µg/L Cu)") +
  ylab("Survival (observed proportion)") +
  scale_color_viridis(option="turbo", discrete = T) +
  scale_fill_viridis(option="turbo", discrete = T))
## `geom_smooth()` using formula = 'y ~ x'
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!

## Warning in eval(family$initialize): non-integer #successes in a binomial glm!

## Warning in eval(family$initialize): non-integer #successes in a binomial glm!

## Warning in eval(family$initialize): non-integer #successes in a binomial glm!

## Warning in eval(family$initialize): non-integer #successes in a binomial glm!

## Warning in eval(family$initialize): non-integer #successes in a binomial glm!

1.7.4 The model we used

# Decide on final variables to use
mod5 = glm(survival ~ species + avg.Cu, family = "binomial", tbl_allDataLong)
summary(mod5)
## 
## Call:
## glm(formula = survival ~ species + avg.Cu, family = "binomial", 
##     data = tbl_allDataLong)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.7081   0.0428   0.1670   0.3954   1.9624  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     8.034838   1.054858   7.617 2.60e-14 ***
## speciesDaphnia -6.874819   1.034038  -6.649 2.96e-11 ***
## speciesFHM     -2.129574   1.101057  -1.934 0.053099 .  
## speciesLMB     -3.556548   1.037227  -3.429 0.000606 ***
## speciesSnail   -3.452813   1.031627  -3.347 0.000817 ***
## speciesZM      -1.562740   1.037888  -1.506 0.132146    
## avg.Cu         -0.120350   0.009099 -13.227  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1911.74  on 1739  degrees of freedom
## Residual deviance:  950.09  on 1733  degrees of freedom
## AIC: 964.09
## 
## Number of Fisher Scoring iterations: 7
# Just for fun check the interaction model again to make sure it still isn't as good a fit (now that we are using more specific copper concentrations)
mod6 = glm(survival ~ species + treatGroup + species*treatGroup, family = "binomial", tbl_allDataLong)
summary(mod6)
## 
## Call:
## glm(formula = survival ~ species + treatGroup + species * treatGroup, 
##     family = "binomial", data = tbl_allDataLong)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.1656   0.0001   0.1638   0.4590   2.2761  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)                    1.957e+01  1.963e+03   0.010    0.992
## speciesDaphnia                -1.913e+01  1.963e+03  -0.010    0.992
## speciesFHM                     2.250e-08  2.777e+03   0.000    1.000
## speciesLMB                    -1.724e+01  1.963e+03  -0.009    0.993
## speciesSnail                  -1.620e+01  1.963e+03  -0.008    0.993
## speciesZM                     -1.456e+01  1.963e+03  -0.007    0.994
## treatGroupHigh                 5.825e-08  2.777e+03   0.000    1.000
## treatGroupLow                 -1.620e+01  1.963e+03  -0.008    0.993
## treatGroupMed                  2.626e-08  2.777e+03   0.000    1.000
## speciesDaphnia:treatGroupHigh -2.001e+01  2.945e+03  -0.007    0.995
## speciesFHM:treatGroupHigh     -1.737e+01  3.401e+03  -0.005    0.996
## speciesLMB:treatGroupHigh     -7.958e-01  2.777e+03   0.000    1.000
## speciesSnail:treatGroupHigh   -3.434e+00  2.777e+03  -0.001    0.999
## speciesZM:treatGroupHigh      -2.947e+00  2.777e+03  -0.001    0.999
## speciesDaphnia:treatGroupLow   1.634e+01  1.963e+03   0.008    0.993
## speciesFHM:treatGroupLow      -1.170e+00  2.777e+03   0.000    1.000
## speciesLMB:treatGroupLow       1.526e+01  1.963e+03   0.008    0.994
## speciesSnail:treatGroupLow     1.691e+01  1.963e+03   0.009    0.993
## speciesZM:treatGroupLow        3.076e+01  2.151e+03   0.014    0.989
## speciesDaphnia:treatGroupMed  -2.953e+00  2.777e+03  -0.001    0.999
## speciesFHM:treatGroupMed      -1.767e-08  3.927e+03   0.000    1.000
## speciesLMB:treatGroupMed      -9.410e-01  2.777e+03   0.000    1.000
## speciesSnail:treatGroupMed    -4.229e-01  2.777e+03   0.000    1.000
## speciesZM:treatGroupMed       -6.999e-01  2.777e+03   0.000    1.000
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1911.74  on 1739  degrees of freedom
## Residual deviance:  862.09  on 1716  degrees of freedom
## AIC: 910.09
## 
## Number of Fisher Scoring iterations: 18
# Assumptions:
# 1) Outcome is binary (YES - survived/died)
# 2) Linear relationship between logit(outcome) and each predictor variable
# 3) No extreme values or outliers in continuous predictors:
mod5.data <- augment(mod5) %>% 
  mutate(index = 1:n()) 
mod5.data %>% top_n(3, .cooksd)
## # A tibble: 3 × 10
##   survival species avg.Cu .fitted .resid .std.resid    .hat .sigma .cooksd index
##      <dbl> <fct>    <dbl>   <dbl>  <dbl>      <dbl>   <dbl>  <dbl>   <dbl> <int>
## 1        0 BLG       9.65    6.87  -3.71      -3.71 0.00110  0.735  0.153   1035
## 2        0 FHM       9.53    4.76  -3.09      -3.09 0.00188  0.737  0.0315  1189
## 3        0 FHM       9.53    4.76  -3.09      -3.09 0.00188  0.737  0.0315  1190
ggplot(mod5.data, aes(index, .std.resid)) + 
  geom_point(aes(color = survival), alpha = .5) +
  theme_bw()

mod5.data %>% 
  filter(abs(.std.resid) > 3) # are these outliers worthy of removing? Decide to keep - these are REAL data from real animals!
## # A tibble: 5 × 10
##   survival species avg.Cu .fitted .resid .std.resid    .hat .sigma .cooksd index
##      <dbl> <fct>    <dbl>   <dbl>  <dbl>      <dbl>   <dbl>  <dbl>   <dbl> <int>
## 1        0 ZM        2.97    6.12  -3.50      -3.50 2.68e-4  0.736  0.0173   295
## 2        0 FHM      10.4     4.66  -3.06      -3.06 2.05e-3  0.737  0.0311  1015
## 3        0 BLG       9.65    6.87  -3.71      -3.71 1.10e-3  0.735  0.153   1035
## 4        0 FHM       9.53    4.76  -3.09      -3.09 1.88e-3  0.737  0.0315  1189
## 5        0 FHM       9.53    4.76  -3.09      -3.09 1.88e-3  0.737  0.0315  1190
# 4) No multicollinearity:
car::vif(mod5)
##             GVIF Df GVIF^(1/(2*Df))
## species 1.838201  5        1.062770
## avg.Cu  1.838201  1        1.355803
# 5) Residual normality (on logit scale!)
hist(residuals(mod5)) # deviance residuals of model - does this look normal, given that there is not a perfect way of calculating a residual on these data?

# Yes, we can consider this normal *enough*

# 6) Check leveraging points
boot::glm.diag.plots(mod5) # one point has a notable amount of leverage and is potentially influential

