Data entry and processing

Preamble

Load Libraries

library(ezknitr)
library(knitr)
library(metafor)
library(doBy)

Clear environment

remove(list=ls())

Document settings

opts_chunk$set(fig.width = 6, fig.height = 4)

Load data

raw.data <- read.csv("data/workspace.csv")

Processing data Steps

  1. New dataset with only selected fields
  2. Standardize categorical moderators
  3. Partition data
  4. Standardize effect size information
  5. Make sure categorical moderators have n > 5
  6. Calculate effect sizes
  7. Save files for analysis

1. New dataset with only selected fields

data.reduced <- raw.data[,c(1:7,10:16,19:48)]
# take out three data points with information on control treatments only
data.reduced <- data.reduced[data.reduced$FID!=105 &
                               data.reduced$FID!=154 &
                               data.reduced$FID!=211,]

Table of all data

summaryBy(FID~Reference+ReferenceNumb+studyYear+State, data = data.reduced, FUN = length)
##                 Reference ReferenceNumb studyYear State FID.length
## 1            Allen ref 11            11      2010    MS          7
## 2            Allen ref 12            12      2010    MS          8
## 3            Allen ref 13            13      2011    MS          5
## 4            Allen ref 14            14      2011    MS          5
## 5         Delanely ref 28            28      2013    AL          2
## 6     Delaney et al ref 6             6      2010    AL          8
## 7     Delaney et al ref 8             8      2011    AL         12
## 8          Delaney ref 17            17      2010    AL          8
## 9          Delaney ref 24            24      2010    AL          8
## 10         Delaney ref 26            26      2013    AL          3
## 11         Delaney ref 27            27      2013    AL          2
## 12         Delaney ref 29            29      2013    AL          2
## 13         Delaney ref 30            30      2013    AL          9
## 14         Delaney ref 31            31      2013    AL          9
## 15         Delaney ref 32            32      2013    AL          4
## 16         Delaney ref 33            33      2013    AL          4
## 17         Delaney ref 34            34      2013    AL         12
## 18         Delaney ref 44            44      2009    AL         13
## 19   Douglas et al ref 65            65      2008    FL         18
## 20   Douglas et al ref 66            66      2008    FL         13
## 21   Douglas et al ref 67            67      2009    FL         11
## 22          Harmon ref 47            47      2006    FL         12
## 23  Kemerait et al ref 59            59      2006    GA         15
## 24  Kemerait et al ref 71            71      2005    GA          8
## 25        Kemerait ref 46            46      2006    GA          5
## 26        Kemerait ref 49            49      2006    GA         12
## 27        Kemerait ref 50            50      2006    GA         10
## 28        Kemerait ref 51            51      2006    GA          7
## 29   Lawrence et al ref 3             3      2007    AL          7
## 30   lawrence et al ref 4             4      2005    AL          6
## 31  Lawrence et al ref 53            53      2007    AL          6
## 32  Lawrence et al ref 55            55      2006    AL         10
## 33  Lawrence et al ref 62            62      2007    AL          7
## 34  Lawrence et al ref 68            68      2013    AL          5
## 35        Lawrence ref 16            16      2008    AL         13
## 36        Lawrence ref 18            18      2006    AL          3
## 37        Lawrence ref 21            21      2005    AL          6
## 38        Lawrence ref 22            22      2008    AL          9
## 39        Lawrence ref 41            41      2006   AL          11
## 40   Mueller et al  ref 1             1      2007    FL          3
## 41   Mueller et al ref 63            63      2006    FL          6
## 42    Mueller et al ref 9             9      2007    FL          9
## 43         Mueller ref 36            36      2006    FL         23
## 44         Mueller ref 37            37      2006    FL         15
## 45         Mueller ref 38            38      2006    FL          6
## 46         Mueller ref 39            39      2006    FL         11
## 47         Mueller ref 40            40      2006    FL          4
## 48         Mueller ref 43            43      2006    GA         15
## 49         Mueller ref 45            45      2006    FL         17
## 50   O'Brien et al ref 69            69      2013    FL         13
## 51         O'Brien ref 25            25      2012    FL          7
## 52   Padgett et al ref 54            54      2007    LA          9
## 53   Padgett et al ref 72            72      2005    LA         15
## 54   Padgett et al ref 73            73      2005    LA         15
## 55     Price et al ref 35            35      2012    LA         12
## 56 Schneider et al ref 60            60      2006    LA         23
## 57     Sikora et al ref 7             7      2011    AL          4
## 58    Sikora et al ref 70            70      2005    AL         13
## 59    Sikora et al ref 74            74      2006    AL         12
## 60          Sikora ref 23            23      2007    AL         12
## 61          Sikora ref 42            42      2005    AL          7
#summaryBy(FID~ReferenceNumb+Reference+studyYear+State, data = data.reduced, FUN = length)

2. Standardize categorical moderators

Active ingredients: define mixed and 2+ applications of mixed (if 2+ applications of same, just use that active ingredient as is.)

