

Automatic Detection of RWIS Sensor Malfunctions (Phase II)

Final Report

Prepared by:

Carolyn J. Crouch
Donald B. Crouch
Richard M. Maclin
Aditya Polumetla

Department of Computer Science
University of Minnesota Duluth

Northland Advanced Transportation Systems Research Laboratory (NATSRL)

University of Minnesota Duluth

CTS 09-11

Technical Report Documentation Page
1. Report No. 2. 3. Recipients Accession No.
CTS 09-11
4. Title and Subtitle 5. Report Date

March 2009
6.

Automatic Detection of RWIS Sensor Malfunctions (Phase II)

7. Author(s) 8. Performing Organization Report No.
Carolyn Crouch, Donald Crouch, Richard Maclin,
Aditya Polumetla

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
CTS Project # 200625
11. Contract (C) or Grant (G) No.

Department of Computer Science
University of Minnesota Duluth
1114 Kirby drive
Duluth, MN 55812

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered
Final Report
14. Sponsoring Agency Code

Intelligent Transportation Systems Institute
Center for Transportation Studies
University of Minnesota
511 Washington Avenue SE, Suite 200
Minneapolis, Minnesota 55455

15. Supplementary Notes
http://www.cts.umn.edu/Publications/ResearchReports/
16. Abstract (Limit: 250 words)
The overall goal of this project (Phases I & II) was to develop computerized procedures that detect Road Weather
Information System (RWIS) sensor malfunctions. In the first phase of the research we applied three classification
algorithms and six regression algorithms to data generated by RWIS sensors in order to predict malfunctions. In
this phase we investigate the use of Hidden Markov models as predictors of sensor values.

The Hidden Markov model (HMM) is a technique used to model a sequence of temporal events. For example,
suppose we have the sequence of values produced by a given sensor over a fixed time period. An HMM can be
used to produce this sequence and then to determine the probability of occurrence of another sequence of values,
such as that produced by the given sensor for a subsequent time period. If the actual values produced by the sensor
deviate from the predicted sequence then a malfunction may have occurred.

This report provides an overview of the Hidden Markov model and three algorithms, namely, the Forward-
Backward algorithms, the Baum-Welch algorithm, and the Viterbi algorithm, that were used in our development of
Hidden Markov models to predict sensor values. We performed a series of experiments to evaluate the use of
HMMs as predictors of temperature and precipitation sensor values.

17. Document Analysis/Descriptors 18. Availability Statement
Hidden Markov model, RWIS sensor No restrictions. Document available from:

National Technical Information Services,
Springfield, Virginia 22161

19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price
Unclassified Unclassified 43

Automatic Detection of RWIS Sensor Malfunctions
(Phase II)

Final Report

Prepared by

Carolyn J. Crouch
Donald B. Crouch
Richard M. Maclin
Aditya Polumetla

Department of Computer Science
University of Minnesota Duluth

Northland Advanced Transportation Systems Research Laboratory (NATSRL)

University of Minnesota Duluth

March 2009

Published by

Intelligent Transportation Systems Institute
Center for Transportation Studies

University of Minnesota
511 Washington Avenue SE, Suite 200

Minneapolis, Minnesota 55455

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the
information presented herein. This document is disseminated under the sponsorship of the Department of
Transportation University Transportation Centers Program, in the interest of information exchange. The U.S.
Government assumes no liability for the contents or use thereof. This report does not necessarily reflect the official
views or policies of the Northland Advanced Transportation Systems Research Laboratories, the Intelligent
Transportation Systems Institute or the University of Minnesota.

Acknowledgements

The authors wish to acknowledge those who made this research possible. The study was funded
by the Intelligent Transportation Systems (ITS) Institute, a program of the University of
Minnesota’s Center for Transportation Studies (CTS). Financial support was provided by the
United States Department of Transportation’s Research and Innovative Technologies
Administration (RITA).

The project was also supported by the Northland Advanced Transportation Systems Research
Laboratories (NATSRL), a cooperative research program of the Minnesota Department of
Transportation, the ITS Institute, and the University of Minnesota Duluth College of Science and
Engineering. Some of the key students working with us on this project included Saiyam Kohli,
Ajit Datar, Jeff Sharkey and Jason Novek.