cooks.distance(mod5)
##            1            2            3            4            5            6 
## 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 
##            7            8            9           10           11           12 
## 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 
##           13           14           15           16           17           18 
## 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 
##           19           20           21           22           23           24 
## 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 6.504826e-07 
##           25           26           27           28           29           30 
## 6.504826e-07 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 
##           31           32           33           34           35           36 
## 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 
##           37           38           39           40           41           42 
## 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 
##           43           44           45           46           47           48 
## 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 1.334175e-07 
##           49           50           51           52           53           54 
## 1.334175e-07 1.334175e-07 3.462812e-04 3.462812e-04 3.462812e-04 3.462812e-04 
##           55           56           57           58           59           60 
## 3.462812e-04 3.462812e-04 3.462812e-04 3.462812e-04 3.462812e-04 3.462812e-04 
##           61           62           63           64           65           66 
## 3.462812e-04 3.462812e-04 3.462812e-04 1.001184e-03 1.001184e-03 1.001184e-03 
##           67           68           69           70           71           72 
## 1.001184e-03 1.001184e-03 1.001184e-03 1.001184e-03 2.788889e-06 2.788889e-06 
##           73           74           75           76           77           78 
## 2.788889e-06 2.788889e-06 2.788889e-06 2.788889e-06 2.788889e-06 2.788889e-06 
##           79           80           81           82           83           84 
## 2.788889e-06 1.304100e-02 3.278028e-06 3.278028e-06 3.278028e-06 3.278028e-06 
##           85           86           87           88           89           90 
## 3.278028e-06 3.278028e-06 3.278028e-06 3.278028e-06 3.278028e-06 3.278028e-06 
##           91           92           93           94           95           96 
## 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 
##           97           98           99          100          101          102 
## 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 
##          103          104          105          106          107          108 
## 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 
##          109          110          111          112          113          114 
## 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 1.002286e-07 
##          115          116          117          118          119          120 
## 1.002286e-07 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 
##          121          122          123          124          125          126 
## 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 
##          127          128          129          130          131          132 
## 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 
##          133          134          135          136          137          138 
## 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 1.041054e-07 
##          139          140          141          142          143          144 
## 1.041054e-07 1.041054e-07 5.870058e-06 5.870058e-06 5.870058e-06 5.870058e-06 
##          145          146          147          148          149          150 
## 5.870058e-06 5.870058e-06 5.870058e-06 5.870058e-06 5.870058e-06 5.870058e-06 
##          151          152          153          154          155          156 
## 5.870058e-06 5.870058e-06 5.870058e-06 5.870058e-06 5.870058e-06 2.441040e-06 
##          157          158          159          160          161          162 
## 2.441040e-06 2.441040e-06 2.441040e-06 2.441040e-06 2.441040e-06 2.441040e-06 
##          163          164          165          166          167          168 
## 2.441040e-06 2.441040e-06 2.441040e-06 7.360775e-08 7.360775e-08 7.360775e-08 
##          169          170          171          172          173          174 
## 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 
##          175          176          177          178          179          180 
## 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 
##          181          182          183          184          185          186 
## 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 
##          187          188          189          190          191          192 
## 7.360775e-08 7.360775e-08 7.360775e-08 7.360775e-08 2.866011e-04 2.866011e-04 
##          193          194          195          196          197          198 
## 2.866011e-04 2.866011e-04 2.866011e-04 2.866011e-04 2.866011e-04 2.866011e-04 
##          199          200          201          202          203          204 
## 2.866011e-04 2.866011e-04 1.428370e-03 1.428370e-03 1.428370e-03 1.428370e-03 
##          205          206          207          208          209          210 
## 1.428370e-03 1.428370e-03 1.428370e-03 1.428370e-03 1.428370e-03 1.428370e-03 
##          211          212          213          214          215          216 
## 5.736285e-08 5.736285e-08 5.736285e-08 5.736285e-08 5.736285e-08 5.736285e-08 
##          217          218          219          220          221          222 
## 5.736285e-08 5.736285e-08 5.736285e-08 5.736285e-08 1.902480e-05 1.902480e-05 
##          223          224          225          226          227          228 
## 1.902480e-05 1.902480e-05 1.902480e-05 1.902480e-05 1.902480e-05 1.902480e-05 
##          229          230          231          232          233          234 
## 1.902480e-05 1.902480e-05 4.303350e-06 4.303350e-06 4.303350e-06 4.303350e-06 
##          235          236          237          238          239          240 
## 4.303350e-06 4.303350e-06 4.303350e-06 4.303350e-06 4.303350e-06 4.303350e-06 
##          241          242          243          244          245          246 
## 3.398751e-06 3.398751e-06 3.398751e-06 3.398751e-06 3.398751e-06 3.398751e-06 
##          247          248          249          250          251          252 
## 3.398751e-06 3.398751e-06 3.398751e-06 1.240511e-02 3.704497e-07 3.704497e-07 
##          253          254          255          256          257          258 
## 3.704497e-07 3.704497e-07 3.704497e-07 3.704497e-07 3.704497e-07 3.704497e-07 
##          259          260          261          262          263          264 
## 3.704497e-07 3.704497e-07 6.462998e-07 6.462998e-07 6.462998e-07 6.462998e-07 
##          265          266          267          268          269          270 
## 6.462998e-07 6.462998e-07 6.462998e-07 6.462998e-07 6.462998e-07 6.462998e-07 
##          271          272          273          274          275          276 
## 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 
##          277          278          279          280          281          282 
## 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 
##          283          284          285          286          287          288 
## 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 
##          289          290          291          292          293          294 
## 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 8.461427e-08 
##          295          296          297          298          299          300 
## 1.733884e-02 3.130550e-04 3.130550e-04 3.130550e-04 3.130550e-04 3.130550e-04 
##          301          302          303          304          305          306 
## 3.130550e-04 3.130550e-04 3.130550e-04 3.130550e-04 3.130550e-04 3.130550e-04 
##          307          308          309          310          311          312 
## 3.130550e-04 3.130550e-04 3.130550e-04 3.130550e-04 1.217826e-03 1.217826e-03 
##          313          314          315          316          317          318 
## 1.217826e-03 1.217826e-03 1.217826e-03 3.360923e-08 3.360923e-08 3.360923e-08 
##          319          320          321          322          323          324 
## 3.360923e-08 3.360923e-08 3.360923e-08 3.360923e-08 3.360923e-08 3.360923e-08 
##          325          326          327          328          329          330 
## 3.360923e-08 6.739603e-07 6.739603e-07 6.739603e-07 6.739603e-07 6.739603e-07 
##          331          332          333          334          335          336 
## 6.739603e-07 6.739603e-07 6.739603e-07 6.739603e-07 6.739603e-07 4.598828e-07 
##          337          338          339          340          341          342 
## 4.598828e-07 4.598828e-07 4.598828e-07 4.598828e-07 4.598828e-07 4.598828e-07 
##          343          344          345          346          347          348 
## 4.598828e-07 4.598828e-07 4.598828e-07 2.713996e-05 2.713996e-05 2.713996e-05 
##          349          350          351          352          353          354 
## 2.713996e-05 2.713996e-05 2.713996e-05 2.713996e-05 2.713996e-05 2.713996e-05 
##          355          356          357          358          359          360 
## 2.713996e-05 2.713996e-05 8.999504e-03 8.999504e-03 8.999504e-03 8.999504e-03 
##          361          362          363          364          365          366 
## 3.081294e-04 3.081294e-04 3.081294e-04 3.081294e-04 3.081294e-04 3.081294e-04 
##          367          368          369          370          371          372 
## 3.081294e-04 3.081294e-04 3.081294e-04 3.081294e-04 3.081294e-04 3.081294e-04 
##          373          374          375          376          377          378 
## 3.081294e-04 3.081294e-04 3.081294e-04 3.081294e-04 1.254303e-03 1.254303e-03 
##          379          380          381          382          383          384 
## 1.254303e-03 1.254303e-03 6.703468e-04 6.703468e-04 6.703468e-04 6.703468e-04 
##          385          386          387          388          389          390 
## 6.703468e-04 6.703468e-04 6.703468e-04 6.703468e-04 6.703468e-04 6.703468e-04 
##          391          392          393          394          395          396 
## 6.703468e-04 6.703468e-04 2.915381e-04 2.915381e-04 2.915381e-04 2.915381e-04 
##          397          398          399          400          401          402 
## 2.915381e-04 2.915381e-04 2.915381e-04 2.915381e-04 2.694168e-04 2.694168e-04 
##          403          404          405          406          407          408 
## 2.694168e-04 2.694168e-04 2.694168e-04 2.694168e-04 2.694168e-04 1.585832e-03 
##          409          410          411          412          413          414 
## 1.585832e-03 1.585832e-03 1.585832e-03 1.585832e-03 1.585832e-03 1.585832e-03 
##          415          416          417          418          419          420 
## 1.585832e-03 1.585832e-03 1.585832e-03 1.585832e-03 1.585832e-03 1.585832e-03 
##          421          422          423          424          425          426 
## 4.440993e-06 4.440993e-06 4.440993e-06 4.440993e-06 4.440993e-06 4.440993e-06 
##          427          428          429          430          431          432 
## 4.440993e-06 4.440993e-06 4.440993e-06 4.440993e-06 4.440993e-06 4.440993e-06 
##          433          434          435          436          437          438 
## 4.440993e-06 4.440993e-06 4.440993e-06 1.511509e-04 1.511509e-04 1.511509e-04 
##          439          440          441          442          443          444 
## 1.511509e-04 1.511509e-04 1.511509e-04 1.511509e-04 1.511509e-04 1.511509e-04 
##          445          446          447          448          449          450 
## 1.511509e-04 1.511509e-04 1.511509e-04 1.511509e-04 1.511509e-04 1.511509e-04 
##          451          452          453          454          455          456 
## 1.511509e-04 1.511509e-04 1.511509e-04 1.511509e-04 6.354043e-03 6.354043e-03 
##          457          458          459          460          461          462 
## 6.354043e-03 6.354043e-03 6.354043e-03 6.354043e-03 1.797672e-03 1.724460e-03 
##          463          464          465          466          467          468 
## 1.724460e-03 1.724460e-03 1.724460e-03 1.724460e-03 1.724460e-03 1.724460e-03 
##          469          470          471          472          473          474 
## 1.724460e-03 1.724460e-03 1.843321e-05 1.843321e-05 1.843321e-05 1.843321e-05 
##          475          476          477          478          479          480 
## 1.843321e-05 1.843321e-05 1.843321e-05 1.843321e-05 1.843321e-05 1.843321e-05 
##          481          482          483          484          485          486 
## 1.843321e-05 1.843321e-05 1.843321e-05 1.843321e-05 1.843321e-05 1.843321e-05 
##          487          488          489          490          491          492 
## 1.843321e-05 1.843321e-05 1.843321e-05 1.843321e-05 2.348340e-05 2.348340e-05 
##          493          494          495          496          497          498 
## 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 
##          499          500          501          502          503          504 
## 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 
##          505          506          507          508          509          510 
## 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 
##          511          512          513          514          515          516 
## 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 2.348340e-05 8.988284e-04 
##          517          518          519          520          521          522 
## 8.988284e-04 8.988284e-04 8.988284e-04 8.988284e-04 8.988284e-04 8.988284e-04 
##          523          524          525          526          527          528 
## 8.988284e-04 8.988284e-04 2.393510e-03 4.483708e-04 4.483708e-04 4.483708e-04 
##          529          530          531          532          533          534 
## 4.483708e-04 4.483708e-04 4.483708e-04 4.483708e-04 4.483708e-04 4.483708e-04 
##          535          536          537          538          539          540 
## 4.483708e-04 4.463522e-05 4.463522e-05 4.463522e-05 4.463522e-05 4.463522e-05 
##          541          542          543          544          545          546 
## 4.463522e-05 4.463522e-05 4.463522e-05 4.463522e-05 4.463522e-05 4.463522e-05 
##          547          548          549          550          551          552 
## 4.463522e-05 4.463522e-05 4.463522e-05 4.463522e-05 4.463522e-05 4.463522e-05 
##          553          554          555          556          557          558 
## 4.463522e-05 4.463522e-05 4.463522e-05 4.463522e-05 6.749183e-03 6.749183e-03 
##          559          560          561          562          563          564 
## 6.749183e-03 6.749183e-03 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 
##          565          566          567          568          569          570 
## 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 
##          571          572          573          574          575          576 
## 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 
##          577          578          579          580          581          582 
## 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 1.329633e-04 
##          583          584          585          586          587          588 
## 6.394237e-03 6.394237e-03 6.394237e-03 4.244317e-05 4.244317e-05 4.244317e-05 
##          589          590          591          592          593          594 
## 4.244317e-05 4.244317e-05 4.244317e-05 4.244317e-05 4.244317e-05 4.244317e-05 
##          595          596          597          598          599          600 
## 4.244317e-05 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 
##          601          602          603          604          605          606 
## 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 
##          607          608          609          610          611          612 
## 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 
##          613          614          615          616          617          618 
## 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 5.707449e-05 
##          619          620          621          622          623          624 
## 5.707449e-05 6.660352e-03 6.699190e-04 6.699190e-04 6.699190e-04 6.699190e-04 
##          625          626          627          628          629          630 
## 6.699190e-04 6.699190e-04 6.699190e-04 6.699190e-04 6.699190e-04 6.699190e-04 
##          631          632          633          634          635          636 
## 6.699190e-04 6.699190e-04 6.699190e-04 3.722163e-03 3.722163e-03 1.648403e-03 
##          637          638          639          640          641          642 
## 1.808937e-03 1.808937e-03 1.808937e-03 1.808937e-03 1.808937e-03 1.808937e-03 
##          643          644          645          646          647          648 
## 1.808937e-03 1.808937e-03 1.808937e-03 2.382821e-04 2.382821e-04 2.382821e-04 
##          649          650          651          652          653          654 
## 2.382821e-04 2.382821e-04 2.382821e-04 2.382821e-04 2.382821e-04 2.382821e-04 
##          655          656          657          658          659          660 
## 2.382821e-04 1.068235e-03 1.068235e-03 1.068235e-03 1.068235e-03 1.068235e-03 
##          661          662          663          664          665          666 
## 1.068235e-03 1.068235e-03 1.922664e-02 1.922664e-02 1.922664e-02 1.151325e-04 
##          667          668          669          670          671          672 
## 1.151325e-04 1.151325e-04 1.151325e-04 1.151325e-04 1.151325e-04 1.151325e-04 
##          673          674          675          676          677          678 
## 1.151325e-04 1.151325e-04 1.151325e-04 1.151325e-04 1.151325e-04 1.151325e-04 
##          679          680          681          682          683          684 
## 1.151325e-04 1.151325e-04 1.151325e-04 1.151325e-04 1.151325e-04 1.151325e-04 
##          685          686          687          688          689          690 
## 1.151325e-04 1.151325e-04 1.151325e-04 6.438438e-03 6.438438e-03 6.438438e-03 
##          691          692          693          694          695          696 
## 1.528998e-04 1.528998e-04 1.528998e-04 1.528998e-04 1.528998e-04 1.528998e-04 
##          697          698          699          700          701          702 
## 1.528998e-04 1.528998e-04 1.528998e-04 1.528998e-04 1.008175e-05 1.008175e-05 
##          703          704          705          706          707          708 
## 1.008175e-05 1.008175e-05 1.008175e-05 1.008175e-05 1.008175e-05 1.008175e-05 
##          709          710          711          712          713          714 
## 1.008175e-05 1.008175e-05 1.008175e-05 1.008175e-05 1.008175e-05 1.008175e-05 
##          715          716          717          718          719          720 
## 1.008175e-05 1.008175e-05 1.008175e-05 1.008175e-05 1.008175e-05 1.008175e-05 
##          721          722          723          724          725          726 
## 2.495827e-03 2.495827e-03 2.495827e-03 2.495827e-03 2.495827e-03 2.495827e-03 
##          727          728          729          730          731          732 
## 2.495827e-03 2.495827e-03 2.495827e-03 2.495827e-03 2.495827e-03 2.495827e-03 
##          733          734          735          736          737          738 
## 2.495827e-03 1.945602e-03 1.945602e-03 2.182654e-05 2.182654e-05 2.182654e-05 
##          739          740          741          742          743          744 
## 2.182654e-05 2.182654e-05 2.182654e-05 2.182654e-05 2.182654e-05 2.182654e-05 
##          745          746          747          748          749          750 
## 2.182654e-05 2.182654e-05 2.182654e-05 2.182654e-05 2.182654e-05 2.182654e-05 
##          751          752          753          754          755          756 
## 2.182654e-05 2.182654e-05 2.182654e-05 2.182654e-05 2.182654e-05 1.336138e-04 
##          757          758          759          760          761          762 
## 1.336138e-04 1.336138e-04 1.336138e-04 1.336138e-04 1.336138e-04 1.336138e-04 
##          763          764          765          766          767          768 
## 1.336138e-04 1.336138e-04 1.336138e-04 9.171101e-06 9.171101e-06 9.171101e-06 
##          769          770          771          772          773          774 
## 9.171101e-06 9.171101e-06 9.171101e-06 9.171101e-06 9.171101e-06 9.171101e-06 
##          775          776          777          778          779          780 
## 9.171101e-06 9.171101e-06 9.171101e-06 9.171101e-06 9.171101e-06 9.171101e-06 
##          781          782          783          784          785          786 
## 9.171101e-06 9.171101e-06 9.171101e-06 9.171101e-06 9.171101e-06 1.492966e-03 
##          787          788          789          790          791          792 
## 1.492966e-03 1.492966e-03 1.492966e-03 1.905179e-03 1.905179e-03 1.905179e-03 
##          793          794          795          796          797          798 
## 1.905179e-03 1.905179e-03 1.905179e-03 7.455427e-04 7.455427e-04 7.455427e-04 
##          799          800          801          802          803          804 
## 7.455427e-04 2.572464e-03 2.572464e-03 2.572464e-03 2.572464e-03 2.572464e-03 
##          805          806          807          808          809          810 
## 2.572464e-03 5.611863e-04 5.611863e-04 5.611863e-04 5.611863e-04 5.611863e-04 
##          811          812          813          814          815          816 
## 5.611863e-04 5.611863e-04 5.611863e-04 5.611863e-04 5.611863e-04 2.101580e-03 
##          817          818          819          820          821          822 
## 2.101580e-03 2.101580e-03 2.101580e-03 2.101580e-03 2.101580e-03 2.101580e-03 
##          823          824          825          826          827          828 
## 2.101580e-03 2.101580e-03 2.101580e-03 2.101580e-03 2.179359e-03 2.179359e-03 
##          829          830          831          832          833          834 
## 2.179359e-03 2.179359e-03 3.348454e-05 3.348454e-05 3.348454e-05 3.348454e-05 
##          835          836          837          838          839          840 
## 3.348454e-05 3.348454e-05 3.348454e-05 3.348454e-05 3.348454e-05 3.348454e-05 
##          841          842          843          844          845          846 
## 3.348454e-05 3.348454e-05 3.348454e-05 3.348454e-05 3.348454e-05 3.348454e-05 
##          847          848          849          850          851          852 
## 3.348454e-05 3.348454e-05 3.348454e-05 3.348454e-05 1.120092e-05 1.120092e-05 
##          853          854          855          856          857          858 
## 1.120092e-05 1.120092e-05 1.120092e-05 1.120092e-05 1.120092e-05 1.120092e-05 
##          859          860          861          862          863          864 
## 1.120092e-05 1.120092e-05 1.120092e-05 1.120092e-05 1.120092e-05 1.120092e-05 
##          865          866          867          868          869          870 
## 1.120092e-05 1.120092e-05 1.120092e-05 1.120092e-05 1.120092e-05 1.120092e-05 
##          871          872          873          874          875          876 
## 9.661253e-06 9.661253e-06 9.661253e-06 9.661253e-06 9.661253e-06 9.661253e-06 
##          877          878          879          880          881          882 
## 9.661253e-06 9.661253e-06 9.661253e-06 9.395779e-03 1.654144e-07 1.654144e-07 
##          883          884          885          886          887          888 
## 1.654144e-07 1.654144e-07 1.654144e-07 1.654144e-07 1.654144e-07 1.654144e-07 
##          889          890          891          892          893          894 
## 1.654144e-07 1.654144e-07 2.296660e-06 2.296660e-06 2.296660e-06 2.296660e-06 
##          895          896          897          898          899          900 
## 2.296660e-06 2.296660e-06 2.296660e-06 2.296660e-06 2.296660e-06 2.296660e-06 
##          901          902          903          904          905          906 
## 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 
##          907          908          909          910          911          912 
## 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 
##          913          914          915          916          917          918 
## 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 
##          919          920          921          922          923          924 
## 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 3.279367e-07 
##          925          926          927          928          929          930 
## 3.279367e-07 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 
##          931          932          933          934          935          936 
## 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 
##          937          938          939          940          941          942 
## 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 
##          943          944          945          946          947          948 
## 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 3.143036e-07 
##          949          950          951          952          953          954 
## 3.143036e-07 3.143036e-07 1.005347e-05 1.005347e-05 1.005347e-05 1.005347e-05 
##          955          956          957          958          959          960 
## 1.005347e-05 1.005347e-05 1.005347e-05 1.005347e-05 1.005347e-05 1.005347e-05 
##          961          962          963          964          965          966 
## 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 
##          967          968          969          970          971          972 
## 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 
