library(data.table)
library(lattice)
set.seed(314)
Read in data:
m1dat<-fread("1m_AWGW_Productivity_Comparison.txt",header=T)
head(m1dat)
## FID AW_fsp_1m GW_fsp_1m
## 1: 0 1.38427 2.48694
## 2: 1 1.38890 2.49483
## 3: 2 1.39355 2.50167
## 4: 3 1.39820 2.50623
## 5: 4 1.40286 2.50886
## 6: 5 1.40753 2.51078
Randomly select 500 rows for calculating and displaying confidence intervals in plots:
length(m1dat$AW_fsp_1m)
## [1] 4531848
m1sub<-m1dat[sample(nrow(m1dat), 500, replace=F),]
head(m1sub)
## FID AW_fsp_1m GW_fsp_1m
## 1: 447891 1.006530 2.94999
## 2: 1230295 1.562240 1.40491
## 3: 3473787 0.743726 2.68212
## 4: 1018044 2.026610 1.53739
## 5: 917442 0.815759 3.21753
## 6: 1374319 1.570810 1.17833
length(m1sub$AW_fsp_1m)
## [1] 500
Look for zeroes and replace with NA
. Productivity models were constrained to estimate values between 0 and 4 and therefore can predict very small numbers, but not zero. These zero values are cells that are outside the nesting areas of woodcock and warblers that were incorrectly assigned a value of zero instead of NA
during GIS processing.
head(m1dat)
## FID AW_fsp_1m GW_fsp_1m
## 1: 0 1.38427 2.48694
## 2: 1 1.38890 2.49483
## 3: 2 1.39355 2.50167
## 4: 3 1.39820 2.50623
## 5: 4 1.40286 2.50886
## 6: 5 1.40753 2.51078
summary(m1dat$AW_fsp_1m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.9302 1.5210 1.5770 2.1740 3.4755
summary(m1dat$GW_fsp_1m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 1.178 1.679 1.697 2.137 3.954
sum(m1dat$AW_fsp_1m==0)
## [1] 5367
sum(m1dat$GW_fsp_1m==0)
## [1] 3466
m1dat[m1dat==0]<-NA
Create a linear model: warbler productivity as a function of woodcock productivity (1-m scale):
lm1m<-lm(GW_fsp_1m~AW_fsp_1m, dat=m1dat)
summary(lm1m)
##
## Call:
## lm(formula = GW_fsp_1m ~ AW_fsp_1m, data = m1dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.95125 -0.51765 -0.03815 0.39789 2.61588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2018327 0.0007308 3012.8 <2e-16 ***
## AW_fsp_1m -0.3190672 0.0004155 -767.9 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.685 on 4523387 degrees of freedom
## (8459 observations deleted due to missingness)
## Multiple R-squared: 0.1153, Adjusted R-squared: 0.1153
## F-statistic: 5.897e+05 on 1 and 4523387 DF, p-value: < 2.2e-16
Plot relationship between woodcock and warbler productivity: NOTE: To visualize the relationship between predicted productivity of woodcock and warblers at the 1-m scale we use a random subset of 500 points. However, the model outputs and statistical relationships are reported from the results of models using the full data set (n=4,531,848).