Table of Contents

Chapter 1 Introduction .. 1

Chapter 2 Hidden Markov Models ... 3

2.1 Forward/Backward Algorithms .. 5

2.2 Viterbi Algorithm ... 6

2.3 Baum-Welch Algorithm ... 8

Chapter 3 Weather Data Modeling ... 10

3.1 RWIS Sensor Data .. 11

3.2 AWOS Sensor Data .. 13

3.3 Sensor Data Transformation ... 14

3.4 Discretization of the Data ... 16

3.5 Feature Vectors ... 17

Chapter 4 Hidden Markov Approach.. 19

Chapter 5 Empirical Analysis ... 22

5.1 Training the HMM.. 23

5.2 Predicting Temperature... 24

5.3 Site Independent Prediction of Temperature .. 26

5.4 Predicting Precipitation Type ... 27

Chapter 6 Conclusions .. 29

References... 30

Appendix A: Experimental Results

List of Tables

Table 2.1. Forward Algorithm .. 6

Table 2.2. Backward Algorithm.. 7

Table 2.3. Viterbi Algorithm .. 7

Table 2.4. Baum-Welch Algorithm .. 9

Table 3.1. RWIS Precipitation Codes ... 12

Table 3.2. RWIS Temperature Classes ... 17

Table 4.1. Modified Viterbi Algorithm... 19

Table 5.1. RWIS Temperature Classes for Nearby Sites.. 22

List of Figures

Figure 2.1. An HMM with Four States and Three Possible Outputs.. 4

Figure 3.1. Location of RWIS/AWOS Sites... 10

Figure 5.1. Percentage of Instances in Test Set .. 24

Figure 5.2. Percentage of Instances with Differences between Actual and Predicted Values...... 25

Figure 5.3. Difference between Actual and Site Independent Predicted Values 27

Figure 5.4. Correctness of Prediction of Precipitation Type and Presence 28

Executive Summary

In this report we investigate the use of Hidden Markov models to predict RWIS sensor values.
The Hidden Markov model (HMM) is a technique used to model a sequence of temporal events.
For example, suppose we have the sequence of values produced by a given sensor over a fixed
time period. An HMM can be modeled to produce this sequence and then used to determine the
probability of the occurrence of another sequence of values, such as that produced by the given
sensor for a subsequent time period. If the actual values produced by the sensor deviate from the
predicted sequence then a malfunction may have occurred.

Hidden Markov Models performed well for classifying discretized temperature values but failed
to predict precipitation type correctly in most cases. A threshold distance of 3 between the actual
and the predicted temperature class value may be used to detect temperature sensor malfunctions.
When predicting temperature, a single model from a group obtained from using the combined
dataset yielded results similar to those obtained from predicting temperature at single sites over a
group. This leads us to conclude that a single model built using datasets from all sites together
can be effectively used to identity malfunctions at any site in the group. We find the models
produced by HMM for precipitation type have a high error when classifying the presence or
absence of precipitation and should not be used for precipitation predictions.

 1

Chapter 1
Introduction

 The overall goal of this project (Phases I & II) was to develop computerized procedures that
detect Road Weather Information System (RWIS) sensor malfunctions. In the first phase of the
research we applied two classes of machine learning techniques to data generated by RWIS
sensors in order to predict sensor malfunctions and thereby improve accuracy in forecasting
temperature, precipitation, and other weather-related data. We built models using machine
learning (ML) methods that employ data from nearby sensors in order to predict likely values of
those sensor that are being monitored. A sensor deviating noticeably from values inferred from
nearby sensors indicates that the sensor has begun to fail. We used both classification and
regression algorithms in Phase I. In particular, we used three classification algorithms, namely,
J48 decision trees, naïve Bayes, and Bayesian networks and six regression algorithms, that is,
linear regression, least median squares (LMS), M5P, multilayer perceptron (MLP), radial basis
function network (RBF), and the conjunctive rule algorithm (CR). We performed a series of
experiments to determine which of these models could be used to detect malfunctions in RWIS
sensors. We compared the values predicted by the various ML methods to the actual values
observed at an RWIS sensor to detect sensor malfunction. Detailed information regarding our
approach to solving the overall objective of this project is contained in the final report for Phase I
[1].

Accuracy of an algorithm in predicting values plays a major role in determining the accuracy
with which malfunctions can be identified. From the experiments performed to predict
temperature at an RWIS sensor, we concluded that the classification algorithms LMS and M5P
gave results accurate to ±1°F and had low standard deviation across sites. Both models were
identified as able to detect sensor malfunctions accurately. RBF Networks and CR failed to
predict temperature values. A threshold distance of 2°F between actual and predicted
temperature values is sufficient to identify a sensor malfunction when J48 is used to predict
temperature class values. The use of precipitation as an additional source of decision information
produced no significant improvement with respect to the accuracy of these algorithms in
predicting temperature.