##          973          974          975          976          977          978 
## 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 
##          979          980          981          982          983          984 
## 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 3.167918e-07 
##          985          986          987          988          989          990 
## 3.167918e-07 4.930070e-04 4.930070e-04 4.930070e-04 4.930070e-04 4.930070e-04 
##          991          992          993          994          995          996 
## 4.930070e-04 4.930070e-04 4.930070e-04 4.930070e-04 4.930070e-04 4.857044e-04 
##          997          998          999         1000         1001         1002 
## 4.857044e-04 4.857044e-04 4.857044e-04 4.857044e-04 4.857044e-04 4.857044e-04 
##         1003         1004         1005         1006         1007         1008 
## 4.857044e-04 4.857044e-04 4.857044e-04 2.790379e-06 2.790379e-06 2.790379e-06 
##         1009         1010         1011         1012         1013         1014 
## 2.790379e-06 2.790379e-06 2.790379e-06 2.790379e-06 2.790379e-06 2.790379e-06 
##         1015         1016         1017         1018         1019         1020 
## 3.105137e-02 1.835058e-07 1.835058e-07 1.835058e-07 1.835058e-07 1.835058e-07 
##         1021         1022         1023         1024         1025         1026 
## 1.835058e-07 1.835058e-07 1.835058e-07 1.835058e-07 1.835058e-07 1.632772e-07 
##         1027         1028         1029         1030         1031         1032 
## 1.632772e-07 1.632772e-07 1.632772e-07 1.632772e-07 1.632772e-07 1.632772e-07 
##         1033         1034         1035         1036         1037         1038 
## 1.632772e-07 1.632772e-07 1.526056e-01 1.091763e-05 1.091763e-05 1.091763e-05 
##         1039         1040         1041         1042         1043         1044 
## 1.091763e-05 1.091763e-05 1.091763e-05 1.091763e-05 1.091763e-05 1.091763e-05 
##         1045         1046         1047         1048         1049         1050 
## 1.091763e-05 5.209062e-04 5.209062e-04 5.209062e-04 5.209062e-04 5.209062e-04 
##         1051         1052         1053         1054         1055         1056 
## 5.209062e-04 5.209062e-04 5.209062e-04 5.209062e-04 5.209062e-04 5.209062e-04 
##         1057         1058         1059         1060         1061         1062 
## 5.209062e-04 5.209062e-04 5.209062e-04 5.209062e-04 4.380359e-04 4.380359e-04 
##         1063         1064         1065         1066         1067         1068 
## 4.380359e-04 4.380359e-04 4.380359e-04 4.860984e-04 4.860984e-04 4.860984e-04 
##         1069         1070         1071         1072         1073         1074 
## 4.860984e-04 4.860984e-04 4.860984e-04 4.860984e-04 4.860984e-04 4.860984e-04 
##         1075         1076         1077         1078         1079         1080 
## 4.860984e-04 4.860984e-04 4.860984e-04 4.991249e-04 4.991249e-04 4.991249e-04 
##         1081         1082         1083         1084         1085         1086 
## 4.991249e-04 4.991249e-04 4.991249e-04 4.991249e-04 4.991249e-04 4.907861e-04 
##         1087         1088         1089         1090         1091         1092 
## 4.907861e-04 4.907861e-04 4.907861e-04 4.907861e-04 4.907861e-04 4.907861e-04 
##         1093         1094         1095         1096         1097         1098 
## 4.907861e-04 4.907861e-04 4.907861e-04 4.907861e-04 4.899424e-04 4.899424e-04 
##         1099         1100         1101         1102         1103         1104 
## 4.899424e-04 4.899424e-04 4.899424e-04 4.899424e-04 4.899424e-04 4.899424e-04 
##         1105         1106         1107         1108         1109         1110 
## 4.899424e-04 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 
##         1111         1112         1113         1114         1115         1116 
## 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 
##         1117         1118         1119         1120         1121         1122 
## 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 
##         1123         1124         1125         1126         1127         1128 
## 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 3.243377e-07 
##         1129         1130         1131         1132         1133         1134 
## 3.243377e-07 3.243377e-07 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 
##         1135         1136         1137         1138         1139         1140 
## 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 
##         1141         1142         1143         1144         1145         1146 
## 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 
##         1147         1148         1149         1150         1151         1152 
## 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 3.581322e-07 
##         1153         1154         1155         1156         1157         1158 
## 3.581322e-07 3.581322e-07 3.581322e-07 1.404974e-05 1.404974e-05 1.404974e-05 
##         1159         1160         1161         1162         1163         1164 
## 1.404974e-05 1.404974e-05 1.404974e-05 1.404974e-05 1.404974e-05 1.404974e-05 
##         1165         1166         1167         1168         1169         1170 
## 1.404974e-05 1.404974e-05 1.404974e-05 1.404974e-05 1.404974e-05 1.404974e-05 
##         1171         1172         1173         1174         1175         1176 
## 9.732935e-06 9.732935e-06 9.732935e-06 9.732935e-06 9.732935e-06 9.732935e-06 
##         1177         1178         1179         1180         1181         1182 
## 9.732935e-06 9.732935e-06 9.732935e-06 9.732935e-06 2.316911e-06 2.316911e-06 
##         1183         1184         1185         1186         1187         1188 
## 2.316911e-06 2.316911e-06 2.316911e-06 2.316911e-06 2.316911e-06 2.316911e-06 
##         1189         1190         1191         1192         1193         1194 
## 3.148196e-02 3.148196e-02 5.113000e-04 5.113000e-04 5.113000e-04 5.113000e-04 
##         1195         1196         1197         1198         1199         1200 
## 5.113000e-04 5.113000e-04 5.113000e-04 5.113000e-04 5.113000e-04 5.113000e-04 
##         1201         1202         1203         1204         1205         1206 
## 5.113000e-04 5.113000e-04 5.113000e-04 4.533542e-04 4.533542e-04 4.533542e-04 
##         1207         1208         1209         1210         1211         1212 
## 4.533542e-04 4.533542e-04 4.533542e-04 4.533542e-04 1.348505e-05 1.348505e-05 
##         1213         1214         1215         1216         1217         1218 
## 1.348505e-05 1.348505e-05 1.348505e-05 1.348505e-05 1.348505e-05 1.348505e-05 
##         1219         1220         1221         1222         1223         1224 
## 1.348505e-05 1.348505e-05 1.348505e-05 1.348505e-05 1.065734e-02 1.065734e-02 
##         1225         1226         1227         1228         1229         1230 
## 1.065734e-02 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 
##         1231         1232         1233         1234         1235         1236 
## 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 
##         1237         1238         1239         1240         1241         1242 
## 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 
##         1243         1244         1245         1246         1247         1248 
## 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 3.743579e-07 
##         1249         1250         1251         1252         1253         1254 
## 3.743579e-07 3.743579e-07 9.950059e-06 9.950059e-06 9.950059e-06 9.950059e-06 
##         1255         1256         1257         1258         1259         1260 
## 9.950059e-06 9.950059e-06 9.950059e-06 9.950059e-06 9.950059e-06 9.950059e-06 
##         1261         1262         1263         1264         1265         1266 
## 1.596457e-05 1.596457e-05 1.596457e-05 1.596457e-05 1.596457e-05 1.596457e-05 
##         1267         1268         1269         1270         1271         1272 
## 1.596457e-05 1.596457e-05 1.596457e-05 1.023578e-02 1.023578e-02 1.023578e-02 
##         1273         1274         1275         1276         1277         1278 
## 1.023578e-02 1.023578e-02 1.023578e-02 1.137951e-05 1.137951e-05 1.137951e-05 
##         1279         1280         1281         1282         1283         1284 
## 1.137951e-05 1.137951e-05 1.137951e-05 1.137951e-05 1.137951e-05 1.137951e-05 
##         1285         1286         1287         1288         1289         1290 
## 1.137951e-05 4.845432e-04 4.845432e-04 4.845432e-04 4.845432e-04 4.845432e-04 
##         1291         1292         1293         1294         1295         1296 
## 4.845432e-04 4.845432e-04 4.845432e-04 4.845432e-04 4.845432e-04 4.845432e-04 
##         1297         1298         1299         1300         1301         1302 
## 4.845432e-04 4.845432e-04 4.845432e-04 4.845432e-04 4.845432e-04 5.022444e-04 
##         1303         1304         1305         1306         1307         1308 
## 5.022444e-04 5.022444e-04 5.022444e-04 1.821945e-04 1.821945e-04 1.821945e-04 
##         1309         1310         1311         1312         1313         1314 
## 1.821945e-04 1.821945e-04 1.821945e-04 1.821945e-04 1.821945e-04 1.821945e-04 
##         1315         1316         1317         1318         1319         1320 
## 1.821945e-04 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 
##         1321         1322         1323         1324         1325         1326 
## 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 
##         1327         1328         1329         1330         1331         1332 
## 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 
##         1333         1334         1335         1336         1337         1338 
## 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 6.194232e-06 
##         1339         1340         1341         1342         1343         1344 
## 6.194232e-06 6.194232e-06 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 
##         1345         1346         1347         1348         1349         1350 
## 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 
##         1351         1352         1353         1354         1355         1356 
## 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 
##         1357         1358         1359         1360         1361         1362 
## 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 3.558009e-06 
##         1363         1364         1365         1366         1367         1368 
## 3.558009e-06 3.558009e-06 3.558009e-06 6.659067e-06 6.659067e-06 6.659067e-06 
##         1369         1370         1371         1372         1373         1374 
## 6.659067e-06 6.659067e-06 6.659067e-06 6.659067e-06 6.659067e-06 6.659067e-06 
##         1375         1376         1377         1378         1379         1380 
## 6.659067e-06 1.545473e-04 1.545473e-04 1.545473e-04 1.545473e-04 1.545473e-04 
##         1381         1382         1383         1384         1385         1386 
## 1.545473e-04 1.545473e-04 1.545473e-04 1.545473e-04 1.545473e-04 8.909937e-05 
##         1387         1388         1389         1390         1391         1392 
## 8.909937e-05 8.909937e-05 8.909937e-05 8.909937e-05 8.909937e-05 8.909937e-05 
##         1393         1394         1395         1396         1397         1398 
## 8.909937e-05 8.909937e-05 8.909937e-05 6.070999e-05 6.070999e-05 6.070999e-05 
##         1399         1400         1401         1402         1403         1404 
## 6.070999e-05 6.070999e-05 6.070999e-05 6.070999e-05 6.070999e-05 6.070999e-05 
##         1405         1406         1407         1408         1409         1410 
## 6.070999e-05 1.491339e-04 1.491339e-04 1.491339e-04 1.491339e-04 1.491339e-04 
##         1411         1412         1413         1414         1415         1416 
## 1.491339e-04 1.491339e-04 1.491339e-04 4.268815e-03 4.268815e-03 6.383726e-06 
##         1417         1418         1419         1420         1421         1422 
## 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 
##         1423         1424         1425         1426         1427         1428 
## 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 
##         1429         1430         1431         1432         1433         1434 
## 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 
##         1435         1436         1437         1438         1439         1440 
## 6.383726e-06 6.383726e-06 6.383726e-06 6.383726e-06 8.007593e-03 8.007593e-03 
##         1441         1442         1443         1444         1445         1446 
## 1.452635e-04 1.452635e-04 1.452635e-04 1.452635e-04 1.452635e-04 1.452635e-04 
##         1447         1448         1449         1450         1451         1452 
## 1.452635e-04 1.452635e-04 1.452635e-04 1.452635e-04 1.331692e-04 1.331692e-04 
##         1453         1454         1455         1456         1457         1458 
## 1.331692e-04 1.331692e-04 1.331692e-04 1.331692e-04 1.331692e-04 1.331692e-04 
##         1459         1460         1461         1462         1463         1464 
## 1.331692e-04 1.331692e-04 1.331692e-04 1.331692e-04 6.020883e-03 6.020883e-03 
##         1465         1466         1467         1468         1469         1470 
## 6.020883e-03 2.749507e-04 2.749507e-04 2.749507e-04 2.749507e-04 2.749507e-04 
##         1471         1472         1473         1474         1475         1476 
## 2.749507e-04 2.749507e-04 2.749507e-04 2.749507e-04 4.938717e-03 4.938717e-03 
##         1477         1478         1479         1480         1481         1482 
## 4.938717e-03 4.938717e-03 4.938717e-03 4.938717e-03 6.544612e-05 6.544612e-05 
##         1483         1484         1485         1486         1487         1488 
## 6.544612e-05 6.544612e-05 6.544612e-05 6.544612e-05 6.544612e-05 6.544612e-05 
##         1489         1490         1491         1492         1493         1494 
## 6.544612e-05 6.544612e-05 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 
##         1495         1496         1497         1498         1499         1500 
## 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 
##         1501         1502         1503         1504         1505         1506 
## 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 
##         1507         1508         1509         1510         1511         1512 
## 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 6.650342e-06 
##         1513         1514         1515         1516         1517         1518 
## 6.650342e-06 6.650342e-06 6.650342e-06 5.149560e-06 5.149560e-06 5.149560e-06 
##         1519         1520         1521         1522         1523         1524 
## 5.149560e-06 5.149560e-06 5.149560e-06 5.149560e-06 5.149560e-06 5.149560e-06 
##         1525         1526         1527         1528         1529         1530 
## 5.149560e-06 6.530918e-05 6.530918e-05 6.530918e-05 6.530918e-05 6.530918e-05 
##         1531         1532         1533         1534         1535         1536 
## 6.530918e-05 6.530918e-05 6.530918e-05 6.530918e-05 6.530918e-05 6.530918e-05 
##         1537         1538         1539         1540         1541         1542 
## 6.530918e-05 6.530918e-05 6.530918e-05 6.530918e-05 6.530918e-05 6.530918e-05 
##         1543         1544         1545         1546         1547         1548 
## 6.530918e-05 6.530918e-05 6.530918e-05 7.615187e-05 7.615187e-05 7.615187e-05 
##         1549         1550         1551         1552         1553         1554 
## 7.615187e-05 7.615187e-05 7.615187e-05 7.615187e-05 7.615187e-05 7.615187e-05 
##         1555         1556         1557         1558         1559         1560 
## 7.615187e-05 7.615187e-05 7.615187e-05 7.615187e-05 7.615187e-05 7.615187e-05 
##         1561         1562         1563         1564         1565         1566 
## 7.615187e-05 7.615187e-05 7.615187e-05 7.615187e-05 7.615187e-05 2.661408e-06 
##         1567         1568         1569         1570         1571         1572 
## 2.661408e-06 2.661408e-06 2.661408e-06 2.661408e-06 2.661408e-06 2.661408e-06 
##         1573         1574         1575         1576         1577         1578 
## 2.661408e-06 2.661408e-06 2.661408e-06 1.264511e-04 1.264511e-04 1.264511e-04 
##         1579         1580         1581         1582         1583         1584 
## 1.264511e-04 1.264511e-04 1.264511e-04 1.264511e-04 1.264511e-04 1.264511e-04 
##         1585         1586         1587         1588         1589         1590 
## 4.478204e-03 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 
##         1591         1592         1593         1594         1595         1596 
## 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 
##         1597         1598         1599         1600         1601         1602 
## 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 
##         1603         1604         1605         1606         1607         1608 
## 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 5.286931e-06 
##         1609         1610         1611         1612         1613         1614 
## 5.286931e-06 5.286931e-06 8.347080e-05 8.347080e-05 8.347080e-05 8.347080e-05 
##         1615         1616         1617         1618         1619         1620 
## 8.347080e-05 8.347080e-05 8.347080e-05 8.347080e-05 8.347080e-05 8.347080e-05 
##         1621         1622         1623         1624         1625         1626 
## 8.347080e-05 8.347080e-05 8.347080e-05 8.347080e-05 8.347080e-05 8.347080e-05 
##         1627         1628         1629         1630         1631         1632 
## 8.347080e-05 8.347080e-05 8.347080e-05 8.347080e-05 7.482458e-05 7.482458e-05 
##         1633         1634         1635         1636         1637         1638 
## 7.482458e-05 7.482458e-05 7.482458e-05 7.482458e-05 7.482458e-05 7.482458e-05 
##         1639         1640         1641         1642         1643         1644 
## 7.482458e-05 7.482458e-05 7.482458e-05 7.482458e-05 7.482458e-05 7.482458e-05 
##         1645         1646         1647         1648         1649         1650 
## 7.482458e-05 7.482458e-05 7.482458e-05 7.482458e-05 7.482458e-05 7.482458e-05 
##         1651         1652         1653         1654         1655         1656 
## 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 
##         1657         1658         1659         1660         1661         1662 
## 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 
##         1663         1664         1665         1666         1667         1668 
## 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 
##         1669         1670         1671         1672         1673         1674 
## 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 8.039815e-06 
##         1675         1676         1677         1678         1679         1680 
## 8.039815e-06 1.045942e-04 1.045942e-04 1.045942e-04 1.045942e-04 1.045942e-04 
##         1681         1682         1683         1684         1685         1686 
## 1.045942e-04 1.045942e-04 1.045942e-04 1.045942e-04 1.045942e-04 1.045942e-04 
##         1687         1688         1689         1690         1691         1692 
## 1.045942e-04 1.045942e-04 1.045942e-04 1.045942e-04 1.045942e-04 1.045942e-04 
##         1693         1694         1695         1696         1697         1698 
## 1.045942e-04 1.045942e-04 1.045942e-04 2.507358e-03 2.507358e-03 2.507358e-03 
##         1699         1700         1701         1702         1703         1704 
## 2.507358e-03 2.507358e-03 2.507358e-03 2.507358e-03 2.507358e-03 2.507358e-03 
##         1705         1706         1707         1708         1709         1710 
## 7.305441e-05 7.305441e-05 7.305441e-05 7.305441e-05 7.305441e-05 7.305441e-05 
##         1711         1712         1713         1714         1715         1716 
## 7.305441e-05 7.305441e-05 7.305441e-05 7.305441e-05 7.305441e-05 1.901927e-04 
##         1717         1718         1719         1720         1721         1722 
## 1.901927e-04 1.901927e-04 1.901927e-04 1.901927e-04 1.901927e-04 1.901927e-04 
##         1723         1724         1725         1726         1727         1728 
## 1.901927e-04 1.901927e-04 1.901927e-04 1.901927e-04 1.901927e-04 1.901927e-04 
##         1729         1730         1731         1732         1733         1734 
## 1.901927e-04 1.901927e-04 5.130918e-05 5.130918e-05 5.130918e-05 5.130918e-05 
##         1735         1736         1737         1738         1739         1740 
## 5.130918e-05 5.130918e-05 5.130918e-05 5.130918e-05 5.130918e-05 5.130918e-05
which(cooks.distance(mod5) == max(cooks.distance(mod5))) # This is the point!
## 1035 
## 1035
mod5.1 = glm(survival ~ species + avg.Cu, family = "binomial", tbl_allDataLong[-880,]) # Modified model without that one point
summary(mod5.1)
## 
## Call:
## glm(formula = survival ~ species + avg.Cu, family = "binomial", 
##     data = tbl_allDataLong[-880, ])
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.7178   0.0447   0.1639   0.3959   1.9702  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     8.085964   1.056187   7.656 1.92e-14 ***
## speciesDaphnia -6.906270   1.034814  -6.674 2.49e-11 ***
## speciesFHM     -2.134499   1.101299  -1.938 0.052603 .  
## speciesLMB     -3.564407   1.037504  -3.436 0.000591 ***
## speciesSnail   -3.420513   1.032158  -3.314 0.000920 ***
## speciesZM      -1.565184   1.038034  -1.508 0.131597    
## avg.Cu         -0.121895   0.009201 -13.248  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1908.87  on 1738  degrees of freedom
## Residual deviance:  943.08  on 1732  degrees of freedom
## AIC: 957.08
## 
## Number of Fisher Scoring iterations: 7
summary(mod5) # There is a difference between the models with and without this point, so check out the point
## 
## Call:
## glm(formula = survival ~ species + avg.Cu, family = "binomial", 
##     data = tbl_allDataLong)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.7081   0.0428   0.1670   0.3954   1.9624  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     8.034838   1.054858   7.617 2.60e-14 ***
## speciesDaphnia -6.874819   1.034038  -6.649 2.96e-11 ***
## speciesFHM     -2.129574   1.101057  -1.934 0.053099 .  
## speciesLMB     -3.556548   1.037227  -3.429 0.000606 ***
## speciesSnail   -3.452813   1.031627  -3.347 0.000817 ***
## speciesZM      -1.562740   1.037888  -1.506 0.132146    
## avg.Cu         -0.120350   0.009099 -13.227  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1911.74  on 1739  degrees of freedom
## Residual deviance:  950.09  on 1733  degrees of freedom
## AIC: 964.09
## 
## Number of Fisher Scoring iterations: 7
print(tbl_allDataLong[880,]) # this point is a bluegill in a low concentration tank that died
##     tank treatGroup species survival   avg.Cu
## 880    2        Low   Snail        0 9.489672
# This point is problematic because it's the reference species, and the reference species has very high survival; this individual was a source of large variation in our reference species (reason it has a lot of power!)
# Takeaway: this is an unusual but legitimate data point
# Now... is there pseudoreplication by tank?
mod5.2 = glm(survival ~ species + scale(avg.Cu), family = "binomial", tbl_allDataLong) # Return to the original model, but this time scale everything so we can compare it to the next model
mod5.3 = glmer(survival ~ species + scale(avg.Cu) + (1|tank), family = "binomial", tbl_allDataLong) # include jar ID as a random effect
summary(mod5.2)
## 
## Call:
## glm(formula = survival ~ species + scale(avg.Cu), family = "binomial", 
##     data = tbl_allDataLong)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.7081   0.0428   0.1670   0.3954   1.9624  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      5.8098     1.0197   5.697 1.22e-08 ***
## speciesDaphnia  -6.8748     1.0340  -6.649 2.96e-11 ***
## speciesFHM      -2.1296     1.1011  -1.934 0.053099 .  
## speciesLMB      -3.5565     1.0372  -3.429 0.000606 ***
## speciesSnail    -3.4528     1.0316  -3.347 0.000817 ***
## speciesZM       -1.5627     1.0379  -1.506 0.132146    
## scale(avg.Cu)   -1.4370     0.1086 -13.227  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1911.74  on 1739  degrees of freedom
## Residual deviance:  950.09  on 1733  degrees of freedom
## AIC: 964.09
## 
## Number of Fisher Scoring iterations: 7
summary(mod5.3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: survival ~ species + scale(avg.Cu) + (1 | tank)
##    Data: tbl_allDataLong
## 
##      AIC      BIC   logLik deviance df.resid 
##    950.2    993.9   -467.1    934.2     1732 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -43.241   0.022   0.095   0.232   1.451 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  tank   (Intercept) 0.3331   0.5771  
## Number of obs: 1740, groups:  tank, 24
## 
## Fixed effects:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      6.3513     1.0408   6.102 1.05e-09 ***
## speciesDaphnia  -7.5032     1.0546  -7.115 1.12e-12 ***
## speciesFHM      -2.8402     1.1296  -2.514 0.011927 *  
## speciesLMB      -4.0417     1.0548  -3.832 0.000127 ***
## speciesSnail    -3.8343     1.0401  -3.686 0.000227 ***
## speciesZM       -1.8380     1.0402  -1.767 0.077233 .  
## scale(avg.Cu)   -1.5162     0.1663  -9.120  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) spcsDp spcFHM spcLMB spcsSn spcsZM
## speciesDphn -0.986                                   
## speciesFHM  -0.906  0.900                            
## speciesLMB  -0.962  0.955  0.892                     
## speciesSnal -0.968  0.960  0.896  0.952              
## speciesZM   -0.956  0.945  0.886  0.942  0.952       
## scale(vg.C) -0.117  0.158  0.048  0.055  0.044  0.018
AIC(mod5.3) # the random effect model is a better fit
## [1] 950.2488
AIC(mod5.2)
## [1] 964.092
hist(residuals(mod5.3)) # and the residual distribution hasn't changed