plot(GW_fsp_1m~AW_fsp_1m, dat=m1sub,xlim=c(0,4), ylim=c(0,4),col="gray80", pch=16, ylab="Predicted warbler productivity", xlab="Predicted woodcock productivity")
abline(lm(GW_fsp_1m~AW_fsp_1m, data=m1sub), col = "dodgerblue4")
newx<-seq(0,4, by=0.1)
conf_interval <- predict(lm(GW_fsp_1m~AW_fsp_1m, data=m1sub), newdata=data.frame(AW_fsp_1m=newx), interval="confidence",level = 0.95)
lines(newx, conf_interval[,2], col="deepskyblue", lty=2)
lines(newx, conf_interval[,3], col="deepskyblue", lty=2)
Read in data:
m10dat<-fread("10m_AWGW_Productivity_Comparison.txt",header=T)
head(m10dat)
## FID AW_fsp_10m GW_fsp_10m
## 1: 31890 1.403950 0.000026
## 2: 31891 1.413510 0.000295
## 3: 31590 1.425820 0.001229
## 4: 36855 0.790661 0.003036
## 5: 37155 0.787652 0.003214
## 6: 37156 0.757358 0.008777
Randomly select 500 rows for calculating and displaying confidence intervals in plots:
length(m10dat$AW_fsp_10m)
## [1] 48462
m10sub<-m10dat[sample(nrow(m10dat), 500, replace=F),]
head(m10sub)
## FID AW_fsp_10m GW_fsp_10m
## 1: 32553 1.574850 1.28506
## 2: 7398 0.658935 2.76299
## 3: 32558 1.650390 1.04486
## 4: 38902 1.015460 1.27343
## 5: 28725 0.862085 2.32546
## 6: 34244 2.484060 1.68034
length(m10sub$AW_fsp_10m)
## [1] 500
Look for zeroes and replace with NA
summary(m10dat$AW_fsp_10m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.9204 1.5163 1.5704 2.1715 3.4737
summary(m10dat$GW_fsp_10m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000026 1.197037 1.703970 1.715658 2.142030 3.947770
sum(m10dat$AW_fsp_10m==0)
## [1] 53
sum(m10dat$GW_fsp_10m==0)
## [1] 0
m10dat[m10dat==0]<-NA
Create a linear model: warbler productivity ~ woodcock productivity (10-m scale):
lm10m<-lm(GW_fsp_10m~AW_fsp_10m, dat=m10dat)
summary(lm10m)
##
## Call:
## lm(formula = GW_fsp_10m ~ AW_fsp_10m, data = m10dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9673 -0.5120 -0.0335 0.3924 2.5903
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.215533 0.007000 316.48 <2e-16 ***
## AW_fsp_10m -0.317925 0.003993 -79.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6818 on 48407 degrees of freedom
## (53 observations deleted due to missingness)
## Multiple R-squared: 0.1158, Adjusted R-squared: 0.1158
## F-statistic: 6340 on 1 and 48407 DF, p-value: < 2.2e-16
Plot relationship between woodcock and warbler productivity: NOTE: To visualize the relationship between predicted productivity of woodcock and warblers at the 1-m scale we use a random subset of 500 points. However, the model outputs and statistical relationships are reported from the results of models using the full data set (n=48,462).
plot(GW_fsp_10m~AW_fsp_10m, dat=m10sub,xlim=c(0,4), ylim=c(0,4),col="gray80", pch=16, ylab="Predicted warbler productivity", xlab="Predicted woodcock productivity")
abline(lm(GW_fsp_10m~AW_fsp_10m, data=m10sub), col = "dodgerblue4")
newx<-seq(0,4, by=0.1)
conf_interval <- predict(lm(GW_fsp_10m~AW_fsp_10m, data=m10sub), newdata=data.frame(AW_fsp_10m=newx), interval="confidence",level = 0.95)
lines(newx, conf_interval[,2], col="deepskyblue", lty=2)
lines(newx, conf_interval[,3], col="deepskyblue", lty=2)
Read in data:
m100dat<-fread("100m_AWGW_Productivity_Comparison.txt",header=T)
head(m100dat)
## FID AW_fsp_100m GW_fsp_100m
## 1: 385 0.652698 0.086628
## 2: 755 2.864630 0.276092
## 3: 692 2.921150 0.353741
## 4: 816 3.417580 0.387830
## 5: 691 2.937080 0.413255
## 6: 787 3.087190 0.425296
Randomly select 500 rows for calculating and displaying confidence intervals in plots:
length(m100dat$AW_fsp_100m)
## [1] 651
m100sub<-m100dat[sample(nrow(m100dat), 500, replace=F),]
head(m100sub)
## FID AW_fsp_100m GW_fsp_100m
## 1: 1 1.436660 3.17184
## 2: 302 2.409880 1.46802
## 3: 529 1.962190 1.94752
## 4: 81 0.401154 3.37097
## 5: 187 2.077020 1.61532
## 6: 889 1.074140 2.60639
length(m100sub$AW_fsp_100m)
## [1] 500
Look for zeroes and replace with NA
summary(m100dat$AW_fsp_100m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1507 0.8905 1.4590 1.5402 2.1606 3.4176
summary(m100dat$GW_fsp_100m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.08663 1.39831 1.73658 1.80167 2.11624 3.87699
sum(m100dat$AW_fsp_100m==0)
## [1] 0
sum(m100dat$GW_fsp_100m==0)
## [1] 0
m100dat[m100dat==0]<-NA
Create a linear model: warbler productivity ~ woodcock productivity (100-m scale):
lm100m<-lm(GW_fsp_100m~AW_fsp_100m, dat=m100dat)
summary(lm100m)
##
## Call:
## lm(formula = GW_fsp_100m ~ AW_fsp_100m, data = m100dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.99298 -0.43403 -0.08285 0.32173 2.30616
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.28402 0.05557 41.100 <2e-16 ***
## AW_fsp_100m -0.31318 0.03221 -9.722 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6386 on 649 degrees of freedom
## Multiple R-squared: 0.1271, Adjusted R-squared: 0.1258
## F-statistic: 94.51 on 1 and 649 DF, p-value: < 2.2e-16
Plot relationship between woodcock and warbler productivity: NOTE: To visualize the relationship between predicted productivity of woodcock and warblers at the 1-m scale we use a random subset of 500 points. However, the model outputs and statistical relationships are reported from the results of models using the full data set (n=651).
plot(GW_fsp_100m~AW_fsp_100m, dat=m100sub,xlim=c(0,4), ylim=c(0,4),col="gray80", pch=16, ylab="Predicted warbler productivity", xlab="Predicted woodcock productivity")
abline(lm(GW_fsp_100m~AW_fsp_100m, data=m100sub), col = "dodgerblue4")
newx<-seq(0,4, by=0.1)
conf_interval <- predict(lm(GW_fsp_100m~AW_fsp_100m, data=m100sub), newdata=data.frame(AW_fsp_100m=newx), interval="confidence",level = 0.95)
lines(newx, conf_interval[,2], col="deepskyblue", lty=2)
lines(newx, conf_interval[,3], col="deepskyblue", lty=2)
Read in data:
m500dat<-fread("500m_AWGW_Productivity_Comparison.txt",header=T)
head(m500dat)
## FID AW_fsp_500m GW_fsp_500m
## 1: 0 0.944799 2.88861
## 2: 1 1.132840 2.41723
## 3: 2 0.941431 1.82450
## 4: 3 1.239690 1.35565
## 5: 4 0.415716 2.97291
## 6: 5 1.355230 3.27760
Length of data is <500 so we won’t randomly sample 500 points:
length(m500dat$AW_fsp_500m)
## [1] 36
Look for zeroes and replace with NA
summary(m500dat$AW_fsp_500m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3225 0.9440 1.3899 1.5226 2.0559 2.9460