# Active ingredients - fix typos in original dataset
data.reduced$active.ingredient.coded <- as.character(data.reduced$active.ingredient.coded)
data.reduced$active.ingredient.coded[data.reduced$trade.name=="ACT Plus"] <- "oth"
data.reduced$active.ingredient.coded[data.reduced$trade.name=="Domark"] <- "tetra"
data.reduced$active.ingredient.coded[data.reduced$trade.name=="Folicur"] <- "tebu"
data.reduced$active.ingredient.coded[data.reduced$trade.name=="Folicur fb Headline"] <- "tebu + pyra"
data.reduced$active.ingredient.coded[data.reduced$trade.name=="Folicur + Headline"] <- "tebu + pyra"
data.reduced$active.ingredient.coded[data.reduced$trade.name=="Laredo"] <- "myc"
data.reduced$active.ingredient.coded[data.reduced$trade.name=="Punch fb Punch"] <- "flus"
data.reduced$active.ingredient.coded[data.reduced$trade.name=="Stratego"] <- "mixed"


# Active ingredients - new code for analysis (e.g. >5 obs)
#     Start by making new field and storing the old code
data.reduced$activeIngClean <- "empty"
#     Mixed
mixed.indices <- grep("+", data.reduced$active.ingredient.coded, fixed=TRUE)
data.reduced$activeIngClean[mixed.indices] <- "mixed"
#     Dual applications
dual.apps <- grep("fb", data.reduced$active.ingredient.coded, fixed=TRUE)
data.reduced$activeIngClean[dual.apps] <- "dual"
data.reduced$activeIngClean[grep("azo fb azo", data.reduced$active.ingredient.coded, fixed=F)] <- "azo"
data.reduced$activeIngClean[grep("myc fb myc", data.reduced$active.ingredient.coded, fixed=T)] <- "myc"
data.reduced$activeIngClean[grep("tetr fb tetr", data.reduced$active.ingredient.coded, fixed=T)] <- "tetra"
data.reduced$activeIngClean[grep("tetra fb tetra", data.reduced$active.ingredient.coded, fixed=T)] <- "tetra"
data.reduced$activeIngClean[grep("tebu fb tebu", data.reduced$active.ingredient.coded, fixed=T)] <- "tebu"
data.reduced$activeIngClean[grep("prop fb prop", data.reduced$active.ingredient.coded, fixed=T)] <- "prop"
data.reduced$activeIngClean[grep("pyra fb pyra", data.reduced$active.ingredient.coded, fixed=T)] <- "pyra"
data.reduced$activeIngClean[grep("pyra fb prya", data.reduced$active.ingredient.coded, fixed=T)] <- "pyra"
data.reduced$activeIngClean[grep("flut fb flut", data.reduced$active.ingredient.coded, fixed=T)] <- "flut"
#     Single applications
data.reduced$activeIngClean[data.reduced$activeIngClean=="empty"] <- 
  as.character(data.reduced$active.ingredient.coded[data.reduced$activeIngClean=="empty"])
#     Clean up so labels are consistent (e.g., "pyr" vs "pyra")
data.reduced$activeIngClean[data.reduced$activeIngClean=="pyr"] <- "pyra"
data.reduced$activeIngClean[data.reduced$activeIngClean=="pyraclostrobin"] <- "pyra"
data.reduced$activeIngClean[data.reduced$activeIngClean=="pyro"] <- "pyra"
data.reduced$activeIngClean[data.reduced$activeIngClean=="teb"] <- "tebu"
data.reduced$activeIngClean[data.reduced$activeIngClean=="tetr"] <- "tetra"
data.reduced$activeIngClean[data.reduced$activeIngClean=="thi"] <- "thio"
data.reduced$activeIngClean[data.reduced$activeIngClean==""] <- "unknown"
data.reduced$activeIngClean[data.reduced$activeIngClean=="cyp"] <- "cypr"
data.reduced$activeIngClean[data.reduced$activeIngClean=="tebu "] <- "tebu"
#     Check progress
table(data.reduced$activeIngClean)
## 
##     azo    chlo     cop    cypr    dual     eth    febu    flus    flut 
##      29       2       2       6      44       2       1       8      66 
##     gly    met    mixed     myc     org     oth    pico    prop    prot 
##       6       1     177      14       3      16       4       2       4 
##    pyra     sul    tebu   tetra    thio    tria    trif unknown 
##      54       3      54      37      10       1       2      18

When sample size is < 5, make “oth”

less.than.five <- c("chlo", "cop", "eth", "febu", "met ", "org", "pico", "prop",
                    "prot", "sul", "tria", "trif", "unknown")
data.reduced$activeIngClean[data.reduced$activeIngClean %in% less.than.five] <- "oth"
# Check with table
table(data.reduced$activeIngClean)
## 
##   azo  cypr  dual  flus  flut   gly mixed   myc   oth  pyra  tebu tetra 
##    29     6    44     8    66     6   177    14    61    54    54    37 
##  thio 
##    10

Class of fungicide: clean up labels to be consistent and if <5, relabel as “oth”