The J48, naïve Bayes, and Bayesian net exhibited mixed results when predicting the presence or
absence of precipitation. However, a combination of J48 and Bayesian nets can be used to detect
precipitation sensor malfunctions, with J48 being used to predict the absence of precipitation and
Bayesian networks the presence of precipitation. Visibility was best classified using M5P. When
the difference between prediction error and the mean absolute error for M5P is greater than 1.96
standard deviations, one can reasonably conclude that the sensor is malfunctioning.

In Phase II, we investigated the use of Hidden Markov models to predict RWIS sensor values.
The Hidden Markov model (HMM) is a technique used to model a sequence of temporal events.
For example, suppose we have the sequence of values produced by a given sensor over a fixed
time period. An HMM can be modeled to produce this sequence and then used to determine the
probability of occurrence of another sequence of values, such as that produced by the given

 2

sensor for a subsequent time period. If the actual values produced by the sensor deviate from the
predicted sequence then a malfunction may have occurred.

 3

Chapter 2
Hidden Markov Models

A discrete process taking place in the real world generates what can be viewed as a symbol at
each step. For example, the temperature at a given site is a result of existing weather conditions
and the sensor’s location. Over a period of time the process generates a temporal sequence of
symbols. Based on the outcome of the process, these symbols can be discrete (e.g., precipitation
type) or continuous (e.g., temperature). Hidden Markov models may be used to analyze a
sequence of observed symbols and to produce a statistical model that describes the workings of
the process and the generation of symbols over time. Such a model can then be employed to
identity or classify other sequences of the same process.

Hidden Markov models capture temporal data in the form of a directed graph. Each node
represents a state used in recognizing a sequence of events. The arcs between nodes represent a
transition probability from one state to another; probabilities can be combined to determine the
probability that a given sequence will be produced by the HMM. Transitions between states are
triggered by events in the domain. HMM states are referred to as hidden because the system we
wish to model may have underlying causes that cannot be observed. For example, factors that
determine the position and velocity of an object when the only information available is its
position are non-observable. The hidden process taking place in a system can be determined
from the events that generate the sequence of observable events.

State transition networks can be used to represent knowledge about a system. HMM state
transition networks have an initial state and an accepting or end state. The network recognizes a
sequence of events if these events start at the initial state and end in the accepting state. A
Markov model is a probabilistic model over a finite set of states, where the probability of being
in a state at a time t depends only on the previous state visited at time t-1. An HMM is a model
where the system being modeled is assumed to be a Markovian process with unknown
parameters.

The components that constitute an HMM are a finite set of states, a set of transitions between
these states and their corresponding probability values, and a set of output symbols emitted by
the states. An initial state distribution gives the probability of being in a particular state at the
start of the path. After each time interval a new state is entered depending on the transition
probability from the previous state. This follows a simple Markov model in which the probability
of entering a state depends only on the previous state. The state sequence obtained over time is
called the path. The transition probability akm of moving from a state k to a state m is given by
the probability of being in state m at time t when at time t-1 we were in state k

akm = P(patht = m | patht-1 = k).

After a transition is made to a new state, a symbol is emitted from the new state. Thus as the state
path is followed we get a sequence of symbols (x1, x2, x3, ...). The symbol which is observed at a
state is based on a probability distribution that depends on the state. The probability that a
symbol b is emitted on transition to state k, called the emission probability (e), is determined by

 4

eb(k) = P(xt = b | patht = k).

Consider the HMM example in Figure 2.1 in which there are only three possible output symbols,
p, q, and r, and four states, 1, 2, 3 and 4. In this case our state transition probability matrix will
be of size 4x4 and the emission probability matrix will be of size 3 by 4. At each state we can
observe any of the three symbols p, q and r based on their respective emission probabilities at
that respective state. The transition from one state to another is associated with the transition
probability between the respective states. The transition probability of moving from state 1 to
state 2 is represented by a12. Assuming a sequence length of 24, we will observe 24 transitions,
including a transition from the start state and an ending at the end state after the 24th symbol is
seen. The HMM in Figure 2.1 allows all possible state transitions.

Rabiner and Juang list three basic questions that have to be answered satisfactorily in order for
an HHM model to be used effectively [2]:

(1) What is the probability that an observed sequence is produced by the given model?