(mod5)
## 
## Call:  glm(formula = survival ~ species + avg.Cu, family = "binomial", 
##     data = tbl_allDataLong)
## 
## Coefficients:
##    (Intercept)  speciesDaphnia      speciesFHM      speciesLMB    speciesSnail  
##         8.0348         -6.8748         -2.1296         -3.5565         -3.4528  
##      speciesZM          avg.Cu  
##        -1.5627         -0.1203  
## 
## Degrees of Freedom: 1739 Total (i.e. Null);  1733 Residual
## Null Deviance:       1912 
## Residual Deviance: 950.1     AIC: 964.1
(fhm_lc10 = boot::inv.logit(8.035+-2.13 + 31*-0.120)) # Just for fun, what concentration protects 90% of fathead minnow?
## [1] 0.8988944

1.7.5 Figure

colnames(tbl_allDataLong) = c("Tank", "treatGroup", "Species", "Survival", "avgCu")
tbl_allDataLong$Species <- gsub("BLG", "Bluegill", tbl_allDataLong$Species)
tbl_allDataLong$Species <- gsub("FHM", "Fathead minnow", tbl_allDataLong$Species)
tbl_allDataLong$Species <- gsub("LMB", "Largemouth bass", tbl_allDataLong$Species)
tbl_allDataLong$Species <- gsub("Snail", "Banded mystery snail", tbl_allDataLong$Species)
tbl_allDataLong$Species <- gsub("ZM", "Zebra mussel", tbl_allDataLong$Species)

intercept = 8.035 # GLM coefficients
copperslope = -0.120
daphnia = -6.875
fathead = -2.13
bass = -3.557
bms = -3.453
zm = -1.563

fakeCus = seq(from = 0, to = 40, length = 1000) # Create many copper concentration values
bluegill_y = boot::inv.logit(8.035 + fakeCus*-0.120) # Calculate species response at those copper values
daphnia_y = boot::inv.logit(8.035+-6.875 + fakeCus*-0.120)
fathead_y = boot::inv.logit(8.035+-2.13 + fakeCus*-0.120)
bass_y = boot::inv.logit(8.035+-3.557 + fakeCus*-0.120)
bms_y = boot::inv.logit(8.035+-3.453 + fakeCus*-0.120)
zm_y = boot::inv.logit(8.035+-1.563 + fakeCus*-0.120)

Figure5df = data.frame(fakeCus, bluegill_y, daphnia_y, fathead_y, bass_y, bms_y, zm_y) # bundle into a dataframe

plot_survivalLong = ggplot() +
  geom_line(data = Figure5df, aes(x = fakeCus, y = bluegill_y), color = "#E69F00", size = 1) +
  geom_line(data = Figure5df, aes(x = fakeCus, y = daphnia_y), color = "#56B4E9", size = 1) +
  geom_line(data = Figure5df, aes(x = fakeCus, y = fathead_y), color = "#009E73", size = 1) +
  geom_line(data = Figure5df, aes(x = fakeCus, y = bass_y), color = "#D55E00", size = 1) +
  geom_line(data = Figure5df, aes(x = fakeCus, y = bms_y), color = "#0072B2", size = 1) +
  geom_line(data = Figure5df, aes(x = fakeCus, y = zm_y), color = "#CC79A7", size = 1) +
  geom_point(data = tbl_survival_byCu, aes(x=avg.Cu, y=mean, color=Species, fill=Species), size = 3) +
  scale_color_manual(values = c("Bluegill" = "#E69F00", "Daphnia" = "#56B4E9", "Fathead minnow" = "#009E73", "Largemouth bass" = "#D55E00", "Banded mystery snail" = "#0072B2", "Zebra mussel" = "#CC79A7"))+
  theme_classic() +
  theme(axis.text = element_text(size = 14, color = "black"),
        axis.title = element_text(size = 16, color = "black", face = "bold"),
        axis.line = element_line(size = 1.5, color = "black"),
        axis.ticks = element_line(size = 1.2, color = "black"),
        axis.ticks.length = unit(0.25, "cm"),
        legend.position = "right",
        legend.text = element_text(size = 14, colour = "black"),
        legend.title = element_text(size = 14, face = "bold")) +
  annotate("segment", x=8.39, xend=8.39, y=0.48, yend=0.52, color="black", size=2)+ #8.39 is the mean LC50 from EPA data on daphnia
  annotate("rect", xmin=3.9, xmax=12.88, ymin=0.48, ymax=0.52, alpha=0.2, color="black", fill="black")+ #daphnia LC50 stdev is 4.49
  ylim(ymin=0, ymax=1) +
  xlab("\nCopper concentration (µg Cu/L)") +
  ylab("Survival\n")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
ggsave(filename="Figure5.jpeg", plot=plot_survivalLong, width=9, height=5, dpi=500, units="in")

1.8 Conclude nontarget analysis

## Close and remove channels
close(cnxn_nt)
rm(cnxn_nt)

2. Veliger experiment

2.1 Set-up

# Connect to veliger experiment data
driver_vel <- "Driver={Microsoft Access Driver (*.mdb, *.accdb)};" # Set up the driver info
accdbpath_vel <- "C:/Users/Dahlbergs/Dropbox/Angelique/PhD/Writing/4. Bioavailability modeling/DRUM/veliger_exp.accdb" # This leads to the Access database containing veliger experiment data
path_vel <- paste0(driver_vel,"DBQ=", accdbpath_vel) # Set up database path
cnxn_vel <- odbcDriverConnect(path_vel) # Establish connection for database

#Note: you may need to install a driver for MS Access outside of R in order to make the connection to this database. See https://leowong.ca/blog/connect-to-microsoft-access-database-via-r/

2.2 Water chemistry

tbl_jarWaterChem <- sqlQuery(cnxn_vel, "SELECT tbl_jar.jar_id, tbl_jar.cuGroup, tbl_water_chem.pH, tbl_water_chem.Temp, tbl_water_chem.DO, tbl_water_chem.specCond FROM tbl_jar INNER JOIN tbl_water_chem ON tbl_jar.jar_id = tbl_water_chem.jar_id WHERE (((tbl_jar.jar_id)<37));",                              stringsAsFactors = FALSE) # Load data into R dataframes
group_by(tbl_jarWaterChem, cuGroup) %>%
  summarise(
    mean = mean(pH),
    sd = sd(pH)
  )
## # A tibble: 7 × 3
##   cuGroup  mean     sd
##   <chr>   <dbl>  <dbl>
## 1 C1       8.58 0.0516
## 2 C2       8.60 0.0280
## 3 C3       8.59 0.0197
## 4 C4       8.60 0.0638
## 5 C5       8.59 0.0357
## 6 C6       8.61 0.0299
## 7 Control  8.60 0.0168
group_by(tbl_jarWaterChem, cuGroup) %>%
  summarise(
    mean = mean(Temp),
    sd = sd(Temp)
  )
## # A tibble: 7 × 3
##   cuGroup  mean    sd
##   <chr>   <dbl> <dbl>
## 1 C1       26.8  1.57
## 2 C2       27.0  1.48
## 3 C3       26.8  1.59
## 4 C4       26.2  1.37
## 5 C5       26.6  1.46
## 6 C6       26.8  1.46
## 7 Control  26.3  1.27
group_by(tbl_jarWaterChem, cuGroup) %>%
  summarise(
    mean = mean(DO),
    sd = sd(DO)
  )
## # A tibble: 7 × 3
##   cuGroup  mean     sd
##   <chr>   <dbl>  <dbl>
## 1 C1       7.40 0.175 
## 2 C2       7.47 0.142 
## 3 C3       7.42 0.0947
## 4 C4       7.48 0.143 
## 5 C5       7.49 0.133 
## 6 C6       7.44 0.0825
## 7 Control  7.48 0.192
group_by(tbl_jarWaterChem, cuGroup) %>%
  summarise(
    mean = mean(specCond),
    sd = sd(specCond)
  )
## # A tibble: 7 × 3
##   cuGroup  mean    sd
##   <chr>   <dbl> <dbl>
## 1 C1       453.  4.15
## 2 C2       452.  2.84
## 3 C3       456.  9.66
## 4 C4       452.  4.47
## 5 C5       452   5.98
## 6 C6       453.  8.18
## 7 Control  451.  8.28
# Compare variability of different groups to determine if appropriate for ANOVA
leveneTest(tbl_jarWaterChem$Temp~tbl_jarWaterChem$cuGroup)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  6  0.1702 0.9839
##       65
leveneTest(tbl_jarWaterChem$DO~tbl_jarWaterChem$cuGroup) # At least one group is different
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value  Pr(>F)  
## group  6  2.7402 0.01953 *
##       65                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(tbl_jarWaterChem$pH~tbl_jarWaterChem$cuGroup)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  6  1.4055  0.226
##       65
leveneTest(tbl_jarWaterChem$specCond~tbl_jarWaterChem$cuGroup)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  6  0.9818 0.4449
##       65
# Visualize variability differences
boxplot(tbl_jarWaterChem$Temp~tbl_jarWaterChem$cuGroup)

boxplot(tbl_jarWaterChem$DO~tbl_jarWaterChem$cuGroup)

boxplot(tbl_jarWaterChem$pH~tbl_jarWaterChem$cuGroup)

boxplot(tbl_jarWaterChem$specCond~tbl_jarWaterChem$cuGroup)

# Consider outliers (all together to get big picture)
hist(tbl_jarWaterChem$Temp)

hist(tbl_jarWaterChem$DO)

hist(tbl_jarWaterChem$pH)

hist(tbl_jarWaterChem$specCond)

# no outliers appear to be unreasonable, inaccurate, or worth excluding
(aov_temp <- oneway.test(Temp~cuGroup, tbl_jarWaterChem, var.equal = TRUE)) # Temperatures do not vary between the jar categories
## 
##  One-way analysis of means
## 
## data:  Temp and cuGroup
## F = 0.44559, num df = 6, denom df = 65, p-value = 0.8455
(aov_do <- oneway.test(DO~cuGroup, tbl_jarWaterChem, var.equal = FALSE)) # DOs do not vary between the tanks and the jar categories
## 
##  One-way analysis of means (not assuming equal variances)
## 
## data:  DO and cuGroup
## F = 0.53686, num df = 6.000, denom df = 28.599, p-value = 0.7757
(aov_ph <- oneway.test(pH~cuGroup, tbl_jarWaterChem, var.equal = TRUE)) # pH does not vary between the jar categories
## 
##  One-way analysis of means
## 
## data:  pH and cuGroup
## F = 0.48089, num df = 6, denom df = 65, p-value = 0.8202
(aov_specCond <- oneway.test(specCond~cuGroup, tbl_jarWaterChem, var.equal = TRUE)) # conductance does not vary between the jar categories
## 
##  One-way analysis of means
## 
## data:  specCond and cuGroup
## F = 0.62499, num df = 6, denom df = 65, p-value = 0.7096

2.3 Total ammonia nitrogen (TAN) in tanks

tbl_jarNH4 <- sqlQuery(cnxn_vel, "SELECT tbl_nh4.jar_id, tbl_jar.cuGroup, tbl_nh4.NH4 FROM tbl_jar INNER JOIN tbl_nh4 ON tbl_jar.jar_id = tbl_nh4.jar_id WHERE (((tbl_nh4.jar_id)<37));",stringsAsFactors = FALSE)
group_by(tbl_jarNH4, cuGroup) %>%
  summarise(
    mean = mean(NH4, na.rm=T),
    sd = sd(NH4, na.rm=T)
  )
## # A tibble: 7 × 3
##   cuGroup   mean      sd
##   <chr>    <dbl>   <dbl>
## 1 C1      0.0514 0.0212 
## 2 C2      0.0612 0.0125 
## 3 C3      0.078  0.0262 
## 4 C4      0.0782 0.0205 
## 5 C5      0.0728 0.0222 
## 6 C6      0.0734 0.00767
## 7 Control 0.0554 0.0213
# Compare variability of different groups to determine if appropriate for ANOVA
leveneTest(tbl_jarNH4$NH4~tbl_jarNH4$cuGroup)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  6  0.5885 0.7365
##       27
# Visualize variability differences
boxplot(tbl_jarNH4$NH4~tbl_jarNH4$cuGroup)

# Consider outliers (all together to get big picture)
hist(tbl_jarNH4$NH4) # no outliers appear to be unreasonable, inaccurate, or worth excluding

(aov_NH4 <- oneway.test(NH4~cuGroup, tbl_jarNH4, var.equal = TRUE)) # NH4 does not vary between the jar categories
## 
##  One-way analysis of means
## 
## data:  NH4 and cuGroup
## F = 1.5627, num df = 6, denom df = 27, p-value = 0.1964

2.4 Copper concentration

tbl_jarCu <- sqlQuery(cnxn_vel, "TRANSFORM First(tbl_cu.calculatedCu) AS FirstOfcalculatedCu SELECT tbl_cu.jar_id FROM tbl_cu WHERE (((tbl_cu.jar_id)>0 And (tbl_cu.jar_id)<37)) GROUP BY tbl_cu.jar_id PIVOT tbl_cu.Date;", stringsAsFactors = FALSE)

2.5 Veliger survival

tbl_jarSurvival <- sqlQuery(cnxn_vel, "SELECT qry_veliger_jar.jar_id, qry_veliger_jar.[SumOf# alive], qry_veliger_jar.[SumOf# dead], Round([total],2) AS percentAlive, Round([7/21/2022],2) AS CuStart, Round([7/22/2022],2) AS CuEnd FROM qry_veliger_jar INNER JOIN qry_cu_jar ON qry_veliger_jar.jar_id = qry_cu_jar.jar_id GROUP BY qry_veliger_jar.jar_id, qry_veliger_jar.[SumOf# alive], qry_veliger_jar.[SumOf# dead], Round([total],2), Round([7/21/2022],2), Round([7/22/2022],2);", stringsAsFactors = FALSE)
# Combine records (i.e., for pH, temp, DO, and specCond) for each jar by finding the average per jar
(tbl_jarWaterChem_means = tbl_jarWaterChem %>% 
  group_by(jar_id) %>% #Make sub groups for each unique jar_id
  summarize(pH = mean(pH), #Collapse the values from each subgroup
            Temp = mean(Temp),
            DO = mean(DO),
            specCond = mean(specCond),
            cuGroup = first(cuGroup)))
## # A tibble: 36 × 6
##    jar_id    pH  Temp    DO specCond cuGroup
##     <dbl> <dbl> <dbl> <dbl>    <dbl> <chr>  
##  1      1  8.6   25.6  7.44     472. C3     
##  2      2  8.60  25.6  7.50     456. C4     
##  3      3  8.62  25.7  7.54     452. C5     
##  4      4  8.59  26.0  7.35     454  Control
##  5      5  8.6   26.2  7.54     448. C5     
##  6      6  8.60  26.0  7.48     446. Control
##  7      7  8.62  26.0  7.52     448  Control
##  8      8  8.62  26.1  7.51     452. C4     
##  9      9  8.62  26.2  7.52     450. C4     
## 10     10  8.57  26.2  7.44     452. C1     
## # … with 26 more rows
(tbl_jarData = left_join(tbl_jarSurvival, tbl_jarWaterChem_means, by = "jar_id")) #Join data together, with rows being bound by matching jar_id values
##    jar_id SumOf# alive SumOf# dead percentAlive CuStart  CuEnd    pH  Temp
## 1       1           30          78        27.78   90.94  83.47 8.600 25.55
## 2       2           39          84        31.71  124.10 102.50 8.605 25.65
## 3       3           20          73        21.51  157.33 131.84 8.625 25.70
## 4       4           49         130        27.37    2.50  67.06 8.590 26.05
## 5       5           20          83        19.42  156.31 129.08 8.600 26.20
## 6       6            6          64         8.57    2.50   7.60 8.605 25.95
## 7       7           48         191        20.08    2.50   2.50 8.620 25.95
## 8       8           13          33        28.26   98.67  87.97 8.620 26.10
## 9       9           23          99        18.85   99.64  86.70 8.625 26.25
## 10     10            8          54        12.90   16.15  16.98 8.575 26.20
## 11     11           63         265        19.21  173.24 150.04 8.625 26.10
## 12     12            6          77         7.23   14.64  18.46 8.560 26.60
## 13     13           19         121        13.57   43.68  48.57 8.590 26.40
## 14     14           51         128        28.49    2.50   2.50 8.595 26.20
## 15     15           16         138        10.39  104.49  92.83 8.635 26.00
## 16     16           26         127        16.99  125.79 114.61 8.600 26.55
## 17     17           16         101        13.68    2.50   7.60 8.585 26.90
## 18     18            2          45         4.26  146.27 137.66 8.620 26.40
## 19     19            0          32         0.00    2.50   7.60 8.610 26.55
## 20     20            8          66        10.81   93.59  87.92 8.535 27.00
## 21     21            3          42         6.67   39.15  37.12 8.560 26.70
## 22     22           16         122        11.59   41.05  67.75 8.610 26.70
## 23     23           35         120        22.58    9.11  22.67 8.510 26.45
## 24     24           37         193        16.09   40.55  62.28 8.585 27.00
## 25     25           32         133        19.39   41.45  54.63 8.595 27.30
## 26     26           20          94        17.54  114.38 138.45 8.595 27.05
## 27     27            7          91         7.14   91.41 113.00 8.595 27.10
## 28     28           13          74        14.94  153.44 136.68 8.550 27.30
## 29     29            8          74         9.76  190.60 162.92 8.565 27.25
## 30     30            5          41        10.87  190.68 163.14 8.625 27.05
## 31     31           28         104        21.21   51.06  51.16 8.615 27.05
## 32     32            1          45         2.17   52.73  49.05 8.600 27.35
## 33     33            2          57         3.39   86.55  75.52 8.565 27.65
## 34     34           17          67        20.24   21.64  17.64 8.645 27.30
## 35     35            4          44         8.33   51.91  47.09 8.615 27.35
## 36     36            1          67         1.47   18.43  19.96 8.620 27.60
##       DO specCond cuGroup
## 1  7.440    471.5      C3
## 2  7.495    456.5      C4
## 3  7.535    451.5      C5
## 4  7.350    454.0 Control
## 5  7.540    448.5      C5
## 6  7.480    445.5 Control
## 7  7.520    448.0 Control
## 8  7.510    452.5      C4
## 9  7.515    449.5      C4
## 10 7.435    451.5      C1
## 11 7.480    450.5      C6
## 12 7.410    450.5      C1
## 13 7.565    448.5      C2
## 14 7.560    459.0 Control
## 15 7.540    449.0      C4
## 16 7.575    450.0      C5
## 17 7.495    448.0 Control
## 18 7.465    451.0      C6
## 19 7.480    449.0 Control
## 20 7.330    451.5      C4
## 21 7.520    452.0      C2
## 22 7.425    450.5      C3
## 23 7.385    453.0      C1
## 24 7.440    450.0      C3
## 25 7.410    448.5      C3
## 26 7.450    448.0      C6
## 27 7.485    448.0      C5
## 28 7.335    462.0      C5
## 29 7.405    465.0      C6
## 30 7.405    452.5      C6
## 31 7.445    453.5      C2
## 32 7.435    455.0      C2
## 33 7.405    458.5      C3
## 34 7.420    456.0      C1
## 35 7.405    453.0      C2
## 36 7.375    453.5      C1
#Make a new column (TotalObs) using existing columns (math/funcs)
tbl_jarData = tbl_jarData %>% 
  mutate(TotalObs = `SumOf# alive` + `SumOf# dead`)
for(i in 1:nrow(tbl_jarData)) { #For each row (i)
  