# Table to see how it looks as is
table(data.reduced$class.code)
## 
##                             chloronitrile       copper sulfate 
##                    1                    2                    1 
##            herbicide             mancozeb          metconazole 
##                    6                    1                    1 
##                  mma                  myc                other 
##                  220                    2                   31 
##               other           strobilurin         strobilurin  
##                    1                   78                    4 
##          strobulurin                 tebu          thiophanate 
##                    8                    1                    9 
## triaz+AL384:AM384ole             triazole              unknown 
##                    1                  188                   11
# Start with "empty"
data.reduced$classClean <- "empty"
# Clean up labels
data.reduced$classClean[data.reduced$class.code==""] <- "unknown"
data.reduced$classClean[data.reduced$class.code=="other "] <- "other"
data.reduced$classClean[data.reduced$class.code=="strobilurin "] <- "strobilurin"
data.reduced$classClean[data.reduced$class.code=="strobulurin"] <- "strobilurin"
data.reduced$classClean[data.reduced$class.code=="triaz+AL384:AM384ole"] <- "triazole"
# Fill in the rest
data.reduced$classClean[data.reduced$classClean=="empty"] <- 
  as.character(data.reduced$class.code[data.reduced$classClean=="empty"])
# Check with table
table(data.reduced$classClean)
## 
##  chloronitrile copper sulfate      herbicide       mancozeb    metconazole 
##              2              1              6              1              1 
##            mma            myc          other    strobilurin           tebu 
##            220              2             32             90              1 
##    thiophanate       triazole        unknown 
##              9            189             12

When sample size is < 5, make “oth”

less.than.five <- c("chloronitrile", "copper sulfate", "mancozeb", "metconazole",
                    "myc", "tebu", "unknown")
data.reduced$classClean[data.reduced$classClean %in% less.than.five] <- "other"
# Check with table
table(data.reduced$classClean)
## 
##   herbicide         mma       other strobilurin thiophanate    triazole 
##           6         220          52          90           9         189

Growth stages of application

# Examine original data
sort(table(data.reduced$Growth.stage.applied))
## 
##                     3,7                    3fb6            r1 + r3 + r5 
##                       1                       1                       1 
##                   r1 r3                  r1, r3                  r2,r10 
##                       1                       1                       1 
##                  r2,r11                  r2,r12                  r2,r13 
##                       1                       1                       1 
##                  r2,r14                  r2,r15                   r2,r4 
##                       1                       1                       1 
##                   r2,r6                   r2,r7                   r2,r8 
##                       1                       1                       1 
##                   r2,r9                  r2+r10                  r2+r11 
##                       1                       1                       1 
##                  r2+r12                  r2+r13                  r2+r14 
##                       1                       1                       1 
##                   r2+r3                   r2+r4                   r2+r5 
##                       1                       1                       1 
##                   r2+r6                   r2+r7                   r2+r8 
##                       1                       1                       1 
##                   r2+r9               r3  + r5                  r3, r5  
##                       1                       1                       1 
##                r3.5, r5                  r3+21d                  r3+28d 
##                       1                       1                       1 
##                 r5,r5.5 v9,r1,r2,r3,r4,r5,r6,r7                     1+5 
##                       1                       1                       2 
##                r1 fb r3               r2 + r5.5                r3 + r5  
##                       2                       2                       2 
##                r3 fb r5                  r3, r5              r3+21 days 
##                       2                       2                       2 
##              r5 fb r5.5                   v5,r1                   v5+r2 
##                       2                       2                       2 
##                v5+r2+r4                  3 fb 6                 r1 + 14 
##                       2                       3                       3 
##                 r1 + 21                   r4,r6                     3,6 
##                       3                       3                       4 
##                 r1 + r3             r1, r1+ 21d            r3, r3 + 21d 
##                       4                       4                       4 
##                 r3.5,r5                   r4,r5                      R1 
##                       4                       4                       5 
##                      R3                    r3.5                      R5 
##                       5                       5                       5 
##                  r1+21d          v5+r1+r2+r4+r5            r2 + r3 + r5 
##                       6                       6                       7 
##                 r2,r5.5                   r3+r5                     3,5 
##                       8                       8                       9 
##                       5             r2+r4 or r5                      r4 
##                       9                       9                       9 
##                   1+21d                 r1 + r4                r1,r3,r5 
##                      10                      11                      13 
##                   r3,r5                      r1                   r2,r5 
##                      13                      15                      15 
##                      r2                 r2 + r4                 r3 + r5 
##                      22                      24                      25 
##                                         r2 + r5                      r5 
##                      27                      37                      61 
##                      r3 
##                     109
data.reduced$growthStateClean <- "empty"

#   Applied during R1 plus another stage
data.reduced$growthStateClean[grep("^1", data.reduced$Growth.stage.applied)] <- "1+"
data.reduced$growthStateClean[grep("^r1", data.reduced$Growth.stage.applied)] <- "1+"
#   Applied during R1 only
data.reduced$growthStateClean[data.reduced$Growth.stage.applied=="1"|
                                data.reduced$Growth.stage.applied=="r1"|
                                data.reduced$Growth.stage.applied=="R1"] <- "1"
#   Applied during R2 initially plus another stage
data.reduced$growthStateClean[grep("^r2", data.reduced$Growth.stage.applied)] <- "2+"
#   Applied during R2 only
data.reduced$growthStateClean[data.reduced$Growth.stage.applied=="r2"] <- "2"
#   Applied during R3 initially plus another stage
data.reduced$growthStateClean[grep("^3", data.reduced$Growth.stage.applied)] <- "3"
data.reduced$growthStateClean[grep("^r3", data.reduced$Growth.stage.applied)] <- "3"
#   Applied during R3 only
data.reduced$growthStateClean[data.reduced$Growth.stage.applied=="r3"|
                                data.reduced$Growth.stage.applied=="R3"] <- "3"
#   Applied during R4 initially plus another stage (none were 4 only)
data.reduced$growthStateClean[grep("^r4", data.reduced$Growth.stage.applied)] <- "4"
#   Applied during R5
data.reduced$growthStateClean[grep("^r5", data.reduced$Growth.stage.applied)] <- "5"
data.reduced$growthStateClean[grep("^R5", data.reduced$Growth.stage.applied)] <- "5"
data.reduced$growthStateClean[grep("^5", data.reduced$Growth.stage.applied)] <- "5"
#   Applied during V-stage
data.reduced$growthStateClean[grep("^v", data.reduced$Growth.stage.applied)] <- "V"
#   Unknown stage of application
data.reduced$growthStateClean[data.reduced$growthStateClean=="empty"] <- "unknown"
# Check with table
#sort(table(data.reduced$Growth.stage.applied[data.reduced$growthStateClean=="empty"]))
table(data.reduced$growthStateClean)
## 
##       1      1+       2      2+       3       4       5 unknown       V 
##      20      61      22     125     204      16      78      27      13