A model can generate many sequences based on the transitions taking place and symbols
emitted each time a state is visited. The probability of the observed sequence being
reproduced by the model gives an estimate of how good the model is; a low probability
indicates that this model probably did not produce it. Forward/Backward algorithms can be
used to find the probability of observing a sequence in a given model [3].

Figure 2.1. An HMM with Four States and Three Possible Outputs

1

4 3

2

start end

p,q,r

p,q,r
p,q,r

p,q,r

a1e

as4

a4e

as2

a3e

a2e

as3

as1

a13

a31 a42 a24

a21

a12

a34

a43

a23

a32

a32

a23

a11

a33

a22

a44

 5

(2) How do we find an optimal state sequence (path) for a given observation sequence?

HMMs may contain multiple paths that yield a given sequence of symbols. In order to
select the optimal state path, we need to identify the path with the highest probability of
occurrence. The Viterbi algorithm is a procedure that finds the single best path in the model
for a given sequence of symbols [4,5].

 (3) How do we adjust the model parameters, that is, the transition probabilities, emission
probabilities, and the initial state probability, to generate a model that best represents the
training set?

Model parameters need to be adjusted so as to maximize the probability of the observed
sequence. The Baum-Welch algorithm is a method that uses an iterative approach to solve
this problem [2]. It starts with preassigned probabilities and adjusts them dynamically
based on the observed sequences in the training set.

The Forward/Backward algorithms, the Baum-Welch algorithm, and the Viterbi algorithm are
used extensively in our development of HMM models. They are relatively efficient algorithms
that have been proposed to solve these three problems [6]. We will describe these algorithms in
detail in the following sections.

2.1 Forward/Backward Algorithms

A sequence of observations can be generated by taking different paths in an HMM model. To
find the probability of a sequence we need to total the probabilities that are obtained for each
possible path the sequence can take. The Forward/Backward algorithms use dynamic
programming to calculate this probability; the major advantage of these algorithms is that all
possible paths do not have to be enumerated.

Since HMMs follow the Markov property, the probability of a path including a particular state
depends only on the state that was entered before it. The Forward Algorithm uses this property to
find the probability of the symbol sequence. Consider an HMM model in which i – 1 symbols in
a sequence x of length L have been observed and the incoming symbol at position i in the
sequence is xi. The probability that symbol xi is in state m can be determined by first summing
over all possible states k the product of two probabilities, the probability of being at any state k
when the last symbol was observed and the transition probability of moving from state k to state
m, and then multiplying this summation result by the emission probability of xi at state m. If a
transition is not possible, then the transition probability is taken as 0. This formula for
calculating the probability of observing xi at position i in state m is referred to as the forward
probability and is expressed as

∑ −=
k

kmkimm aifxeif)1()()(.

The pseudocode for the Forward Algorithm is given in Table 2.1 [7].

 6

Table 2.1. Forward Algorithm

Forward Algorithm

Initialization (i = 0) : f0(0) =1; fk (0) = 0,k > 0.

Iteration (i = 1 ... L) : ∑ −=
k

kmkimm aifxeif)1()()(

Termination : ∑=
k

kk aLfxP 0)()(

fm(i) - probability of seeing the symbol at position i in state m

em(xi) - probability of emitting the symbol xi by state m

akm - probability of transition from state k to state m

P(x) - probability of observing the entire sequence x

L - length of the sequence

The Backward Algorithm can also be used to calculate the probability of an observed sequence.
It works analogously to the Forward Algorithm; however, instead of calculating the probability
values from the start state, the Backward Algorithm starts at the end state and moves towards the
start state. In each backward step, it calculates the probability of being at that state taking into
account that the sequence from the current state to the end state has already been observed. The
backward probability bk(i), the probability of observing the remainder of the sequence given that
the current state is k after observing i symbols, is defined as

)|.....()(1 kpathxxpib iLik == + .

The pseudocode for the Backward Algorithm is given in Table 2.2 [7]. The final probability
generated by either the Forward or Backward algorithm is the same.

2.2 Viterbi Algorithm

The Viterbi algorithm is used to find the most probable path taken across the states in an HMM.
It uses dynamic programming and a recursive approach to find the path. The algorithm checks all
possible paths leading to a state and selects the most probable one. Calculations are done using
induction in an approach similar to the forward algorithm, but instead of using a summation, the
Viterbi algorithm uses maximization.