summary(m500dat$GW_fsp_500m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.7889 1.5506 1.7603 1.8398 2.0465 3.2776
sum(m500dat$AW_fsp_500m==0)
## [1] 0
sum(m500dat$GW_fsp_500m==0)
## [1] 0
Create a linear model: warbler productivity ~ woodcock productivity (500-m scale):
lm500m<-lm(GW_fsp_500m~AW_fsp_500m, dat=m500dat)
summary(lm500m)
##
## Call:
## lm(formula = GW_fsp_500m ~ AW_fsp_500m, data = m500dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6867 -0.3960 -0.1449 0.2658 1.3805
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3614 0.2076 11.376 3.89e-13 ***
## AW_fsp_500m -0.3426 0.1242 -2.759 0.00928 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5138 on 34 degrees of freedom
## Multiple R-squared: 0.1829, Adjusted R-squared: 0.1589
## F-statistic: 7.61 on 1 and 34 DF, p-value: 0.009277
Plot relationship between woodcock and warbler productivity:
plot(GW_fsp_500m~AW_fsp_500m, dat=m500dat,xlim=c(0,4), ylim=c(0,4),col="gray80", pch=16, ylab="Predicted warbler productivity", xlab="Predicted woodcock productivity")
abline(lm(GW_fsp_500m~AW_fsp_500m, data=m500dat), col = "dodgerblue4")
newx<-seq(0,4, by=0.1)
conf_interval <- predict(lm(GW_fsp_500m~AW_fsp_500m, data=m500dat), newdata=data.frame(AW_fsp_500m=newx), interval="confidence",level = 0.95)
lines(newx, conf_interval[,2], col="deepskyblue", lty=2)
lines(newx, conf_interval[,3], col="deepskyblue", lty=2)
Read in data:
m1000dat<-fread("1000m_AWGW_Productivity_Comparison.txt",header=T)
head(m1000dat)
## FID AW_fsp_1000m GW_fsp_1000m
## 1: 0 1.479250 1.81228
## 2: 1 1.178510 1.54574
## 3: 2 0.881557 2.68942
## 4: 3 1.940510 1.73216
## 5: 4 2.078460 1.62952
## 6: 5 0.692374 1.73047
Length of data is <500 so we won’t randomly sample 500 points:
length(m1000dat$AW_fsp_1000m)
## [1] 9
Look for zeroes and replace with NA
summary(m1000dat$AW_fsp_1000m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6924 1.1785 1.4792 1.5502 2.0785 2.2934
summary(m1000dat$GW_fsp_1000m)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.097 1.630 1.730 1.742 1.772 2.689
sum(m1000dat$AW_fsp_1000m==0)
## [1] 0
sum(m1000dat$GW_fsp_1000m==0)
## [1] 0
Create a linear model: warbler productivity ~ woodcock productivity (1,000-m scale):
lm1000m<-lm(GW_fsp_1000m~AW_fsp_1000m, dat=m1000dat)
summary(lm1000m)
##
## Call:
## lm(formula = GW_fsp_1000m ~ AW_fsp_1000m, data = m1000dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.36981 -0.32865 0.04413 0.13457 0.70025
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3151 0.3667 6.314 0.000399 ***
## AW_fsp_1000m -0.3698 0.2224 -1.663 0.140258
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3753 on 7 degrees of freedom
## Multiple R-squared: 0.2832, Adjusted R-squared: 0.1808
## F-statistic: 2.766 on 1 and 7 DF, p-value: 0.1403
Plot relationship between woodcock and warbler productivity:
plot(GW_fsp_1000m~AW_fsp_1000m, dat=m1000dat,xlim=c(0,4), ylim=c(0,4),col="gray80", pch=16, ylab="Predicted warbler productivity", xlab="Predicted woodcock productivity")
abline(lm(GW_fsp_1000m~AW_fsp_1000m, data=m1000dat), col = "dodgerblue4")
newx<-seq(0,4, by=0.1)