  numAlive =  tbl_jarData$`SumOf# alive`[i] #How many live veligers we need
  tmp1 = tbl_jarData[i,-c(2,3,4)] #Clip out this row's key info
  tmp1$survive = 1 #Make a column that marks these individuals as alive
  tmp1 = tmp1 %>%  #Repeat this row a bunch of times, once for each live veliger. For ref: https://stackoverflow.com/questions/11121385/repeat-rows-of-a-data-frame
    slice(rep(1:n(), each = numAlive))
  
  #Same thing but for the dead veligers
  numDead =  tbl_jarData$`SumOf# dead`[i]
  tmp2 = tbl_jarData[i,-c(2,3,4)]
  tmp2$survive = 0
  tmp2 = tmp2 %>% 
    slice(rep(1:n(), each = numDead))

  #Combine the two sets of repeated rows
  tmp3 = bind_rows(tmp1, tmp2)
  
  #Either create a long data sheet or else append to it the rows we've made
  if(i == 1) {
    tbl_jarData_long = tmp3
  } else {
  tbl_jarData_long = bind_rows(tbl_jarData_long, tmp3)
  }
}
#Check to be sure we succeeded
sum(tbl_jarData$TotalObs)
## [1] 4049

2.6 GLM

mod7 = glm(survive ~ pH , family = "binomial", tbl_jarData_long)
summary(mod7)
## 
## Call:
## glm(formula = survive ~ pH, family = "binomial", data = tbl_jarData_long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6257  -0.6185  -0.6113  -0.6015   1.9192  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -10.344     12.808  -0.808    0.419
## pH             1.019      1.490   0.684    0.494
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3703.4  on 4048  degrees of freedom
## Residual deviance: 3702.9  on 4047  degrees of freedom
## AIC: 3706.9
## 
## Number of Fisher Scoring iterations: 3
mod8 = glm(survive ~ Temp , family = "binomial", tbl_jarData_long)
summary(mod8)
## 
## Call:
## glm(formula = survive ~ Temp, family = "binomial", data = tbl_jarData_long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7593  -0.6689  -0.5801  -0.5014   2.1442  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) 12.24747    2.08204   5.882 4.04e-09 ***
## Temp        -0.52226    0.07878  -6.630 3.37e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3703.4  on 4048  degrees of freedom
## Residual deviance: 3658.0  on 4047  degrees of freedom
## AIC: 3662
## 
## Number of Fisher Scoring iterations: 4
mod9 = glm(survive ~ DO , family = "binomial", tbl_jarData_long)
summary(mod9)
## 
## Call:
## glm(formula = survive ~ DO, family = "binomial", data = tbl_jarData_long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6425  -0.6243  -0.6051  -0.5877   1.9383  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -8.8855     4.7651  -1.865   0.0622 .
## DO            0.9786     0.6381   1.534   0.1251  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3703.4  on 4048  degrees of freedom
## Residual deviance: 3701.0  on 4047  degrees of freedom
## AIC: 3705
## 
## Number of Fisher Scoring iterations: 4
mod10 = glm(survive ~ TotalObs , family = "binomial", tbl_jarData_long)
summary(mod10)
## 
## Call:
## glm(formula = survive ~ TotalObs, family = "binomial", data = tbl_jarData_long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7433  -0.6211  -0.5883  -0.5507   1.9955  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.9552790  0.0932935 -20.958  < 2e-16 ***
## TotalObs     0.0024699  0.0005315   4.647 3.36e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3703.4  on 4048  degrees of freedom
## Residual deviance: 3682.3  on 4047  degrees of freedom
## AIC: 3686.3
## 
## Number of Fisher Scoring iterations: 4
mod11 = glm(survive ~ specCond , family = "binomial", tbl_jarData_long)
summary(mod11)
## 
## Call:
## glm(formula = survive ~ specCond, family = "binomial", data = tbl_jarData_long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7785  -0.6166  -0.5931  -0.5778   1.9661  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -14.422009   3.461194  -4.167 3.09e-05 ***
## specCond      0.028385   0.007645   3.713 0.000205 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3703.4  on 4048  degrees of freedom
## Residual deviance: 3690.3  on 4047  degrees of freedom
## AIC: 3694.3
## 
## Number of Fisher Scoring iterations: 4
mod12 = glm(survive ~ TotalObs + specCond + Temp, family = "binomial", tbl_jarData_long)
summary(mod12)
## 
## Call:
## glm(formula = survive ~ TotalObs + specCond + Temp, family = "binomial", 
##     data = tbl_jarData_long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8962  -0.6357  -0.5690  -0.4975   2.1327  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -5.7656645  4.6807834  -1.232 0.218034    
## TotalObs     0.0021033  0.0005891   3.570 0.000357 ***
## specCond     0.0316047  0.0080221   3.940 8.16e-05 ***
## Temp        -0.3940518  0.0834877  -4.720 2.36e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3703.4  on 4048  degrees of freedom
## Residual deviance: 3636.2  on 4045  degrees of freedom
## AIC: 3644.2
## 
## Number of Fisher Scoring iterations: 4
mod13 = glm(survive ~ TotalObs + Temp, family="binomial", tbl_jarData_long)
summary(mod13)
## 
## Call:
## glm(formula = survive ~ TotalObs + Temp, family = "binomial", 
##     data = tbl_jarData_long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7419  -0.6598  -0.5772  -0.4908   2.1713  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) 10.3973904  2.2213920   4.681 2.86e-06 ***
## TotalObs     0.0014647  0.0005599   2.616   0.0089 ** 
## Temp        -0.4608202  0.0830233  -5.550 2.85e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3703.4  on 4048  degrees of freedom
## Residual deviance: 3651.2  on 4046  degrees of freedom
## AIC: 3657.2
## 
## Number of Fisher Scoring iterations: 4
# Is specCond really important to include?
mod14 = glm(survive ~ TotalObs + Temp + CuStart, family = "binomial", tbl_jarData_long) # Try it without
mod15 = glm(survive ~ TotalObs + Temp + specCond + CuStart, family = "binomial", tbl_jarData_long) # Now try it with

(AIC(mod14)) 
## [1] 3656.925
(AIC(mod15)) # specCond should be included
## [1] 3642.187
# Assumptions:
# 1) Outcome is binary (YES - survived/died)
# 2) Linear relationship between logit(outcome) and each predictor variable
# 3) No extreme values or outliers in continuous predictors:
mod15.data <- augment(mod15) %>% 
  mutate(index = 1:n()) 
mod15.data %>% top_n(3, .cooksd)
## # A tibble: 8 × 12
##   survive TotalObs  Temp specCond CuStart .fitted .resid .std.r…¹    .hat .sigma
##     <dbl>    <dbl> <dbl>    <dbl>   <dbl>   <dbl>  <dbl>    <dbl>   <dbl>  <dbl>
## 1       1       82  27.2      465    191.   -1.79   1.97     1.97 0.00280  0.947
## 2       1       82  27.2      465    191.   -1.79   1.97     1.97 0.00280  0.947
## 3       1       82  27.2      465    191.   -1.79   1.97     1.97 0.00280  0.947
## 4       1       82  27.2      465    191.   -1.79   1.97     1.97 0.00280  0.947
## 5       1       82  27.2      465    191.   -1.79   1.97     1.97 0.00280  0.947
## 6       1       82  27.2      465    191.   -1.79   1.97     1.97 0.00280  0.947
## 7       1       82  27.2      465    191.   -1.79   1.97     1.97 0.00280  0.947
## 8       1       82  27.2      465    191.   -1.79   1.97     1.97 0.00280  0.947
## # … with 2 more variables: .cooksd <dbl>, index <int>, and abbreviated variable
## #   name ¹​.std.resid
ggplot(mod15.data, aes(index, .std.resid)) + 
  geom_point(aes(color = survive), alpha = .5) +
  theme_bw()

mod15.data %>% 
  filter(abs(.std.resid) > 3) # are these outliers worthy of removing? Decide to keep - these are REAL data from real animals!
## # A tibble: 0 × 12
## # … with 12 variables: survive <dbl>, TotalObs <dbl>, Temp <dbl>,
## #   specCond <dbl>, CuStart <dbl>, .fitted <dbl>, .resid <dbl>,
## #   .std.resid <dbl>, .hat <dbl>, .sigma <dbl>, .cooksd <dbl>, index <int>
# 4) No multicollinearity:
car::vif(mod15)
## TotalObs     Temp specCond  CuStart 
## 1.241470 1.159088 1.145523 1.044316
# 5) Residual normality (on logit scale!)
hist(residuals(mod15)) # It's not normal, but it meets the central limit theorem

# 6) Check leveraging points
boot::glm.diag.plots(mod15) # does not appear that any points are potentially leveraging points