The probability of the most probable path ending at state m, that is, vm(i), after observing the first
i characters of the sequence, is defined as

))((max)1()1(kmkkmm aivieiv +=+ .

 7

Table 2.2. Backward Algorithm

Backward Algorithm

Initialization (i = L) : kallforaLb kk)(0=

Iteration (i = L-1 1) : ∑ += +
m

mimkmk ibxeaib)1()()(1

Termination : ∑=
m

mmm bxeaxP)1()()(10

 bk(i) - probability of observing rest of the sequence when in state k and

 having already seen i symbols

em(xi) - probability of emitting the symbol xi by state m

 akm - probability of transition from state k to state m

 P(x) - probability of observing the entire sequence

The pseudocode for the Viterbi Algorithm is shown in Table 2.3 [7].

Table 2.3. Viterbi Algorithm

Viterbi Algorithm

Initialization (i = 0) : 0 0)0(,1)0(0 >== kforvv k

Iteration (i = 1 L) :
))1((maxarg)(
))1((max)()(

klkki

klkkimm

aivmptr
aivxeiv

−=
−=

Termination : P(x,path*) = maxk(vk(L)ak0)

 path*L = argmaxk(vk(L)ak0)

Traceback (i = L.....1) : path*i-1 = ptri(path*i)

 vm(i) - probability of the most probable path obtained after observing the first i

 characters of the sequence and ending at state m

ptrm(i) - pointer that stores the state that leads to state m after observing i symbols

path*i - state visited at position i in the sequence

 8

It may be noted that v0(0) is initialized to 1. The algorithm uses pointers to keep track of the
states during a transition. The pointer ptri(m) stores the state that leads to state m after observing
i symbols in the given sequence. It is determined as follows:

))((maxarg)(kmkki aivmptr = .

The most probable path is found by moving backwards through the pointers from the end state to
the start state. By this method, it is possible to obtain more than one path as the most probable
one; in this case, one of the paths is randomly selected.

2.3 Baum-Welch Algorithm

The Baum-Welch algorithm is used to adjust the HMM parameters when the path taken by each
training sequence is not known. The algorithm counts the number of times each parameter is
used when the observed set of symbols in the training sequence is input to the current HMM. The
algorithm constitutes two steps: the Expectation Step (E Step) and the Maximization Step (M
Step). In the E Step, the forward and backward probabilities at each position in the sequence are
calculated. To determine the probability of the entire sequence, with symbol k being observed at
state i, these probabilities are combined as follows:

)(
)()(

)|(
Lf

ibif
xkpathP

N

kk
i == .

Using the training set of sequences, the expected number of times a symbol c is emitted at state k
is defined as

() ()∑ ∑ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

=jx

j
k

cj
ix|i

j
kj

N
ck, ibif

Lf
=n

}{)(
1

.

The number of times a transition from state k to m occurs is given by

∑
∑ +

=
+

→
jx

j
N

i

j
ki

j
mkm

j
k

mk Lf

ibxeaif
n

)(

)1()()(1

,

where the superscript j refers to an instance in the training set.

In order to maximize performance, the Maximization Step uses the number of times a symbol is
seen at a state and the number of times a transition occurs between two states (in the E Step) to
update the transition and emission probabilities. The updated emission probability is

∑ +

+
=

'
,,

,,

)'(
'

)(

c
ckck

ckck
k nn

nn
ce ,

 9

and the transition probability is updated using

∑ →→

→→

+
+

=

m
mkmk

mkmk
km nn

nn
a

)'(
'

.

Pseudo-counts n'k,c and n'k→m (emission and transition probabilities, respectively) are taken into
account because it prevents the numerator or denominator from assuming a value of zero which
happens when a particular state is not used in the given set of observed sequences or a transition
does not take place. Table 2.4 contains the pseudocode of the Baum-Welch algorithm.

In the next chapter, we describe the data transformation procedures we employed in order to use
Hidden Markov models for weather data modeling. We then describe our approach to the use of
HMMs to as a predictor of RWIS sensor values.

Table 2.4. Baum-Welch Algorithm

Baum-Welch Algorithm

Initialize the parameters of HMM and pseudocounts n'k,c and n'k->l

Iterate until convergence or for a fixed number of times

 - E Step: for each training sequence j = 1 ... n

● calculate the forward probability fk(i) for the sequence j

● calculate the backward probability bk(i) for the sequence j

● add the contribution of sequence j to nk,c and nk->l

 - M Step: update HMM parameters using the expected counts nk,c and nk->l and the
pseudocounts n'k,c and n'k->l.