Number of applications

# Check with table
table(data.reduced$applicationsNumb)
## 
##   1   2   3   5   8 
## 282 254  23   6   1

When sample size is < 5, delete

data.reduced <- data.reduced[data.reduced$applicationsNumb!=8,]

3. Partition data

Rust data

# Data that had rust severity in percentage originally
    # Column #15 is rustSeverPerc
rust.perc.orig <- data.reduced[!is.na(data.reduced$rustSeverPerc),]
rust.perc.orig$scale <- "Percent"
# Data that had rust severity on scale originally
    # Column #19 is rustSever1-8
rust.scale.orig <- data.reduced[!is.na(data.reduced$rustSever1.8),]
# Data from Lawrence references are actually on 0-10 Scale
scale.1to10.refs <- c(3,4,53,55,62,68,16,41)
rust.scale.orig$scale[rust.scale.orig$ReferenceNumb %in% scale.1to10.refs] <- "Scale 0-10"
# Rest are on 1-8 scale
rust.scale.orig$scale[!rust.scale.orig$ReferenceNumb %in% scale.1to10.refs] <- "Scale 0-8"

# Combine back together
rust.data <- rbind(rust.perc.orig, rust.scale.orig)

Yield data

# Data that had yield data
    # Column #35 is yield
yield.data <- data.reduced[!is.na(data.reduced$yield),] 

100sw data

# Data that had 100sw data
    # Column #39 is 100sw
seedwt.data <- data.reduced[!is.na(data.reduced$seedWt),] 

Cercospora data

# Data that had Cercospora data
cerco.data <- data.reduced[!is.na(data.reduced$CercoSever),]
# Define the scale used
cerco.data$scale <- "empty"
# Data from Padgett et al. studies used scale 0-10
cerco.data$scale[grep("^Pa", cerco.data$Reference)] <- "Scale 0-10"
# Data from Price et al. studies used scale 0-8
cerco.data$scale[grep("^Pr", cerco.data$Reference)] <- "Scale 0-8"
# Data from others used 0-5 scale
cerco.data$scale[cerco.data$scale=="empty"] <- "Scale 0-5"

Target spot data

# Data that had Target Spot data
target.spot.data <- data.reduced[!is.na(data.reduced$Tsseverity)|
                                   !is.na(data.reduced$Tsincidence),]
# Define the scale used
target.spot.data$scale <- "empty"
# Percentage originally
target.spot.data$scale[target.spot.data$ReferenceNumb==55 | 
                         target.spot.data$ReferenceNumb==21] <- "Percent"
# Data with scale 0-10
target.spot.data$scale[target.spot.data$ReferenceNumb==30] <- "Scale 0-10"
# Data with scale 0-5
target.spot.data$scale[target.spot.data$scale=="empty"] <- "Scale 0-5"