cooks.distance(mod15)
##            1            2            3            4            5            6 
## 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 
##            7            8            9           10           11           12 
## 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 
##           13           14           15           16           17           18 
## 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 
##           19           20           21           22           23           24 
## 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 
##           25           26           27           28           29           30 
## 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 2.233834e-03 
##           31           32           33           34           35           36 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           37           38           39           40           41           42 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           43           44           45           46           47           48 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           49           50           51           52           53           54 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           55           56           57           58           59           60 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           61           62           63           64           65           66 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           67           68           69           70           71           72 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           73           74           75           76           77           78 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           79           80           81           82           83           84 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           85           86           87           88           89           90 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           91           92           93           94           95           96 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##           97           98           99          100          101          102 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##          103          104          105          106          107          108 
## 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 5.573463e-04 
##          109          110          111          112          113          114 
## 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 
##          115          116          117          118          119          120 
## 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 
##          121          122          123          124          125          126 
## 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 
##          127          128          129          130          131          132 
## 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 
##          133          134          135          136          137          138 
## 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 
##          139          140          141          142          143          144 
## 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 9.938707e-04 
##          145          146          147          148          149          150 
## 9.938707e-04 9.938707e-04 9.938707e-04 8.119792e-05 8.119792e-05 8.119792e-05 
##          151          152          153          154          155          156 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          157          158          159          160          161          162 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          163          164          165          166          167          168 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          169          170          171          172          173          174 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          175          176          177          178          179          180 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          181          182          183          184          185          186 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          187          188          189          190          191          192 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          193          194          195          196          197          198 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          199          200          201          202          203          204 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          205          206          207          208          209          210 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          211          212          213          214          215          216 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          217          218          219          220          221          222 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          223          224          225          226          227          228 
## 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 8.119792e-05 
##          229          230          231          232          233          234 
## 8.119792e-05 8.119792e-05 8.119792e-05 1.842754e-03 1.842754e-03 1.842754e-03 
##          235          236          237          238          239          240 
## 1.842754e-03 1.842754e-03 1.842754e-03 1.842754e-03 1.842754e-03 1.842754e-03 
##          241          242          243          244          245          246 
## 1.842754e-03 1.842754e-03 1.842754e-03 1.842754e-03 1.842754e-03 1.842754e-03 
##          247          248          249          250          251          252 
## 1.842754e-03 1.842754e-03 1.842754e-03 1.842754e-03 1.842754e-03 8.200571e-05 
##          253          254          255          256          257          258 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          259          260          261          262          263          264 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          265          266          267          268          269          270 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          271          272          273          274          275          276 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          277          278          279          280          281          282 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          283          284          285          286          287          288 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          289          290          291          292          293          294 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          295          296          297          298          299          300 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          301          302          303          304          305          306 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          307          308          309          310          311          312 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          313          314          315          316          317          318 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          319          320          321          322          323          324 
## 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 8.200571e-05 
##          325          326          327          328          329          330 
## 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 
##          331          332          333          334          335          336 
## 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 
##          337          338          339          340          341          342 
## 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 
##          343          344          345          346          347          348 
## 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 
##          349          350          351          352          353          354 
## 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 
##          355          356          357          358          359          360 
## 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 
##          361          362          363          364          365          366 
## 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 
##          367          368          369          370          371          372 
## 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 6.391811e-04 
##          373          374          375          376          377          378 
## 6.391811e-04 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          379          380          381          382          383          384 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          385          386          387          388          389          390 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          391          392          393          394          395          396 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          397          398          399          400          401          402 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          403          404          405          406          407          408 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          409          410          411          412          413          414 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          415          416          417          418          419          420 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          421          422          423          424          425          426 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          427          428          429          430          431          432 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          433          434          435          436          437          438 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          439          440          441          442          443          444 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          445          446          447          448          449          450 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          451          452          453          454          455          456 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          457          458          459          460          461          462 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          463          464          465          466          467          468 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          469          470          471          472          473          474 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          475          476          477          478          479          480 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          481          482          483          484          485          486 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          487          488          489          490          491          492 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          493          494          495          496          497          498 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 
##          499          500          501          502          503          504 
## 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 5.801307e-05 1.536271e-03 
##          505          506          507          508          509          510 
## 1.536271e-03 1.536271e-03 1.536271e-03 1.536271e-03 1.536271e-03 1.536271e-03 
##          511          512          513          514          515          516 
## 1.536271e-03 1.536271e-03 1.536271e-03 1.536271e-03 1.536271e-03 1.536271e-03 
##          517          518          519          520          521          522 
## 1.536271e-03 1.536271e-03 1.536271e-03 1.536271e-03 1.536271e-03 1.536271e-03 
##          523          524          525          526          527          528 
## 1.536271e-03 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          529          530          531          532          533          534 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          535          536          537          538          539          540 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          541          542          543          544          545          546 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          547          548          549          550          551          552 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          553          554          555          556          557          558 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          559          560          561          562          563          564 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          565          566          567          568          569          570 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          571          572          573          574          575          576 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          577          578          579          580          581          582 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          583          584          585          586          587          588 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          589          590          591          592          593          594 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          595          596          597          598          599          600 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          601          602          603          604          605          606 
## 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 3.936931e-05 
##          607          608          609          610          611          612 
## 2.123146e-03 2.123146e-03 2.123146e-03 2.123146e-03 2.123146e-03 2.123146e-03 
##          613          614          615          616          617          618 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          619          620          621          622          623          624 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          625          626          627          628          629          630 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          631          632          633          634          635          636 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          637          638          639          640          641          642 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          643          644          645          646          647          648 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          649          650          651          652          653          654 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          655          656          657          658          659          660 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          661          662          663          664          665          666 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          667          668          669          670          671          672 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 
##          673          674          675          676          677          678 
## 7.111357e-05 7.111357e-05 7.111357e-05 7.111357e-05 9.605419e-04 9.605419e-04 
##          679          680          681          682          683          684 
## 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 
##          685          686          687          688          689          690 
## 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 
##          691          692          693          694          695          696 
## 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 
##          697          698          699          700          701          702 
## 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 
##          703          704          705          706          707          708 
## 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 
##          709          710          711          712          713          714 
## 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 
##          715          716          717          718          719          720 
## 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 
##          721          722          723          724          725          726 
## 9.605419e-04 9.605419e-04 9.605419e-04 9.605419e-04 8.291121e-05 8.291121e-05 
##          727          728          729          730          731          732 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          733          734          735          736          737          738 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          739          740          741          742          743          744 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          745          746          747          748          749          750 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          751          752          753          754          755          756 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          757          758          759          760          761          762 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          763          764          765          766          767          768 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          769          770          771          772          773          774 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          775          776          777          778          779          780 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          781          782          783          784          785          786 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          787          788          789          790          791          792 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          793          794          795          796          797          798 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          799          800          801          802          803          804 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          805          806          807          808          809          810 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          811          812          813          814          815          816 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          817          818          819          820          821          822 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          823          824          825          826          827          828 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          829          830          831          832          833          834 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          835          836          837          838          839          840 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          841          842          843          844          845          846 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          847          848          849          850          851          852 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          853          854          855          856          857          858 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          859          860          861          862          863          864 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          865          866          867          868          869          870 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          871          872          873          874          875          876 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          877          878          879          880          881          882 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          883          884          885          886          887          888 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          889          890          891          892          893          894 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          895          896          897          898          899          900 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          901          902          903          904          905          906 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          907          908          909          910          911          912 
## 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 8.291121e-05 
##          913          914          915          916          917          918 
## 8.291121e-05 8.291121e-05 8.291121e-05 1.314413e-03 1.314413e-03 1.314413e-03 
##          919          920          921          922          923          924 
## 1.314413e-03 1.314413e-03 1.314413e-03 1.314413e-03 1.314413e-03 1.314413e-03 
##          925          926          927          928          929          930 
## 1.314413e-03 1.314413e-03 1.314413e-03 1.314413e-03 4.310404e-05 4.310404e-05 
##          931          932          933          934          935          936 
## 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 
##          937          938          939          940          941          942 
## 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 
##          943          944          945          946          947          948 
## 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 
##          949          950          951          952          953          954 
## 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 
##          955          956          957          958          959          960 
## 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 4.310404e-05 
##          961          962          963          964          965          966 
## 4.310404e-05 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 
##          967          968          969          970          971          972 
## 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 
##          973          974          975          976          977          978 
## 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 
##          979          980          981          982          983          984 
## 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 6.407233e-04 
##          985          986          987          988          989          990 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##          991          992          993          994          995          996 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##          997          998          999         1000         1001         1002 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1003         1004         1005         1006         1007         1008 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1009         1010         1011         1012         1013         1014 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1015         1016         1017         1018         1019         1020 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1021         1022         1023         1024         1025         1026 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1027         1028         1029         1030         1031         1032 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1033         1034         1035         1036         1037         1038 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1039         1040         1041         1042         1043         1044 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1045         1046         1047         1048         1049         1050 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1051         1052         1053         1054         1055         1056 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1057         1058         1059         1060         1061         1062 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1063         1064         1065         1066         1067         1068 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1069         1070         1071         1072         1073         1074 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1075         1076         1077         1078         1079         1080 
## 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 2.153789e-05 
##         1081         1082         1083         1084         1085         1086 
## 2.153789e-05 2.153789e-05 2.153789e-05 1.039653e-03 1.039653e-03 1.039653e-03 
##         1087         1088         1089         1090         1091         1092 
## 1.039653e-03 1.039653e-03 1.039653e-03 1.039653e-03 1.039653e-03 3.975711e-05 
##         1093         1094         1095         1096         1097         1098 
## 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 
##         1099         1100         1101         1102         1103         1104 
## 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 
##         1105         1106         1107         1108         1109         1110 
## 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 
##         1111         1112         1113         1114         1115         1116 
## 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 
##         1117         1118         1119         1120         1121         1122 
## 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 
##         1123         1124         1125         1126         1127         1128 
## 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 
##         1129         1130         1131         1132         1133         1134 
## 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 
##         1135         1136         1137         1138         1139         1140 
## 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 
##         1141         1142         1143         1144         1145         1146 
## 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 3.975711e-05 1.621098e-03 
##         1147         1148         1149         1150         1151         1152 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1153         1154         1155         1156         1157         1158 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1159         1160         1161         1162         1163         1164 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1165         1166         1167         1168         1169         1170 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1171         1172         1173         1174         1175         1176 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1177         1178         1179         1180         1181         1182 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1183         1184         1185         1186         1187         1188 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1189         1190         1191         1192         1193         1194 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1195         1196         1197         1198         1199         1200 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1201         1202         1203         1204         1205         1206 
## 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 1.621098e-03 
##         1207         1208         1209         1210         1211         1212 
## 1.621098e-03 1.621098e-03 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1213         1214         1215         1216         1217         1218 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1219         1220         1221         1222         1223         1224 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1225         1226         1227         1228         1229         1230 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1231         1232         1233         1234         1235         1236 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1237         1238         1239         1240         1241         1242 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1243         1244         1245         1246         1247         1248 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1249         1250         1251         1252         1253         1254 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1255         1256         1257         1258         1259         1260 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1261         1262         1263         1264         1265         1266 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1267         1268         1269         1270         1271         1272 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1273         1274         1275         1276         1277         1278 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1279         1280         1281         1282         1283         1284 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1285         1286         1287         1288         1289         1290 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1291         1292         1293         1294         1295         1296 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1297         1298         1299         1300         1301         1302 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1303         1304         1305         1306         1307         1308 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1309         1310         1311         1312         1313         1314 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1315         1316         1317         1318         1319         1320 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1321         1322         1323         1324         1325         1326 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1327         1328         1329         1330         1331         1332 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1333         1334         1335         1336         1337         1338 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1339         1340         1341         1342         1343         1344 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1345         1346         1347         1348         1349         1350 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1351         1352         1353         1354         1355         1356 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1357         1358         1359         1360         1361         1362 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1363         1364         1365         1366         1367         1368 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1369         1370         1371         1372         1373         1374 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1375         1376         1377         1378         1379         1380 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1381         1382         1383         1384         1385         1386 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1387         1388         1389         1390         1391         1392 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1393         1394         1395         1396         1397         1398 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1399         1400         1401         1402         1403         1404 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1405         1406         1407         1408         1409         1410 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1411         1412         1413         1414         1415         1416 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1417         1418         1419         1420         1421         1422 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1423         1424         1425         1426         1427         1428 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1429         1430         1431         1432         1433         1434 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1435         1436         1437         1438         1439         1440 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1441         1442         1443         1444         1445         1446 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1447         1448         1449         1450         1451         1452 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1453         1454         1455         1456         1457         1458 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1459         1460         1461         1462         1463         1464 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1465         1466         1467         1468         1469         1470 
## 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 1.384003e-04 
##         1471         1472         1473         1474         1475         1476 
## 1.384003e-04 1.384003e-04 1.384003e-04 7.355081e-04 7.355081e-04 7.355081e-04 
##         1477         1478         1479         1480         1481         1482 
## 7.355081e-04 7.355081e-04 7.355081e-04 2.114923e-05 2.114923e-05 2.114923e-05 
##         1483         1484         1485         1486         1487         1488 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1489         1490         1491         1492         1493         1494 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1495         1496         1497         1498         1499         1500 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1501         1502         1503         1504         1505         1506 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1507         1508         1509         1510         1511         1512 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1513         1514         1515         1516         1517         1518 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1519         1520         1521         1522         1523         1524 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1525         1526         1527         1528         1529         1530 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1531         1532         1533         1534         1535         1536 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1537         1538         1539         1540         1541         1542 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1543         1544         1545         1546         1547         1548 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1549         1550         1551         1552         1553         1554 
## 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 2.114923e-05 
##         1555         1556         1557         1558         1559         1560 
## 2.114923e-05 2.114923e-05 4.870886e-04 4.870886e-04 4.870886e-04 4.870886e-04 
##         1561         1562         1563         1564         1565         1566 
## 4.870886e-04 4.870886e-04 4.870886e-04 4.870886e-04 4.870886e-04 4.870886e-04 
##         1567         1568         1569         1570         1571         1572 
## 4.870886e-04 4.870886e-04 4.870886e-04 4.870886e-04 4.870886e-04 4.870886e-04 
##         1573         1574         1575         1576         1577         1578 
## 4.870886e-04 4.870886e-04 4.870886e-04 1.721210e-05 1.721210e-05 1.721210e-05 
##         1579         1580         1581         1582         1583         1584 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1585         1586         1587         1588         1589         1590 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1591         1592         1593         1594         1595         1596 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1597         1598         1599         1600         1601         1602 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1603         1604         1605         1606         1607         1608 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1609         1610         1611         1612         1613         1614 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1615         1616         1617         1618         1619         1620 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1621         1622         1623         1624         1625         1626 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1627         1628         1629         1630         1631         1632 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1633         1634         1635         1636         1637         1638 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1639         1640         1641         1642         1643         1644 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1645         1646         1647         1648         1649         1650 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1651         1652         1653         1654         1655         1656 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1657         1658         1659         1660         1661         1662 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1663         1664         1665         1666         1667         1668 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1669         1670         1671         1672         1673         1674 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1675         1676         1677         1678         1679         1680 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1681         1682         1683         1684         1685         1686 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1687         1688         1689         1690         1691         1692 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 
##         1693         1694         1695         1696         1697         1698 
## 1.721210e-05 1.721210e-05 1.721210e-05 1.721210e-05 8.969465e-04 8.969465e-04 
##         1699         1700         1701         1702         1703         1704 
## 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 
##         1705         1706         1707         1708         1709         1710 
## 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 
##         1711         1712         1713         1714         1715         1716 
## 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 
##         1717         1718         1719         1720         1721         1722 
## 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 
##         1723         1724         1725         1726         1727         1728 
## 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 
##         1729         1730         1731         1732         1733         1734 
## 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 
##         1735         1736         1737         1738         1739         1740 
## 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 
##         1741         1742         1743         1744         1745         1746 
## 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 8.969465e-04 
##         1747         1748         1749         1750         1751         1752 
## 8.969465e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1753         1754         1755         1756         1757         1758 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1759         1760         1761         1762         1763         1764 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1765         1766         1767         1768         1769         1770 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1771         1772         1773         1774         1775         1776 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1777         1778         1779         1780         1781         1782 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1783         1784         1785         1786         1787         1788 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1789         1790         1791         1792         1793         1794 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1795         1796         1797         1798         1799         1800 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1801         1802         1803         1804         1805         1806 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1807         1808         1809         1810         1811         1812 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1813         1814         1815         1816         1817         1818 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1819         1820         1821         1822         1823         1824 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1825         1826         1827         1828         1829         1830 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1831         1832         1833         1834         1835         1836 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1837         1838         1839         1840         1841         1842 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1843         1844         1845         1846         1847         1848 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1849         1850         1851         1852         1853         1854 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1855         1856         1857         1858         1859         1860 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1861         1862         1863         1864         1865         1866 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1867         1868         1869         1870         1871         1872 
## 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 1.013239e-04 
##         1873         1874         1875         1876         1877         1878 
## 1.013239e-04 1.013239e-04 1.013239e-04 7.074313e-04 7.074313e-04 7.074313e-04 
##         1879         1880         1881         1882         1883         1884 
## 7.074313e-04 7.074313e-04 7.074313e-04 7.074313e-04 7.074313e-04 7.074313e-04 
##         1885         1886         1887         1888         1889         1890 
## 7.074313e-04 7.074313e-04 7.074313e-04 7.074313e-04 7.074313e-04 7.074313e-04 
##         1891         1892         1893         1894         1895         1896 
## 7.074313e-04 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1897         1898         1899         1900         1901         1902 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1903         1904         1905         1906         1907         1908 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1909         1910         1911         1912         1913         1914 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1915         1916         1917         1918         1919         1920 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1921         1922         1923         1924         1925         1926 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1927         1928         1929         1930         1931         1932 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1933         1934         1935         1936         1937         1938 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1939         1940         1941         1942         1943         1944 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1945         1946         1947         1948         1949         1950 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1951         1952         1953         1954         1955         1956 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1957         1958         1959         1960         1961         1962 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1963         1964         1965         1966         1967         1968 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1969         1970         1971         1972         1973         1974 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1975         1976         1977         1978         1979         1980 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1981         1982         1983         1984         1985         1986 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1987         1988         1989         1990         1991         1992 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1993         1994         1995         1996         1997         1998 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         1999         2000         2001         2002         2003         2004 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         2005         2006         2007         2008         2009         2010 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         2011         2012         2013         2014         2015         2016 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         2017         2018         2019         2020         2021         2022 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         2023         2024         2025         2026         2027         2028 
## 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 3.206654e-05 
##         2029         