conf_interval <- predict(lm(GW_fsp_1000m~AW_fsp_1000m, data=m1000dat), newdata=data.frame(AW_fsp_1000m=newx), interval="confidence",level = 0.95)
lines(newx, conf_interval[,2], col="deepskyblue", lty=2)
lines(newx, conf_interval[,3], col="deepskyblue", lty=2)
Now look at the relationship between predicted productivity of both woodcock and warblers at observed nesting sites. Start with observed woodcock nests. Read in data:
amwo.nest<-read.csv("AMWO_nests_P.csv", header=T)
head(amwo.nest)
## woodcockNest latitude longitude AW_prod GW_prod
## 1 0 47.01400 -95.55981 0.530463 1.97729
## 2 1 47.01559 -95.56278 0.640692 2.54529
## 3 3 47.01454 -95.58684 1.290080 2.50420
## 4 4 47.01691 -95.58857 2.082880 1.27677
## 5 5 47.00407 -95.58846 2.187890 2.06897
## 6 6 46.99916 -95.60613 0.998835 2.47945
Fit a linear model to the relationship between predicted warbler productivity and predicted woodcock productivity at observed woodcock nest sites:
aw.mod<-lm(GW_prod~AW_prod, data=amwo.nest)
summary(aw.mod)
##
## Call:
## lm(formula = GW_prod ~ AW_prod, data = amwo.nest)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1573 -0.4919 -0.1235 0.3481 2.0985
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0007 0.1884 10.617 1.82e-13 ***
## AW_prod -0.2357 0.1200 -1.964 0.0561 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6503 on 42 degrees of freedom
## Multiple R-squared: 0.08413, Adjusted R-squared: 0.06233
## F-statistic: 3.858 on 1 and 42 DF, p-value: 0.05614
Plot results:
newx<-seq(0,4, by=0.1)
conf_interval <- predict(aw.mod, newdata=data.frame(AW_prod=newx), interval="confidence", level = 0.95)
plot(GW_prod~AW_prod, data=amwo.nest, xlim=c(0,4), ylim=c(0,4), pch=17,col="gray80", ylab="Predicted American Woodcock Productivity", xlab="Predicted Golden-winged Warbler Productivity")
abline(aw.mod, col = "orangered4", lwd=2.5)
lines(newx, conf_interval[,2], col="orangered", lty=2, lwd=2.5)
lines(newx, conf_interval[,3], col="orangered", lty=2, lwd=2.5)
Now look at the relationship between predicted warbler and predicted woodcock productivity at observed warbler nest sites. Read in the data:
gwwa.nest<-read.csv("GWWA_nest_P.csv", header=T)
head(gwwa.nest)
## warblerNest latitude longitude AW_prod GW_prod
## 1 1 47.01785 -95.58181 2.002660 1.04543
## 2 2 47.01241 -95.61644 0.833307 2.00133
## 3 3 47.01468 -95.56257 0.619742 2.42882
## 4 4 47.01204 -95.61756 0.842108 1.58087
## 5 5 47.01221 -95.61774 0.834223 1.55911
## 6 6 47.01248 -95.61583 0.829187 2.30904
Fit linear model between predicted warbler productivity and predicted woodcock productivity at observed warbler nest sites:
gw.mod<-lm(GW_prod~AW_prod, data=gwwa.nest)
summary(gw.mod)
##
## Call:
## lm(formula = GW_prod ~ AW_prod, data = gwwa.nest)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.38321 -0.39079 0.02935 0.36409 1.18654
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.09115 0.08641 24.20 < 2e-16 ***
## AW_prod -0.33032 0.06292 -5.25 5.44e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.507 on 142 degrees of freedom
## Multiple R-squared: 0.1625, Adjusted R-squared: 0.1566
## F-statistic: 27.56 on 1 and 142 DF, p-value: 5.442e-07
Visualize the results:
newx<-seq(0,4, by=0.1)
conf_interval <- predict(gw.mod, newdata=data.frame(AW_prod=newx), interval="confidence", level = 0.95)
plot(GW_prod~AW_prod, data=gwwa.nest, xlim=c(0,4), ylim=c(0,4), pch=17,col="gray80", xlab="Predicted American Woodcock Productivity", ylab="Predicted Golden-winged Warbler Productivity")
abline(gw.mod, col = "orangered4", lwd=2.5)
lines(newx, conf_interval[,2], col="orangered", lty=2, lwd=2.5)
lines(newx, conf_interval[,3], col="orangered", lty=2, lwd=2.5)
Lastly, we can look at the density plots of productivity (1-m scale) over the study area for both species:
d.woodcock<-density(m1dat$AW_fsp_1m, bw = 0.07381, na.rm=TRUE)
plot(d.woodcock, main= "American woodcock", xlab="Predicted productivity", ylab="Density")
polygon(d.woodcock, col="lightblue")
d.warbler<-density(m1dat$GW_fsp_1m, bw=0.07395, na.rm=TRUE)
plot(d.warbler, main= "Golden-winged warbler", xlab="Predicted productivity", ylab="Density")
polygon(d.warbler, col="lightgreen")
devtools::session_info()
## - Session info ----------------------------------------------------------
## setting value
## version R version 3.5.1 (2018-07-02)
## os Windows 7 x64 SP 1
## system x86_64, mingw32
## ui RTerm
## language (EN)
## collate English_United States.1252
## ctype English_United States.1252
## tz America/New_York
## date 2019-02-05
##
## - Packages --------------------------------------------------------------
## package * version date lib source
## assertthat 0.2.0 2017-04-11 [1] CRAN (R 3.5.1)
## backports 1.1.2 2017-12-13 [1] CRAN (R 3.5.0)
## callr 3.1.0 2018-12-10 [1] CRAN (R 3.5.1)
## cli 1.0.1 2018-09-25 [1] CRAN (R 3.5.1)
## crayon 1.3.4 2017-09-16 [1] CRAN (R 3.5.1)
## data.table * 1.11.4 2018-05-27 [1] CRAN (R 3.5.1)
## desc 1.2.0 2018-05-01 [1] CRAN (R 3.5.1)
## devtools * 2.0.1 2018-10-26 [1] CRAN (R 3.5.1)
## digest 0.6.18 2018-10-10 [1] CRAN (R 3.5.1)
## evaluate 0.11 2018-07-17 [1] CRAN (R 3.5.1)
## fs 1.2.6 2018-08-23 [1] CRAN (R 3.5.1)
## glue 1.3.0 2018-07-17 [1] CRAN (R 3.5.1)
## htmltools 0.3.6 2017-04-28 [1] CRAN (R 3.5.1)
## knitr 1.20 2018-02-20 [1] CRAN (R 3.5.1)
## lattice * 0.20-35 2017-03-25 [1] CRAN (R 3.5.1)
## magrittr 1.5 2014-11-22 [1] CRAN (R 3.5.1)
## memoise 1.1.0 2017-04-21 [1] CRAN (R 3.5.1)
## pkgbuild 1.0.2 2018-10-16 [1] CRAN (R 3.5.1)
## pkgload 1.0.2 2018-10-29 [1] CRAN (R 3.5.1)
## prettyunits 1.0.2 2015-07-13 [1] CRAN (R 3.5.1)
## processx 3.2.1 2018-12-05 [1] CRAN (R 3.5.1)
## ps 1.2.1 2018-11-06 [1] CRAN (R 3.5.1)
## R6 2.3.0 2018-10-04 [1] CRAN (R 3.5.1)
## Rcpp 1.0.0 2018-11-07 [1] CRAN (R 3.5.1)
## remotes 2.0.2 2018-10-30 [1] CRAN (R 3.5.1)
## rlang 0.3.0.1 2018-10-25 [1] CRAN (R 3.5.1)
## rmarkdown 1.10 2018-06-11 [1] CRAN (R 3.5.1)
## rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.5.1)
## sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.5.1)
## stringi 1.2.4 2018-07-20 [1] CRAN (R 3.5.1)
## stringr 1.3.1 2018-05-10 [1] CRAN (R 3.5.1)
## usethis * 1.4.0 2018-08-14 [1] CRAN (R 3.5.1)
## withr 2.1.2 2018-03-15 [1] CRAN (R 3.5.1)
## yaml 2.2.0 2018-07-25 [1] CRAN (R 3.5.1)
##
## [1] C:/Program Files/R/R-3.5.1/library
```