 10

Chapter 3
Weather Data Modeling

Minnesota has 91 RWIS meteorological measurement stations positioned alongside major
highways to collect local pavement and atmospheric data. The State is laid out in a fixed grid
format and RWIS stations are located within each grid. The stations themselves are positioned
some 60 km apart. Each RWIS station utilizes various sensing devices, which are placed both
below the highway surface and on towers above the roadway. The sensor data, that is, the
variables that will be used in determining sensor malfunctions, are dependent on the particular
type of sensor being evaluated. Each sensor data item consists of a site identifier, sensor
identification, date, time, and the raw sensor values.

As in Phase I, a set of 13 RWIS stations were chosen for the project. The selected sites are not
subject to microclimatic conditions and are contained in the same or adjacent grids located in the
Northern part of the State. Each RWIS station is located near one or more regional airports so
that the data generated by their Automated Weather Observing System (AWOS) sensors can be
compared with the data generated by the RWIS site. Airport AWOS sites are located no more
than 30 miles from each of the selected RWIS sites (a distance ensuring that each RWIS site is
linked to at least one regional airport yet keeping to a minimum the number of airports lying
within the 30-mile radius of any given RWIS site). Figure 3.1 illustrates the location of each site
and its adjacent airports.

Figure 3.1. Location of RWIS/AWOS Sites

 11

As may be noted, the 13 sites cluster naturally into three groups; this clustering was used to
advantage as we refined our analysis of the sensor data. Grouping the sites enables us to prevent
comparisons between two sites present in totally different climatological regions. Each set can be
compared to a simple climatological regime, and the climatic changes at one site are reflected at
nearby sites, not necessarily at that instant but after a certain duration of time. Clustering helps in
predicting the weather condition at a site when that condition is known in other sites in the set.

Along with the weather information from the RWIS sites, we use meteorological data gathered
from the AWOS sites to help with the prediction of values at an RWIS site. The location of the
RWIS sites with respect to the site's topography is variable, as these sensors sit near a roadway
and are sometimes located on bridges. AWOS sites are located at airports on a flat surrounding
topography, which makes it easier to compare weather data obtained from these sites. Including
AWOS information generally proved beneficial in predicting values at an RWIS site.

Our overall research project focuses on a subset of sensors that includes precipitation, air
temperature and visibility. These sensors were identified by the Minnesota Department of
Transportation as being of particular interest. However, data from other sensors are used to
determine if these particular sensors are operating properly. For HMMs, we concentrated on
precipitation and air temperature since the M5P algorithm performed so well in detecting
visibility sensor malfunction [1].

3.1 RWIS Sensor Data

RWIS sensors report observed values every 10 minutes, resulting in 6 records per hour.
Greenwich Mean Time (GMT) is used for recording the values. The meteorological conditions
reported by RWIS sensors are air temperature, surface temperature, dew point, visibility,
precipitation, the amount of precipitation accumulation, wind speed and wind direction.
Following is a short description of these variables along with the format they follow.

 (1) Air Temperature

Air temperature is recorded in Celsius in increments of one hundredth of a degree, with
values ranging from -9999 to 9999 and a value of 32767 indicating an error. For example, a
temperature of 10.5 degree Celsius is reported as 1050.

 (2) Surface Temperature

Surface temperature is the temperature measured near the road surface. It is recorded in the
same format as air temperature.

 (3) Dew Point

Dew point is defined as the temperature at which dew forms. It is recorded in the same
format as air temperature.

 12

 (4) Visibility

Visibility is the maximum distance that it is possible to see without any aid. Visibility
reported is the horizontal visibility recorded in one tenth of a meter with values ranging
from 00000 to 99999. A value of -1 indicates an error. For example, a visibility of 800.2
meters is reported as 8002.

 (5) Precipitation

Precipitation is the amount of water in any form that falls to earth. Precipitation is reported
using three different variables, precipitation type, precipitation intensity and precipitation
rate. A coded approach is used for reporting precipitation type and intensity. The codes
used and the information they convey are given in Table 3.1.

The precipitation type gives the form of water that reaches the earth's surface. Precipitation
type with a code of 0 indicates no precipitation, a code of 1 indicates the presence of some
amount of precipitation but the sensor fails to detect the form of the water, a code of 2
represents rain, and the codes 3, 41, and 42, respectively, represent snowfall with an
increase in intensity.