2030         2031         2032         2033         2034 
## 3.206654e-05 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 
##         2035         2036         2037         2038         2039         2040 
## 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 
##         2041         2042         2043         2044         2045         2046 
## 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 
##         2047         2048         2049         2050         2051         2052 
## 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 5.737297e-04 
##         2053         2054         2055         2056         2057         2058 
## 5.737297e-04 5.737297e-04 5.737297e-04 1.686300e-05 1.686300e-05 1.686300e-05 
##         2059         2060         2061         2062         2063         2064 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2065         2066         2067         2068         2069         2070 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2071         2072         2073         2074         2075         2076 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2077         2078         2079         2080         2081         2082 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2083         2084         2085         2086         2087         2088 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2089         2090         2091         2092         2093         2094 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2095         2096         2097         2098         2099         2100 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2101         2102         2103         2104         2105         2106 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2107         2108         2109         2110         2111         2112 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2113         2114         2115         2116         2117         2118 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2119         2120         2121         2122         2123         2124 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2125         2126         2127         2128         2129         2130 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2131         2132         2133         2134         2135         2136 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2137         2138         2139         2140         2141         2142 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2143         2144         2145         2146         2147         2148 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2149         2150         2151         2152         2153         2154 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2155         2156         2157         2158         2159         2160 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2161         2162         2163         2164         2165         2166 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2167         2168         2169         2170         2171         2172 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2173         2174         2175         2176         2177         2178 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 
##         2179         2180         2181         2182         2183         2184 
## 1.686300e-05 1.686300e-05 1.686300e-05 1.686300e-05 8.981920e-04 8.981920e-04 
##         2185         2186         2187         2188         2189         2190 
## 8.981920e-04 8.981920e-04 8.981920e-04 8.981920e-04 8.981920e-04 8.981920e-04 
##         2191         2192         2193         2194         2195         2196 
## 8.981920e-04 8.981920e-04 8.981920e-04 8.981920e-04 8.981920e-04 8.981920e-04 
##         2197         2198         2199         2200         2201         2202 
## 8.981920e-04 8.981920e-04 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2203         2204         2205         2206         2207         2208 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2209         2210         2211         2212         2213         2214 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2215         2216         2217         2218         2219         2220 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2221         2222         2223         2224         2225         2226 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2227         2228         2229         2230         2231         2232 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2233         2234         2235         2236         2237         2238 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2239         2240         2241         2242         2243         2244 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2245         2246         2247         2248         2249         2250 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2251         2252         2253         2254         2255         2256 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2257         2258         2259         2260         2261         2262 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2263         2264         2265         2266         2267         2268 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2269         2270         2271         2272         2273         2274 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2275         2276         2277         2278         2279         2280 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2281         2282         2283         2284         2285         2286 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2287         2288         2289         2290         2291         2292 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2293         2294         2295         2296         2297         2298 
## 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 2.077009e-05 
##         2299         2300         2301         2302         2303         2304 
## 2.077009e-05 1.697308e-03 1.697308e-03 3.490541e-05 3.490541e-05 3.490541e-05 
##         2305         2306         2307         2308         2309         2310 
## 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 
##         2311         2312         2313         2314         2315         2316 
## 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 
##         2317         2318         2319         2320         2321         2322 
## 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 
##         2323         2324         2325         2326         2327         2328 
## 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 
##         2329         2330         2331         2332         2333         2334 
## 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 
##         2335         2336         2337         2338         2339         2340 
## 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 
##         2341         2342         2343         2344         2345         2346 
## 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 3.490541e-05 
##         2347         2348         2349         2350         2351         2352 
## 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 
##         2353         2354         2355         2356         2357         2358 
## 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 
##         2359         2360         2361         2362         2363         2364 
## 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 
##         2365         2366         2367         2368         2369         2370 
## 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 
##         2371         2372         2373         2374         2375         2376 
## 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 3.356422e-05 
##         2377         2378         2379         2380         2381         2382 
## 3.356422e-05 3.356422e-05 8.964212e-04 8.964212e-04 8.964212e-04 8.964212e-04 
##         2383         2384         2385         2386         2387         2388 
## 8.964212e-04 8.964212e-04 8.964212e-04 8.964212e-04 1.548715e-05 1.548715e-05 
##         2389         2390         2391         2392         2393         2394 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2395         2396         2397         2398         2399         2400 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2401         2402         2403         2404         2405         2406 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2407         2408         2409         2410         2411         2412 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2413         2414         2415         2416         2417         2418 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2419         2420         2421         2422         2423         2424 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2425         2426         2427         2428         2429         2430 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2431         2432         2433         2434         2435         2436 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2437         2438         2439         2440         2441         2442 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2443         2444         2445         2446         2447         2448 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 
##         2449         2450         2451         2452         2453         2454 
## 1.548715e-05 1.548715e-05 1.548715e-05 1.548715e-05 9.110192e-04 9.110192e-04 
##         2455         2456         2457         2458         2459         2460 
## 9.110192e-04 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 
##         2461         2462         2463         2464         2465         2466 
## 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 
##         2467         2468         2469         2470         2471         2472 
## 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 
##         2473         2474         2475         2476         2477         2478 
## 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 
##         2479         2480         2481         2482         2483         2484 
## 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 
##         2485         2486         2487         2488         2489         2490 
## 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 
##         2491         2492         2493         2494         2495         2496 
## 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 2.101352e-05 
##         2497         2498         2499         2500         2501         2502 
## 2.101352e-05 3.964510e-04 3.964510e-04 3.964510e-04 3.964510e-04 3.964510e-04 
##         2503         2504         2505         2506         2507         2508 
## 3.964510e-04 3.964510e-04 3.964510e-04 3.964510e-04 3.964510e-04 3.964510e-04 
##         2509         2510         2511         2512         2513         2514 
## 3.964510e-04 3.964510e-04 3.964510e-04 3.964510e-04 3.964510e-04 1.260825e-05 
##         2515         2516         2517         2518         2519         2520 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2521         2522         2523         2524         2525         2526 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2527         2528         2529         2530         2531         2532 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2533         2534         2535         2536         2537         2538 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2539         2540         2541         2542         2543         2544 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2545         2546         2547         2548         2549         2550 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2551         2552         2553         2554         2555         2556 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2557         2558         2559         2560         2561         2562 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2563         2564         2565         2566         2567         2568 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2569         2570         2571         2572         2573         2574 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2575         2576         2577         2578         2579         2580 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2581         2582         2583         2584         2585         2586 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2587         2588         2589         2590         2591         2592 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2593         2594         2595         2596         2597         2598 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2599         2600         2601         2602         2603         2604 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2605         2606         2607         2608         2609         2610 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2611         2612         2613         2614         2615         2616 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2617         2618         2619         2620         2621         2622 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2623         2624         2625         2626         2627         2628 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2629         2630         2631         2632         2633         2634 
## 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 1.260825e-05 
##         2635         2636         2637         2638         2639         2640 
## 1.260825e-05 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 
##         2641         2642         2643         2644         2645         2646 
## 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 
##         2647         2648         2649         2650         2651         2652 
## 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 
##         2653         2654         2655         2656         2657         2658 
## 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 
##         2659         2660         2661         2662         2663         2664 
## 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 
##         2665         2666         2667         2668         2669         2670 
## 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 4.806892e-04 
##         2671         2672         2673         2674         2675         2676 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2677         2678         2679         2680         2681         2682 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2683         2684         2685         2686         2687         2688 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2689         2690         2691         2692         2693         2694 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2695         2696         2697         2698         2699         2700 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2701         2702         2703         2704         2705         2706 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2707         2708         2709         2710         2711         2712 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2713         2714         2715         2716         2717         2718 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2719         2720         2721         2722         2723         2724 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2725         2726         2727         2728         2729         2730 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2731         2732         2733         2734         2735         2736 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2737         2738         2739         2740         2741         2742 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2743         2744         2745         2746         2747         2748 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2749         2750         2751         2752         2753         2754 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2755         2756         2757         2758         2759         2760 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2761         2762         2763         2764         2765         2766 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2767         2768         2769         2770         2771         2772 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2773         2774         2775         2776         2777         2778 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2779         2780         2781         2782         2783         2784 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2785         2786         2787         2788         2789         2790 
## 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 2.608066e-05 
##         2791         2792         2793         2794         2795         2796 
## 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 
##         2797         2798         2799         2800         2801         2802 
## 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 
##         2803         2804         2805         2806         2807         2808 
## 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 
##         2809         2810         2811         2812         2813         2814 
## 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 
##         2815         2816         2817         2818         2819         2820 
## 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 
##         2821         2822         2823         2824         2825         2826 
## 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 1.045916e-03 
##         2827         2828         2829         2830         2831         2832 
## 1.045916e-03 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2833         2834         2835         2836         2837         2838 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2839         2840         2841         2842         2843         2844 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2845         2846         2847         2848         2849         2850 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2851         2852         2853         2854         2855         2856 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2857         2858         2859         2860         2861         2862 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2863         2864         2865         2866         2867         2868 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2869         2870         2871         2872         2873         2874 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2875         2876         2877         2878         2879         2880 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2881         2882         2883         2884         2885         2886 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2887         2888         2889         2890         2891         2892 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2893         2894         2895         2896         2897         2898 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2899         2900         2901         2902         2903         2904 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2905         2906         2907         2908         2909         2910 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2911         2912         2913         2914         2915         2916 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2917         2918         2919         2920         2921         2922 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2923         2924         2925         2926         2927         2928 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2929         2930         2931         2932         2933         2934 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2935         2936         2937         2938         2939         2940 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2941         2942         2943         2944         2945         2946 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2947         2948         2949         2950         2951         2952 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2953         2954         2955         2956         2957         2958 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2959         2960         2961         2962         2963         2964 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2965         2966         2967         2968         2969         2970 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2971         2972         2973         2974         2975         2976 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2977         2978         2979         2980         2981         2982 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2983         2984         2985         2986         2987         2988 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2989         2990         2991         2992         2993         2994 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         2995         2996         2997         2998         2999         3000 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         3001         3002         3003         3004         3005         3006 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         3007         3008         3009         3010         3011         3012 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         3013         3014         3015         3016         3017         3018 
## 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 3.872971e-05 
##         3019         3020         3021         3022         3023         3024 
## 3.872971e-05 3.872971e-05 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 
##         3025         3026         3027         3028         3029         3030 
## 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 
##         3031         3032         3033         3034         3035         3036 
## 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 
##         3037         3038         3039         3040         3041         3042 
## 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 
##         3043         3044         3045         3046         3047         3048 
## 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 
##         3049         3050         3051         3052         3053         3054 
## 1.159374e-03 1.159374e-03 1.159374e-03 1.159374e-03 2.259925e-05 2.259925e-05 
##         3055         3056         3057         3058         3059         3060 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3061         3062         3063         3064         3065         3066 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3067         3068         3069         3070         3071         3072 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3073         3074         3075         3076         3077         3078 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3079         3080         3081         3082         3083         3084 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3085         3086         3087         3088         3089         3090 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3091         3092         3093         3094         3095         3096 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3097         3098         3099         3100         3101         3102 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3103         3104         3105         3106         3107         3108 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3109         3110         3111         3112         3113         3114 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3115         3116         3117         3118         3119         3120 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3121         3122         3123         3124         3125         3126 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3127         3128         3129         3130         3131         3132 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3133         3134         3135         3136         3137         3138 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3139         3140         3141         3142         3143         3144 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3145         3146         3147         3148         3149         3150 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3151         3152         3153         3154         3155         3156 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3157         3158         3159         3160         3161         3162 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3163         3164         3165         3166         3167         3168 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3169         3170         3171         3172         3173         3174 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3175         3176         3177         3178         3179         3180 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 
##         3181         3182         3183         3184         3185         3186 
## 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 2.259925e-05 1.102277e-03 
##         3187         3188         3189         3190         3191         3192 
## 1.102277e-03 1.102277e-03 1.102277e-03 1.102277e-03 1.102277e-03 1.102277e-03 
##         3193         3194         3195         3196         3197         3198 
## 1.102277e-03 1.102277e-03 1.102277e-03 1.102277e-03 1.102277e-03 1.102277e-03 
##         3199         3200         3201         3202         3203         3204 
## 1.102277e-03 1.102277e-03 1.102277e-03 1.102277e-03 1.102277e-03 1.102277e-03 
##         3205         3206         3207         3208         3209         3210 
## 1.102277e-03 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3211         3212         3213         3214         3215         3216 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3217         3218         3219         3220         3221         3222 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3223         3224         3225         3226         3227         3228 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3229         3230         3231         3232         3233         3234 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3235         3236         3237         3238         3239         3240 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3241         3242         3243         3244         3245         3246 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3247         3248         3249         3250         3251         3252 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3253         3254         3255         3256         3257         3258 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3259         3260         3261         3262         3263         3264 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3265         3266         3267         3268         3269         3270 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3271         3272         3273         3274         3275         3276 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3277         3278         3279         3280         3281         3282 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3283         3284         3285         3286         3287         3288 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3289         3290         3291         3292         3293         3294 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 
##         3295         3296         3297         3298         3299         3300 
## 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.639544e-05 1.077350e-03 
##         3301         3302         3303         3304         3305         3306 
## 1.077350e-03 1.077350e-03 1.077350e-03 1.077350e-03 1.077350e-03 1.077350e-03 
##         3307         3308         3309         3310         3311         3312 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3313         3314         3315         3316         3317         3318 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3319         3320         3321         3322         3323         3324 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3325         3326         3327         3328         3329         3330 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3331         3332         3333         3334         3335         3336 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3337         3338         3339         3340         3341         3342 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3343         3344         3345         3346         3347         3348 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3349         3350         3351         3352         3353         3354 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3355         3356         3357         3358         3359         3360 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3361         3362         3363         3364         3365         3366 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3367         3368         3369         3370         3371         3372 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3373         3374         3375         3376         3377         3378 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3379         3380         3381         3382         3383         3384 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3385         3386         3387         3388         3389         3390 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3391         3392         3393         3394         3395         3396 
## 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 1.524107e-05 
##         3397         3398         3399         3400         3401         3402 
## 1.524107e-05 2.409341e-03 2.409341e-03 2.409341e-03 2.409341e-03 2.409341e-03 
##         3403         3404         3405         3406         3407         3408 
## 2.409341e-03 2.409341e-03 2.409341e-03 2.409341e-03 2.409341e-03 2.409341e-03 
##         3409         3410         3411         3412         3413         3414 
## 2.409341e-03 2.409341e-03 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3415         3416         3417         3418         3419         3420 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3421         3422         3423         3424         3425         3426 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3427         3428         3429         3430         3431         3432 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3433         3434         3435         3436         3437         3438 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3439         3440         3441         3442         3443         3444 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3445         3446         3447         3448         3449         3450 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3451         3452         3453         3454         3455         3456 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3457         3458         3459         3460         3461         3462 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3463         3464         3465         3466         3467         3468 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3469         3470         3471         3472         3473         3474 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3475         3476         3477         3478         3479         3480 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 
##         3481         3482         3483         3484         3485         3486 
## 6.005158e-05 6.005158e-05 6.005158e-05 6.005158e-05 3.363874e-03 3.363874e-03 
##         3487         3488         3489         3490         3491         3492 
## 3.363874e-03 3.363874e-03 3.363874e-03 3.363874e-03 3.363874e-03 3.363874e-03 
##         3493         3494         3495         3496         3497         3498 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3499         3500         3501         3502         3503         3504 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3505         3506         3507         3508         3509         3510 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3511         3512         3513         3514         3515         3516 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3517         3518         3519         3520         3521         3522 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3523         3524         3525         3526         3527         3528 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3529         3530         3531         3532         3533         3534 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3535         3536         3537         3538         3539         3540 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3541         3542         3543         3544         3545         3546 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3547         3548         3549         3550         3551         3552 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3553         3554         3555         3556         3557         3558 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3559         3560         3561         3562         3563         3564 
## 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 9.428234e-05 
##         3565         3566         3567         3568         3569         3570 
## 9.428234e-05 9.428234e-05 2.517676e-03 2.517676e-03 2.517676e-03 2.517676e-03 
##         3571         3572         3573         3574         3575         3576 
## 2.517676e-03 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 
##         3577         3578         3579         3580         3581         3582 
## 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 
##         3583         3584         3585         3586         3587         3588 
## 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 
##         3589         3590         3591         3592         3593         3594 
## 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 
##         3595         3596         3597         3598         3599         3600 
## 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 
##         3601         3602         3603         3604         3605         3606 
## 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 
##         3607         3608         3609         3610         3611         3612 
## 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 3.009438e-05 
##         3613         3614         3615         3616         3617         3618 
## 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 
##         3619         3620         3621         3622         3623         3624 
## 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 
##         3625         3626         3627         3628         3629         3630 
## 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 
##         3631         3632         3633         3634         3635         3636 
## 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 
##         3637         3638         3639         3640         3641         3642 
## 6.573824e-04 6.573824e-04 6.573824e-04 6.573824e-04 1.834469e-05 1.834469e-05 
##         3643         3644         3645         3646         3647         3648 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3649         3650         3651         3652         3653         3654 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3655         3656         3657         3658         3659         3660 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3661         3662         3663         3664         3665         3666 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3667         3668         3669         3670         3671         3672 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3673         3674         3675         3676         3677         3678 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3679         3680         3681         3682         3683         3684 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3685         3686         3687         3688         3689         3690 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3691         3692         3693         3694         3695         3696 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3697         3698         3699         3700         3701         3702 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3703         3704         3705         3706         3707         3708 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3709         3710         3711         3712         3713         3714 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3715         3716         3717         3718         3719         3720 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3721         3722         3723         3724         3725         3726 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3727         3728         3729         3730         3731         3732 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3733         3734         3735         3736         3737         3738 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3739         3740         3741         3742         3743         3744 
## 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 1.834469e-05 
##         3745         3746         3747         3748         3749         3750 
## 1.406138e-03 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 
##         3751         3752         3753         3754         3755         3756 
## 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 
##         3757         3758         3759         3760         3761         3762 
## 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 
##         3763         3764         3765         3766         3767         3768 
## 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 
##         3769         3770         3771         3772         3773         3774 
## 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 
##         3775         3776         3777         3778         3779         3780 
## 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 
##         3781         3782         3783         3784         3785         3786 
## 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 
##         3787         3788         3789         3790         3791         3792 
## 2.292371e-05 2.292371e-05 2.292371e-05 2.292371e-05 2.316694e-03 2.316694e-03 
##         3793         3794         3795         3796         3797         3798 
## 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 
##         3799         3800         3801         3802         3803         3804 
## 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 
##         3805         3806         3807         3808         3809         3810 
## 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 
##         3811         3812         3813         3814         3815         3816 
## 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 
##         3817         3818         3819         3820         3821         3822 
## 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 
##         3823         3824         3825         3826         3827         3828 
## 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 
##         3829         3830         3831         3832         3833         3834 
## 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 
##         3835         3836         3837         3838         3839         3840 
## 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 
##         3841         3842         3843         3844         3845         3846 
## 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 3.645888e-05 
##         3847         3848         3849         3850         3851         3852 
## 3.645888e-05 3.645888e-05 3.645888e-05 1.300807e-03 1.300807e-03 1.300807e-03 
##         3853         3854         3855         3856         3857         3858 
## 1.300807e-03 1.300807e-03 1.300807e-03 1.300807e-03 1.300807e-03 1.300807e-03 
##         3859         3860         3861         3862         3863         3864 
## 1.300807e-03 1.300807e-03 1.300807e-03 1.300807e-03 1.300807e-03 1.300807e-03 
##         3865         3866         3867         3868         3869         3870 
## 1.300807e-03 1.300807e-03 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3871         3872         3873         3874         3875         3876 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3877         3878         3879         3880         3881         3882 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3883         3884         3885         3886         3887         3888 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3889         3890         3891         3892         3893         3894 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3895         3896         3897         3898         3899         3900 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3901         3902         3903         3904         3905         3906 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3907         3908         3909         3910         3911         3912 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3913         3914         3915         3916         3917         3918 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3919         3920         3921         3922         3923         3924 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3925         3926         3927         3928         3929         3930 
## 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 3.063623e-05 
##         3931         3932         3933         3934         3935         3936 
## 3.063623e-05 3.063623e-05 3.063623e-05 1.365161e-03 1.365161e-03 1.365161e-03 
##         3937         3938         3939         3940         3941         3942 
## 1.365161e-03 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 
##         3943         3944         3945         3946         3947         3948 
## 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 
##         3949         3950         3951         3952         3953         3954 
## 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 
##         3955         3956         3957         3958         3959         3960 
## 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 
##         3961         3962         3963         3964         3965         3966 
## 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 
##         3967         3968         3969         3970         3971         3972 
## 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 
##         3973         3974         3975         3976         3977         3978 
## 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 1.966385e-05 
##         3979         3980         3981         3982         3983         3984 
## 1.966385e-05 1.966385e-05 1.966385e-05 1.840032e-03 2.701603e-05 2.701603e-05 
##         3985         3986         3987         3988         3989         3990 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         3991         3992         3993         3994         3995         3996 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         3997         3998         3999         4000         4001         4002 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         4003         4004         4005         4006         4007         4008 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         4009         4010         4011         4012         4013         4014 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         4015         4016         4017         4018         4019         4020 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         4021         4022         4023         4024         4025         4026 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         4027         4028         4029         4030         4031         4032 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         4033         4034         4035         4036         4037         4038 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         4039         4040         4041         4042         4043         4044 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 
##         4045         4046         4047         4048         4049 
## 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05 2.701603e-05
which(cooks.distance(mod15) == max(cooks.distance(mod15))) # These could be leveraging points, but it seems like a weak case
## 3485 3486 3487 3488 3489 3490 3491 3492 
## 3485 3486 3487 3488 3489 3490 3491 3492
mod15.1 = glm(survive ~ TotalObs + Temp + specCond + poly(CuStart, 2), family = "binomial", tbl_jarData_long[-c(3567, 3568, 3569, 3570, 3571),]) # try model without these points, AND try with a poly... did separately, neither works
hist(residuals(mod15.1)) # it doesn't seem to fix the bimodality