4. Standardize effect size information

For rust severity on scale 0-8, convert to percent

For rust severity on scale 0-10, convert to percent

# For treatment groups
rust.data$m1i[rust.data$scale=="Scale 0-8" & 
                rust.data$rustSever1.8 <= 2] <-
                      rust.data$rustSever1.8[rust.data$scale=="Scale 0-8"&
                                               rust.data$rustSever1.8 <= 2]*2.5
rust.data$m1i[rust.data$scale=="Scale 0-8" & 
                rust.data$rustSever1.8 > 2 &
                rust.data$rustSever1.8 <= 4] <- 5 +
                      (rust.data$rustSever1.8[rust.data$scale=="Scale 0-8"&
                                               rust.data$rustSever1.8 > 2 &
                                               rust.data$rustSever1.8 <= 4]-2)*5
rust.data$m1i[rust.data$scale=="Scale 0-8" & 
                rust.data$rustSever1.8 > 4 &
                rust.data$rustSever1.8 <= 6] <- 15 +
                      (rust.data$rustSever1.8[rust.data$scale=="Scale 0-8"&
                                                rust.data$rustSever1.8 > 4 &
                                                rust.data$rustSever1.8 <= 6]-4)*10
rust.data$m1i[rust.data$scale=="Scale 0-8" & 
                rust.data$rustSever1.8 > 6] <- 35 +
                      (rust.data$rustSever1.8[rust.data$scale=="Scale 0-8"&
                                                rust.data$rustSever1.8 > 6]-6)*32.5
# For control groups
rust.data$m2i[rust.data$scale=="Scale 0-8" & 
                rust.data$rustSever1.8Cont <= 2] <-
                      rust.data$rustSever1.8Cont[rust.data$scale=="Scale 0-8"&
                                               rust.data$rustSever1.8Cont <= 2]*2.5
rust.data$m2i[rust.data$scale=="Scale 0-8" & 
                rust.data$rustSever1.8Cont > 2 &
                rust.data$rustSever1.8Cont <= 4] <- 5 +
                      (rust.data$rustSever1.8Cont[rust.data$scale=="Scale 0-8"&
                                                rust.data$rustSever1.8Cont > 2 &
                                                rust.data$rustSever1.8Cont <= 4]-2)*5
rust.data$m2i[rust.data$scale=="Scale 0-8" & 
                rust.data$rustSever1.8Cont > 4 &
                rust.data$rustSever1.8Cont <= 6] <- 15 +
                      (rust.data$rustSever1.8Cont[rust.data$scale=="Scale 0-8"&
                                                rust.data$rustSever1.8Cont > 4 &
                                                rust.data$rustSever1.8Cont <= 6]-4)*10
rust.data$m2i[rust.data$scale=="Scale 0-8" & 
                rust.data$rustSever1.8Cont > 6] <- 35 +
                      (rust.data$rustSever1.8Cont[rust.data$scale=="Scale 0-8"&
                                                rust.data$rustSever1.8Cont > 6]-6)*32.5
# For rust severity on 0-10 scale
rust.data$m1i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8 <= 3] <-
  rust.data$rustSever1.8[rust.data$scale=="Scale 0-10"&
                           rust.data$rustSever1.8 <= 3]*(2.5/3)
rust.data$m1i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8 > 3 &
                rust.data$rustSever1.8 <= 4] <- 2.5 +
  (rust.data$rustSever1.8[rust.data$scale=="Scale 0-10" & 
                           rust.data$rustSever1.8 > 3 &
                           rust.data$rustSever1.8 <= 4]-3)*2.5
rust.data$m1i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8 > 4 &
                rust.data$rustSever1.8 <= 6] <- 5 +
  (rust.data$rustSever1.8[rust.data$scale=="Scale 0-10" & 
                           rust.data$rustSever1.8 > 4 &
                           rust.data$rustSever1.8 <= 6]-4)*5
rust.data$m1i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8 > 6 &
                rust.data$rustSever1.8 <= 8] <- 15 +
  (rust.data$rustSever1.8[rust.data$scale=="Scale 0-10" & 
                           rust.data$rustSever1.8 > 6 &
                           rust.data$rustSever1.8 <= 8]-6)*10
rust.data$m1i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8 > 8] <- 35 +
  (rust.data$rustSever1.8[rust.data$scale=="Scale 0-10" & 
                            rust.data$rustSever1.8 > 8]-8)*32.5
# Control
rust.data$m2i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8Cont <= 3] <-
  rust.data$rustSever1.8Cont[rust.data$scale=="Scale 0-10"&
                           rust.data$rustSever1.8Cont <= 3]*(2.5/3)
rust.data$m2i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8Cont > 3 &
                rust.data$rustSever1.8Cont <= 4] <- 2.5 +
  (rust.data$rustSever1.8Cont[rust.data$scale=="Scale 0-10" & 
                            rust.data$rustSever1.8Cont > 3 &
                            rust.data$rustSever1.8Cont <= 4]-3)*2.5
rust.data$m2i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8Cont > 4 &
                rust.data$rustSever1.8Cont <= 6] <- 5 +
  (rust.data$rustSever1.8Cont[rust.data$scale=="Scale 0-10" & 
                            rust.data$rustSever1.8Cont > 4 &
                            rust.data$rustSever1.8Cont <= 6]-4)*5
rust.data$m2i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8Cont > 6 &
                rust.data$rustSever1.8Cont <= 8] <- 15 +
  (rust.data$rustSever1.8Cont[rust.data$scale=="Scale 0-10" & 
                            rust.data$rustSever1.8Cont > 6 &
                            rust.data$rustSever1.8Cont <= 8]-6)*10
rust.data$m2i[rust.data$scale=="Scale 0-10" & 
                rust.data$rustSever1.8Cont > 8] <- 35 +
  (rust.data$rustSever1.8Cont[rust.data$scale=="Scale 0-10" & 
                            rust.data$rustSever1.8Cont > 8]-8)*32.5
# For rust severity in percent originally
rust.data$m1i[rust.data$scale=="Percent"] <- rust.data$rustSeverPerc[rust.data$scale=="Percent"]
rust.data$m2i[rust.data$scale=="Percent"] <- rust.data$rustSeverPercCont[rust.data$scale=="Percent"]
# Assume 20% as std deviation
rust.data$sd1i <- rust.data$sd2i <- 20
# Sample sizes
rust.data$n1i <- rust.data$n2i <- rust.data$replications

Yield data

yield.data$yield.kg.ha <- yield.data$yield*67.25 # convert to kg ha-1
yield.data$yieldCont.kg.ha <- yield.data$yieldCont*67.25 # convert to kg ha-1
  # conversion info from https://www.extension.iastate.edu/agdm/wholefarm/html/c6-80.html
yield.data$m1i <- yield.data$yield.kg.ha # Yield for treatment group
yield.data$sd1i <- yield.data$yield.kg.ha*0.2 # Std is 20% of mean
yield.data$m2i <- yield.data$yieldCont.kg.ha # Yield for control group
yield.data$sd2i <- yield.data$yieldCont.kg.ha*0.2 # Std is 20% of the mean
yield.data$n1i <- yield.data$n2i <- yield.data$replications