The precipitation intensity is used to indicate how strong the precipitation is when present.
When no precipitation is present then intensity is given by code 0. Moving from codes 1 to
4 indicates an increase in intensity of precipitation. Codes 5 and 6 are used to indicate an
intensity that cannot be classified into any of previous codes and in cases when the sensor
is unable to measure the intensity, respectively. A value of 255 for precipitation intensity
indicates either an error or absence of this type of sensor.

Table 3.1. RWIS Precipitation Codes

Code Precipitation Intensity Code Precipitation Type

0 No precipitation 0 None

1 Precipitation detected, not identified 1 Light

2 Rain 2 Slight

3 Snow 3 Moderate

41 Moderate Snow 4 Heavy

42 Heavy Snow 5 Other

 6 Unknown

 13

Precipitation rate is measured in millimeters per hour with values ranging from 000 to 999
except for a value of -1 that indicates either an error or absence of this type of sensor.

 (6) Precipitation Accumulation

Precipitation accumulation is used to report the amount of water falling in millimeters.
Values reported range from 00000 to 99999 and a value of -1 indicating an error.
Precipitation accumulation is reported for the last 1, 3, 6, 12 and 24 hours.

 (7) Wind Speed

Wind speed is recorded in tenths of meters per second with values ranging from 0000 to
9999 and a value of -1 indicating an error. For example, a wind speed of 2.05
meters/second is reported as 205.

 (8) Wind Direction

Wind direction is reported as an angle with values ranging from 0 to 360 degrees. A value
of -1 indicates an error.

 (9) Air Pressure

Air pressure is defined as the force exerted by the atmosphere at a given point. The
pressure reported is the pressure when reduced to sea level. It is measured in tenths of a
millibar and the values reported range from 00000 to 99999. A value of -1 indicates an
error. For example, air pressure of 1234.0 millibars is reported as 12340.

3.2 AWOS Sensor Data

AWOS is a collection of systems including meteorological sensors, a data collection system, a
centralized server, and displays for human interaction which are used to observe and report
weather conditions at airports in order to help pilots in maneuvering aircraft and airport
authorities for proper working of airports and runways. AWOS sensors report values on an
hourly basis. The local time is used in reporting. AWOS sensors report air temperature, dew
point, visibility, weather conditions in a coded manner, air pressure and wind information.
Following is a description of these variables.

 (1) Air Temperature

The air temperature value is reported as integer values ranging from -140o F to 140o F.

 (2) Dew Point

The dew point temperature is reported in the same format as air temperature.

 14

 (3) Visibility

The visibility is reported as a set of values ranging from 3/16 mile to 10 miles. These
values can be converted into floating point numbers for simplicity.

 (4) Weather Code

AWOS uses a coded approach to represent the current weather condition. 80 different
possible codes are listed to indicate various conditions. Detailed information about these
codes is given in the document titled “Data Documentation of Data Set 3283: ASOS
Surface Airways Hourly Observations” published by the National Climatic Data Center [8].

 (5) Air Pressure

The air pressure is reported in tenth of a millibar increments. For example, an air pressure
of 123.4 millibars is reported as 1234.

 (6) Wind Speed and Direction

AWOS encodes wind speed and direction into a single variable. Wind speed is measured in
knots ranging from 0 knots to 999 knots. Wind direction is measured in degrees ranging
from 0 to 360 in increments of 10. The single variable for wind has five digits with the first
two representing direction and the last three representing speed. For example, the value for
a wind speed of 90 knots and direction of 80 degrees is 80090.

As noted above, the data format used for reporting RWIS and AWOS sensor values differs. To
make the data from these two sources compatible, the data must be transformed into a common
format. In some cases, additional preprocessing is necessary in order to discretize the data. We
will describe the data transformation that we utilized in the following section.

3.3 Sensor Data Transformation

RWIS sensors report data every 10 minutes, whereas AWOS provides hourly reports. Thus,
RWIS data needs to be averaged when used in conjunction with AWOS data. The changes that
were made to the RWIS data in order to produce a common format follows.

● RWIS uses Greenwich Mean Time (GMT) and AWOS uses Central Time (CT). The
reporting time in RWIS is changed from GMT to CT.

● Variables, such as air temperature, surface temperature, and dew point, that are reported
in Celsius by RWIS are converted to Fahrenheit, the format used by AWOS. To convert
six readings per hour to a single hourly reading in RWIS, a simple average is taken.