# Can we figure out why there is bimodality? What happens when we remove CuStart? 
mod15 = glm(survive ~ TotalObs + Temp + specCond + CuStart, family = "binomial", tbl_jarData_long) # Return to the original model
lows = which(residuals(mod15) < 0) # Break it apart into low and not-low residuals
tmp4 = tbl_jarData_long[lows,]
tmp5 = tbl_jarData_long[-lows,]

summary(tmp4) # compare when it's just low and not-low
##      jar_id         CuStart           CuEnd              pH       
##  Min.   : 1.00   Min.   :  2.50   Min.   :  2.50   Min.   :8.510  
##  1st Qu.:10.00   1st Qu.: 14.64   1st Qu.: 22.67   1st Qu.:8.585  
##  Median :16.00   Median : 51.06   Median : 67.06   Median :8.600  
##  Mean   :17.27   Mean   : 72.71   Mean   : 73.19   Mean   :8.598  
##  3rd Qu.:25.00   3rd Qu.:124.10   3rd Qu.:114.61   3rd Qu.:8.620  
##  Max.   :36.00   Max.   :190.68   Max.   :163.14   Max.   :8.645  
##       Temp             DO           specCond       cuGroup         
##  Min.   :25.55   Min.   :7.330   Min.   :445.5   Length:3357       
##  1st Qu.:26.10   1st Qu.:7.410   1st Qu.:448.5   Class :character  
##  Median :26.45   Median :7.465   Median :450.5   Mode  :character  
##  Mean   :26.55   Mean   :7.464   Mean   :452.1                     
##  3rd Qu.:27.05   3rd Qu.:7.520   3rd Qu.:453.5                     
##  Max.   :27.65   Max.   :7.575   Max.   :471.5                     
##     TotalObs        survive 
##  Min.   : 32.0   Min.   :0  
##  1st Qu.: 87.0   1st Qu.:0  
##  Median :132.0   Median :0  
##  Mean   :145.1   Mean   :0  
##  3rd Qu.:179.0   3rd Qu.:0  
##  Max.   :328.0   Max.   :0
summary(tmp5)
##      jar_id         CuStart           CuEnd              pH       
##  Min.   : 1.00   Min.   :  2.50   Min.   :  2.50   Min.   :8.510  
##  1st Qu.: 7.00   1st Qu.:  9.11   1st Qu.: 22.67   1st Qu.:8.590  
##  Median :14.00   Median : 51.06   Median : 67.06   Median :8.600  
##  Mean   :14.68   Mean   : 71.32   Mean   : 72.63   Mean   :8.599  
##  3rd Qu.:24.00   3rd Qu.:124.10   3rd Qu.:114.61   3rd Qu.:8.620  
##  Max.   :36.00   Max.   :190.68   Max.   :163.14   Max.   :8.645  
##       Temp             DO           specCond       cuGroup         
##  Min.   :25.55   Min.   :7.330   Min.   :445.5   Length:692        
##  1st Qu.:26.05   1st Qu.:7.420   1st Qu.:449.0   Class :character  
##  Median :26.20   Median :7.480   Median :450.5   Mode  :character  
##  Mean   :26.40   Mean   :7.468   Mean   :452.9                     
##  3rd Qu.:27.00   3rd Qu.:7.520   3rd Qu.:454.0                     
##  Max.   :27.65   Max.   :7.575   Max.   :471.5                     
##     TotalObs        survive 
##  Min.   : 45.0   Min.   :1  
##  1st Qu.:108.0   1st Qu.:1  
##  Median :153.0   Median :1  
##  Mean   :159.8   Mean   :1  
##  3rd Qu.:179.0   3rd Qu.:1  
##  Max.   :328.0   Max.   :1
summary(mod15) # recall the original
## 
## Call:
## glm(formula = survive ~ TotalObs + Temp + specCond + CuStart, 
##     family = "binomial", data = tbl_jarData_long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9002  -0.6213  -0.5597  -0.4797   2.1527  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -6.5989492  4.7465340  -1.390 0.164448    
## TotalObs     0.0023005  0.0006053   3.800 0.000145 ***
## Temp        -0.3978054  0.0839989  -4.736 2.18e-06 ***
## specCond     0.0338187  0.0081391   4.155 3.25e-05 ***
## CuStart     -0.0013770  0.0006895  -1.997 0.045810 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3703.4  on 4048  degrees of freedom
## Residual deviance: 3632.2  on 4044  degrees of freedom
## AIC: 3642.2
## 
## Number of Fisher Scoring iterations: 4
mod15.1 = glm(survive ~ TotalObs + Temp + specCond, family = "binomial", tbl_jarData_long)
AIC(mod15) # now determine how AIC compares
## [1] 3642.187
AIC(mod15.1)
## [1] 3644.2
AIC(mod15.1)-AIC(mod15) # It's better to include CuStart
## [1] 2.012637
# Are the data actually two groups, or is this just the data, and a challenge of binary data?
blah = numeric(0)
for(i in 1:1000) {
  tmpmod = glm(sample(tbl_jarData_long$survive) ~ TotalObs + Temp + specCond +CuStart, family = "binomial", tbl_jarData_long)
  blah = c(blah, coefficients(tmpmod)[5])
}
hist(blah) # And these meet the central limit theorem, so it comes down to being a challenge of modelling binary data

# Let's reconsider removing specCond+Temp and TotalObs+survival - do they make sense?
cor(tbl_jarData_long$Temp, tbl_jarData_long$specCond)
## [1] -0.03733425
plot(tbl_jarData_long$Temp, tbl_jarData_long$specCond) # Even though these are mechanically related, they are not correlated in our data; KEEP!

plot(tbl_jarData_long$TotalObs, tbl_jarData_long$survive)
abline(lm(survive~TotalObs, data=tbl_jarData_long))

# Include because: accounts for "noise" (we tried to put the same number of veligers in each jar, but inevitably there was variation) and bias (dead veligers were easier to spot than live, and we had multiple observers)
# Now... is there pseudoreplication by tank?
mod15.2 = glm(survive ~ scale(TotalObs) + scale(Temp) + scale(specCond) + scale(CuStart), family = "binomial", tbl_jarData_long) # Return to the original model, but this time scale everything so we can compare it to the next model
summary(mod15.2)
## 
## Call:
## glm(formula = survive ~ scale(TotalObs) + scale(Temp) + scale(specCond) + 
##     scale(CuStart), family = "binomial", data = tbl_jarData_long)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9002  -0.6213  -0.5597  -0.4797   2.1527  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.61829    0.04314 -37.514  < 2e-16 ***
## scale(TotalObs)  0.17265    0.04543   3.800 0.000145 ***
## scale(Temp)     -0.21913    0.04627  -4.736 2.18e-06 ***
## scale(specCond)  0.17035    0.04100   4.155 3.25e-05 ***
## scale(CuStart)  -0.08382    0.04197  -1.997 0.045810 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3703.4  on 4048  degrees of freedom
## Residual deviance: 3632.2  on 4044  degrees of freedom
## AIC: 3642.2
## 
## Number of Fisher Scoring iterations: 4
mod16 = glmer(survive ~ scale(TotalObs) + scale(Temp) + scale(specCond) + scale(CuStart) + (1|jar_id), family = "binomial", tbl_jarData_long) # include jar ID as a random effect
summary(mod16)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## survive ~ scale(TotalObs) + scale(Temp) + scale(specCond) + scale(CuStart) +  
##     (1 | jar_id)
##    Data: tbl_jarData_long
## 
##      AIC      BIC   logLik deviance df.resid 
##   3625.1   3663.0  -1806.6   3613.1     4043 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.6465 -0.5032 -0.4033 -0.3027  4.0136 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  jar_id (Intercept) 0.1275   0.357   
## Number of obs: 4049, groups:  jar_id, 36
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)     -1.65811    0.08196 -20.231  < 2e-16 ***
## scale(TotalObs)  0.28546    0.09808   2.910  0.00361 ** 
## scale(Temp)     -0.25496    0.08011  -3.183  0.00146 ** 
## scale(specCond)  0.16362    0.07534   2.172  0.02987 *  
## scale(CuStart)  -0.01788    0.08240  -0.217  0.82825    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sc(TO) scl(T) scl(C)
## scl(TtlObs)  0.213                     
## scale(Temp)  0.065  0.247              
## scl(spcCnd) -0.025  0.193  0.102       
## scal(CStrt) -0.019  0.069  0.040 -0.166
AIC(mod16) # the random effect model is a better fit
## [1] 3625.118
AIC(mod15.2)
## [1] 3642.187
hist(residuals(mod16)) # and the residual distribution hasn't changed

tbl_jarData_long %>% 
  group_by(cuGroup) %>% 
  summarize(mean(CuStart), mean(survive)) # content to discuss in the manuscript discussion!
## # A tibble: 7 × 3
##   cuGroup `mean(CuStart)` `mean(survive)`
##   <chr>             <dbl>           <dbl>
## 1 C1                 14.8           0.148
## 2 C2                 47.5           0.134
## 3 C3                 52.5           0.167
## 4 C4                106.            0.191
## 5 C5                135.            0.161
## 6 C6                164.            0.159
## 7 Control             2.5           0.208
mod15
## 
## Call:  glm(formula = survive ~ TotalObs + Temp + specCond + CuStart, 
##     family = "binomial", data = tbl_jarData_long)
## 
## Coefficients:
## (Intercept)     TotalObs         Temp     specCond      CuStart  
##   -6.598949     0.002300    -0.397805     0.033819    -0.001377  
## 
## Degrees of Freedom: 4048 Total (i.e. Null);  4044 Residual
## Null Deviance:       3703 
## Residual Deviance: 3632  AIC: 3642

2.6.7 Figure

intcpt = -6.599
velnum = 0.002
speccond = 0.034
temp = -0.398
copconc = -0.001

velnum_avg = mean(tbl_jarData$TotalObs)
speccond_avg = mean(tbl_jarData$specCond)
temp_avg = mean(tbl_jarData$Temp)

jarFakeCus = seq(from = 0, to = 191, length = 1000) # Create many copper concentration values
vel_y = boot::inv.logit(intcpt + velnum*velnum_avg + speccond*speccond_avg + temp*temp_avg + copconc*jarFakeCus) # Calculate species response at those copper values
Figure6df = data.frame(jarFakeCus, vel_y) # bundle it all as a dataframe

tbl_jarSurvival$propAlive <- tbl_jarSurvival$percentAlive/100 # add a column that converts to proportion alive

(plot_velSurvival = ggplot() +
  geom_line(data = Figure6df, aes(x = jarFakeCus, y = vel_y), color = "black", size = 1) +
  geom_point(data = tbl_jarSurvival, aes(x=CuStart, y=propAlive), color="black", size = 3) +
  theme_classic() +
  theme(axis.text = element_text(size = 14, color = "black"),
        axis.title = element_text(size = 16, color = "black",  face = "bold"),
        axis.line = element_line(size = 1.5, color = "black"),
        axis.ticks = element_line(size = 1.2, color = "black"),
        axis.ticks.length = unit(0.25, "cm")) +
  xlim(0,195) +
  xlab('\nCopper concentration (µg Cu/L)') +
  ylab("Survival\n"))# Final figure                      

ggsave(filename="Figure6.jpeg", plot=plot_velSurvival, width=4.5, height=3, dpi=500, units="in")

2.8 Copper concentration (part 2)

# Compare variability of different groups to determine if appropriate for ANOVA
leveneTest(tbl_jarData$CuStart~tbl_jarData$cuGroup)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  6  1.7582 0.1431
##       29
# Visualize variability differences
boxplot(tbl_jarData$CuStart~tbl_jarData$cuGroup)

# Consider outliers (all together to get big picture)
hist(tbl_jarData$CuStart)

# Compare concentrations among treatment groups
(aov_cu <- oneway.test(CuStart~cuGroup, data=tbl_jarData, var.equal = TRUE)) # Temperatures do not vary between the jar categories
## 
##  One-way analysis of means
## 
## data:  CuStart and cuGroup
## F = 50.569, num df = 6, denom df = 29, p-value = 4.712e-14
#What are the concentrations by group?
group_by(tbl_jarData, cuGroup) %>%
  summarise(
    mean = mean(CuStart, na.rm=T),
    sd = sd(CuStart, na.rm=T)
  )
## # A tibble: 7 × 3
##   cuGroup  mean    sd
##   <chr>   <dbl> <dbl>
## 1 C1       16.0  4.67
## 2 C2       47.7  5.99
## 3 C3       60.1 26.2 
## 4 C4      104.  11.8 
## 5 C5      137.  28.6 
## 6 C6      163.  32.7 
## 7 Control   2.5  0
group_by(tbl_jarData, cuGroup) %>%
  summarise(
    mean = mean(CuEnd, na.rm=T),
    sd = sd(CuEnd, na.rm=T)
  )
## # A tibble: 7 × 3
##   cuGroup  mean    sd
##   <chr>   <dbl> <dbl>
## 1 C1       19.1  2.26
## 2 C2       46.6  5.50
## 3 C3       68.7 11.2 
## 4 C4       91.6  6.54
## 5 C5      125.  10.6 
## 6 C6      150.  12.5 
## 7 Control  15.8 25.2

2.9 Conclude veliger analysis

## Close and remove channels
close(cnxn_vel)
rm(cnxn_vel)

Session info

sessionInfo()
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United States.utf8 
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] rstatix_0.7.2      viridis_0.6.2      viridisLite_0.4.1  broom_1.0.3       
##  [5] RColorBrewer_1.1-3 nlme_3.1-160       lme4_1.1-31        Matrix_1.5-1      
##  [9] FSA_0.9.4          car_3.1-1          carData_3.0-5      RODBC_1.3-20      
## [13] ggpubr_0.6.0       kableExtra_1.3.4   data.table_1.14.8  forcats_1.0.0     
## [17] stringr_1.5.0      dplyr_1.1.0        purrr_1.0.1        readr_2.1.4       
## [21] tidyr_1.3.0        tibble_3.1.8       ggplot2_3.4.1      tidyverse_1.3.2   
## [25] knitr_1.42        
## 
## loaded via a namespace (and not attached):
##  [1] fs_1.6.1            lubridate_1.9.2     webshot_0.5.4      
##  [4] httr_1.4.4          ggsci_2.9           tools_4.2.2        
##  [7] backports_1.4.1     bslib_0.4.2         utf8_1.2.3         
## [10] R6_2.5.1            mgcv_1.8-41         DBI_1.1.3          
## [13] colorspace_2.1-0    withr_2.5.0         tidyselect_1.2.0   
## [16] gridExtra_2.3       compiler_4.2.2      cli_3.6.0          
## [19] rvest_1.0.3         xml2_1.3.3          labeling_0.4.2     
## [22] sass_0.4.5          scales_1.2.1        systemfonts_1.0.4  
## [25] digest_0.6.31       minqa_1.2.5         rmarkdown_2.20     
## [28] svglite_2.1.1       pkgconfig_2.0.3     htmltools_0.5.4    
## [31] dbplyr_2.3.0        fastmap_1.1.0       highr_0.10         
## [34] rlang_1.0.6         readxl_1.4.2        rstudioapi_0.14    
## [37] farver_2.1.1        jquerylib_0.1.4     generics_0.1.3     
## [40] jsonlite_1.8.4      googlesheets4_1.0.1 magrittr_2.0.3     
## [43] Rcpp_1.0.10         munsell_0.5.0       fansi_1.0.4        
## [46] abind_1.4-5         lifecycle_1.0.3     stringi_1.7.12     
## [49] yaml_2.3.7          MASS_7.3-58.1       grid_4.2.2         
## [52] crayon_1.5.2        lattice_0.20-45     haven_2.5.1        
## [55] splines_4.2.2       hms_1.1.2           pillar_1.8.1       
## [58] boot_1.3-28         ggsignif_0.6.4      reprex_2.0.2       
## [61] glue_1.6.2          evaluate_0.20       modelr_0.1.10      
## [64] vctrs_0.5.2         nloptr_2.0.3        tzdb_0.3.0         
## [67] cellranger_1.1.0    gtable_0.3.1        assertthat_0.2.1   
## [70] cachem_1.0.6        xfun_0.37           googledrive_2.0.0  
## [73] gargle_1.3.0        timechange_0.2.0    ellipsis_0.3.2