100 seed weight data

seedwt.data$m1i <- seedwt.data$seedWt # Yield for treatment group
seedwt.data$sd1i <- seedwt.data$seedWt*0.2 # Std is 20% of mean
seedwt.data$m2i <- seedwt.data$seedWtCont # Yield for control group
seedwt.data$sd2i <- seedwt.data$seedWtCont*0.2 # Std is 20% of the mean
seedwt.data$n1i <- seedwt.data$n2i <- seedwt.data$replications

Cercospora data

# Scale 0-10
cerco.data$m1i[cerco.data$scale=="Scale 0-10"] <- 
  cerco.data$CercoSever[cerco.data$scale=="Scale 0-10"]*10
cerco.data$m2i[cerco.data$scale=="Scale 0-10"] <- 
  cerco.data$CercoSeverCont[cerco.data$scale=="Scale 0-10"]*10
# Scale 0-8
cerco.data$m1i[cerco.data$scale=="Scale 0-8" & 
                cerco.data$CercoSever <= 2] <-
  cerco.data$CercoSever[cerco.data$scale=="Scale 0-8"&
                           cerco.data$CercoSever <= 2]*2.5
cerco.data$m1i[cerco.data$scale=="Scale 0-8" & 
                cerco.data$CercoSever > 2 &
                cerco.data$CercoSever <= 4] <- 5 +
  (cerco.data$CercoSever[cerco.data$scale=="Scale 0-8"&
                            cerco.data$CercoSever > 2 &
                            cerco.data$CercoSever <= 4]-2)*5
cerco.data$m1i[cerco.data$scale=="Scale 0-8" & 
                cerco.data$CercoSever > 4 &
                cerco.data$CercoSever <= 6] <- 15 +
  (cerco.data$CercoSever[cerco.data$scale=="Scale 0-8"&
                            cerco.data$CercoSever > 4 &
                            cerco.data$CercoSever <= 6]-4)*10
cerco.data$m1i[cerco.data$scale=="Scale 0-8" & 
                cerco.data$CercoSever > 6] <- 35 +
  (cerco.data$CercoSever[cerco.data$scale=="Scale 0-8"&
                            cerco.data$CercoSever > 6]-6)*32.5
# Control
cerco.data$m2i[cerco.data$scale=="Scale 0-8" & 
                 cerco.data$CercoSeverCont <= 2] <-
  cerco.data$CercoSeverCont[cerco.data$scale=="Scale 0-8"&
                          cerco.data$CercoSeverCont <= 2]*2.5
cerco.data$m2i[cerco.data$scale=="Scale 0-8" & 
                 cerco.data$CercoSeverCont > 2 &
                 cerco.data$CercoSeverCont <= 4] <- 5 +
  (cerco.data$CercoSeverCont[cerco.data$scale=="Scale 0-8"&
                           cerco.data$CercoSeverCont > 2 &
                           cerco.data$CercoSeverCont <= 4]-2)*5
cerco.data$m2i[cerco.data$scale=="Scale 0-8" & 
                 cerco.data$CercoSeverCont > 4 &
                 cerco.data$CercoSeverCont <= 6] <- 15 +
  (cerco.data$CercoSeverCont[cerco.data$scale=="Scale 0-8"&
                           cerco.data$CercoSeverCont > 4 &
                           cerco.data$CercoSeverCont <= 6]-4)*10
cerco.data$m2i[cerco.data$scale=="Scale 0-8" & 
                 cerco.data$CercoSeverCont > 6] <- 35 +
  (cerco.data$CercoSeverCont[cerco.data$scale=="Scale 0-8"&
                           cerco.data$CercoSeverCont > 6]-6)*32.5

Scale 0-5

cerco.data$m1i[cerco.data$scale=="Scale 0-5" & 
                 cerco.data$CercoSever <= 1] <-
  cerco.data$CercoSever[cerco.data$scale=="Scale 0-5"&
                          cerco.data$CercoSever <= 1]*10
cerco.data$m1i[cerco.data$scale=="Scale 0-5" & 
                 cerco.data$CercoSever > 1 &
                 cerco.data$CercoSever <= 2] <- 10 +
  (cerco.data$CercoSever[cerco.data$scale=="Scale 0-5"& 
                           cerco.data$CercoSever > 1 &
                           cerco.data$CercoSever <= 2]-1)*15
cerco.data$m1i[cerco.data$scale=="Scale 0-5" & 
                 cerco.data$CercoSever > 2 ] <- 25 +
  (cerco.data$CercoSever[cerco.data$scale=="Scale 0-5"& 
                           cerco.data$CercoSever > 2]-2)*25
# Control
cerco.data$m2i[cerco.data$scale=="Scale 0-5" & 
                 cerco.data$CercoSeverCont <= 1] <-
  cerco.data$CercoSeverCont[cerco.data$scale=="Scale 0-5"&
                          cerco.data$CercoSeverCont <= 1]*10
cerco.data$m2i[cerco.data$scale=="Scale 0-5" & 
                 cerco.data$CercoSeverCont > 1 &
                 cerco.data$CercoSeverCont <= 2] <- 10 +
  (cerco.data$CercoSeverCont[cerco.data$scale=="Scale 0-5"& 
                           cerco.data$CercoSeverCont > 1 &
                           cerco.data$CercoSeverCont <= 2]-1)*15
cerco.data$m2i[cerco.data$scale=="Scale 0-5" & 
                 cerco.data$CercoSeverCont > 2 ] <- 25 +
  (cerco.data$CercoSeverCont[cerco.data$scale=="Scale 0-5"& 
                           cerco.data$CercoSeverCont > 2]-2)*25
# SD and replications
cerco.data$sd1i <- cerco.data$sd2i <- 20
cerco.data$n1i <- cerco.data$n2i <- cerco.data$replications

Target spot data

# Scale 0-10
target.spot.data$m1i[target.spot.data$scale=="Scale 0-10"] <- 
  target.spot.data$Tsseverity[target.spot.data$scale=="Scale 0-10"]*10
target.spot.data$m2i[target.spot.data$scale=="Scale 0-10"] <- 
  target.spot.data$TSseverityCont[target.spot.data$scale=="Scale 0-10"]*10
# Percentage
target.spot.data$m1i[target.spot.data$scale=="Percent"] <- 
  target.spot.data$Tsincidence[target.spot.data$scale=="Percent"]
target.spot.data$m2i[target.spot.data$scale=="Percent"] <- 
  target.spot.data$TSincidenceCont[target.spot.data$scale=="Percent"]
# Scale 0-5
target.spot.data$m1i[target.spot.data$scale=="Scale 0-5" & 
                 target.spot.data$Tsseverity <= 1] <-
  target.spot.data$Tsseverity[target.spot.data$scale=="Scale 0-5"&
                          target.spot.data$Tsseverity <= 1]*10
target.spot.data$m1i[target.spot.data$scale=="Scale 0-5" & 
                 target.spot.data$Tsseverity > 1 &
                 target.spot.data$Tsseverity <= 2] <- 10 +
  (target.spot.data$Tsseverity[target.spot.data$scale=="Scale 0-5"& 
                           target.spot.data$Tsseverity > 1 &
                           target.spot.data$Tsseverity <= 2]-1)*15
target.spot.data$m1i[target.spot.data$scale=="Scale 0-5" & 
                 target.spot.data$Tsseverity > 2 ] <- 25 +
  (target.spot.data$Tsseverity[target.spot.data$scale=="Scale 0-5"& 
                           target.spot.data$Tsseverity > 2]-2)*25
# Control
target.spot.data$m2i[target.spot.data$scale=="Scale 0-5" & 
                 target.spot.data$TSseverityCont <= 1] <-
  target.spot.data$TSseverityCont[target.spot.data$scale=="Scale 0-5"&
                              target.spot.data$TSseverityCont <= 1]*10
target.spot.data$m2i[target.spot.data$scale=="Scale 0-5" & 
                 target.spot.data$TSseverityCont > 1 &
                 target.spot.data$TSseverityCont <= 2] <- 10 +
  (target.spot.data$TSseverityCont[target.spot.data$scale=="Scale 0-5"& 
                               target.spot.data$TSseverityCont > 1 &
                               target.spot.data$TSseverityCont <= 2]-1)*15
target.spot.data$m2i[target.spot.data$scale=="Scale 0-5" & 
                 target.spot.data$TSseverityCont > 2 ] <- 25 +
  (target.spot.data$TSseverityCont[target.spot.data$scale=="Scale 0-5"& 
                               target.spot.data$TSseverityCont > 2]-2)*25
# SD and replications
target.spot.data$sd1i <- target.spot.data$sd2i <- 20
target.spot.data$n1i <- target.spot.data$n2i <- target.spot.data$replications

5. Take out categorical moderators with n < 5

Rust data

# Active ingredients
sort(table(rust.data$activeIngClean))
## 
##  cypr   myc  thio   azo   gly  flus tetra  dual  pyra  tebu   oth  flut 
##     2     4     5     6     6     7    10    15    25    31    37    44 
## mixed 
##   132
small.ing <- c("cypr", "myc")
rust.data$activeIngClean[rust.data$activeIngClean %in% small.ing] <- "oth"
table(rust.data$activeIngClean)
## 
##   azo  dual  flus  flut   gly mixed   oth  pyra  tebu tetra  thio 
##     6    15     7    44     6   132    43    25    31    10     5
# Class
sort(table(rust.data$classClean))
## 
## thiophanate   herbicide strobilurin       other    triazole         mma 
##           4           6          32          34         102         146
rust.data$classClean[rust.data$classClean=="thiophanate"] <- "other"
table(rust.data$classClean)
## 
##   herbicide         mma       other strobilurin    triazole 
##           6         146          38          32         102
# R-stage
sort(table(rust.data$growthStateClean))
## 
##       2       V       1       4 unknown       5      1+      2+       3 
##       8      10      11      16      18      27      51      75     108
# Applications 
sort(table(rust.data$applicationsNumb))
## 
##   5   3   1   2 
##   6  15 133 170

Yield data

# Applications
sort(table(yield.data$applicationsNumb))
## 
##   5   3   2   1 
##   3  22 241 254
yield.data <- yield.data[yield.data$applicationsNumb!=5,]
# R-stage
sort(table(yield.data$growthStateClean))
## 
##       V       4       1       2 unknown      1+       5      2+       3 
##       4      16      17      22      23      57      63     123     192
yield.data <- yield.data[yield.data$growthStateClean!="V",]
# Active ingredients
sort(table(yield.data$activeIngClean))
## 
##   gly  cypr  flus  thio   myc   azo tetra  dual  pyra  tebu   oth  flut 
##     2     6     7    10    11    27    35    42    46    48    52    63 
## mixed 
##   164
yield.data$activeIngClean[yield.data$activeIngClean=="gly"] <- "oth"
sort(table(yield.data$activeIngClean))
## 
##  cypr  flus  thio   myc   azo tetra  dual  pyra  tebu   oth  flut mixed 
##     6     7    10    11    27    35    42    46    48    54    63   164
# Class
sort(table(yield.data$classClean))
## 
##   herbicide thiophanate       other strobilurin    triazole         mma 
##           2           9          43          79         175         205
yield.data$classClean[yield.data$classClean=="herbicide"] <- "other"
sort(table(yield.data$classClean))
## 
## thiophanate       other strobilurin    triazole         mma 
##           9          45          79         175         205

100-seed weight data

# Applications and growth stage
sort(table(seedwt.data$applicationsNumb))
## 
##   3   2   1 
##   1  91 120
sort(table(seedwt.data$growthStateClean))
## 
##       1 unknown       5       4       2      1+      2+       3 
##       4       9      15      16      21      23      44      80
seedwt.data <- seedwt.data[seedwt.data$applicationsNumb!=3 & 
                             seedwt.data$growthStateClean!=1,]
# Active ingredients
sort(table(seedwt.data$activeIngClean))
## 
##   gly  thio  cypr   myc  dual   azo   oth tetra  pyra  tebu  flut mixed 
##     2     2     3     3     4     9    14    17    19    19    42    73
small.ing.100 <- c("gly", "thio" ,"cypr", "myc", "dual")
seedwt.data$activeIngClean[seedwt.data$activeIngClean %in% small.ing.100] <- "oth"
sort(table(seedwt.data$activeIngClean))
## 
##   azo tetra  pyra  tebu   oth  flut mixed 
##     9    17    19    19    28    42    73
# Class
sort(table(seedwt.data$classClean))
## 
##   herbicide thiophanate       other strobilurin         mma    triazole 
##           2           2          12          24          78          89
small.class.100 <- c("herbicide", "thiophanate")
seedwt.data$classClean[seedwt.data$classClean %in% small.class.100] <- "other"
sort(table(seedwt.data$classClean))
## 
##       other strobilurin         mma    triazole 
##          16          24          78          89

6. Calculate effect sizes

Overall means (raw mean difference)

rust.data.MD <- escalc(measure = "MD", m1i = m1i, m2i = m2i, 
                    sd1i = sd1i, sd2i = sd2i, n1i = n1i, n2i = n2i,
                    data = rust.data)
yield.data.MD <- escalc(measure = "MD", m1i = m1i, m2i = m2i, 
                     sd1i = sd1i, sd2i = sd2i, n1i = n1i, n2i = n2i,
                     data = yield.data)
seedwt.data.MD <- escalc(measure = "MD", m1i = m1i, m2i = m2i, 
                      sd1i = sd1i, sd2i = sd2i, n1i = n1i, n2i = n2i,
                      data = seedwt.data)
cerco.data.MD <- escalc(measure = "MD", m1i = m1i, m2i = m2i, 
                              sd1i = sd1i, sd2i = sd2i, n1i = n1i, n2i = n2i,
                              data = cerco.data)
target.spot.data.MD <- escalc(measure = "MD", m1i = m1i, m2i = m2i, 
                              sd1i = sd1i, sd2i = sd2i, n1i = n1i, n2i = n2i,
                              data = target.spot.data)

Standardized mean difference

rust.data.SMD <- escalc(measure = "SMD", m1i = m1i, m2i = m2i, 
              sd1i = sd1i, sd2i = sd2i, n1i = n1i, n2i = n2i,
              data = rust.data)
yield.data.SMD <- escalc(measure = "SMD", m1i = m1i, m2i = m2i, 
                     sd1i = sd1i, sd2i = sd2i, n1i = n1i, n2i = n2i,
                     data = yield.data)
seedwt.data.SMD <- escalc(measure = "SMD", m1i = m1i, m2i = m2i, 
                             sd1i = sd1i, sd2i = sd2i, n1i = n1i, n2i = n2i,
                             data = seedwt.data)

7. Save files for analysis

save(rust.data.SMD, yield.data.SMD, seedwt.data.SMD,
     rust.data.MD, yield.data.MD, seedwt.data.MD,
     cerco.data.MD, target.spot.data.MD,
     file="data/output_data/data_cleaned.R")

Footer

Spun with ezspin(“programs/data_processing.R”, out_dir=“output”, fig_dir=“figures”, keep_md=FALSE)

Session Info:

sessionInfo()
## R version 3.3.0 (2016-05-03)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: OS X 10.10.5 (Yosemite)
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] doBy_4.5-15   metafor_1.9-8 Matrix_1.2-6  knitr_1.13    ezknitr_0.4  
## 
## loaded via a namespace (and not attached):
##  [1] MASS_7.3-45       magrittr_1.5      formatR_1.4      
##  [4] tools_3.3.0       stringi_1.1.1     R.methodsS3_1.7.1
##  [7] grid_3.3.0        stringr_1.0.0     R.utils_2.3.0    
## [10] evaluate_0.9      R.oo_1.20.0       lattice_0.20-33