● Distance, which is measured in kilometers by RWIS for visibility and wind speed, is
converted into miles, the format used by AWOS. A single hourly reading is obtained
through a simple average in RWIS.

● In order to obtain hourly averages for precipitation type and intensity reported by RWIS,

 15

we use the most frequently reported code for that hour. For precipitation rate, a simple
average is used. RWIS sites report precipitation type and intensity as separate variables,
whereas AWOS combines them into a single weather code [8]. Mapping precipitation
type and intensity reported by RWIS to the AWOS weather codes is not feasible and
requires some compromises to be made. Thus we keep these variables in their original
format.

Of the three features selected for use in predictions, a direct comparison between RWIS and
AWOS values cannot be done for precipitation type because each uses a different format for
reporting. For broader comparison, we combine all the codes that report different forms of
precipitation, in both RWIS and AWOS, into a single code, which indicates the presence of some
form of precipitation.

Apart from using the features obtained from the RWIS and AWOS sites, we also made use of
historical information to represent our training data. This increases the amount of weather
information we have for a given location or region. We collected hourly temperature values for
the 14 AWOS sites in Figure 3.1 from the Weather Underground website for a duration of seven
years, namely, 1997 to 2004 (http://www.wunderground.com). For many locations, the
temperature was reported more than once an hour; in such cases the average of the temperature
across the hour was taken. As we already have readings for temperature from two different
sources, RWIS and AWOS, we use the information gathered from the website to adjust our
dataset by deriving values such as the projected hourly temperature. To calculate the projected
hourly temperatures for an AWOS site we use past temperature information obtained from the
website for this location. The projected hourly temperature for an hour of a day is defined as the
sum of the average temperature reported for that day in the year and the monthly average
difference in temperature of that hour in the day for the respective month.

The steps followed to calculate the projected hourly temperature for an AWOS site are as
follows:

● Obtain the hourly temperature for the respective AWOS site.

● Calculate the average temperature for a day as the mean of the hourly readings across a
day.

● Calculate the hourly difference as the difference between the average daily temperature
and actual temperature seen at that hour.

● Calculate the average difference in temperature per hour for a particular month (monthly
average difference) as the average of all hourly differences in a month for that hour
obtained from all the years in the data collected.

● Calculate the projected hourly temperature for a day from the sum of the average
temperature for that day and the monthly average difference of that hour in the day.

For example, suppose the temperature value at the AWOS site KORB for the first hour for
January 1st for year 1997 is 32ºF. The temperature values for all 24 hours on January 1st are
averaged; assume this value is 30ºF. The hourly difference for this day for the first hour will be

 16

2ºF. Now assume the average of all the first hourly differncee values for the month of January
for KORB from years 1997 to 2004 is 5ºF. Then the projected temperature value for the first
hour in January 1st, 1997 will be 35ºF, which is the sum of the average temperature seen on
January 1st 1997 and the monthly average difference for the first hour in the month of January.

The projected hourly temperature is used (1) as a feature in the datasets used for predicting
weather variables at an RWIS site, and (2) in the process of discretizing temperature.

3.4 Discretization of the Data

Hidden Markov Models require discrete data. If the data is continuous, discretization of the data
involves finding a set of values that split the continuous sequence into intervals; each interval is
then assigned a single discrete value.

Discretization can be accomplished using unsupervised or supervised methods. In unsupervised
discretization, the data is divided into a fixed number of equal intervals, without any prior
knowledge of the target class values of instances in the given dataset. In supervised
discretization, the splitting point is determined at a location that increases the information gain
with respect to the given training dataset [9]. Dougherty gives a brief description of the process
and a comparison of unsupervised and supervised discretization [10]. WEKA provides a wide
range of options to discretize any continuous variable, using supervised and unsupervised
mechanisms [11].

We propose a new method for discretization of RWIS temperature sensor values that uses data
obtained from other sources. Namely, using the projected hourly temperature for an AWOS site
along with the current reported temperature for the closest RWIS site, we determine a class value
for the current RWIS temperature value. The actual reported temperature at an RWIS site is
subtracted from the projected hourly temperature for the AWOS site closest to it for that specific
hour. This difference is then divided by the standard deviation of the projected hourly
temperature for that AWOS site. The result indicates how much the actual value deviates from
the projected value, that is, the number of standard deviations from the projected value (or the
mean):

num_stdev = (actual_temp – proj_temp) / std_dev

The number of standard deviations determines the class to which the temperature value is
assigned, as shown in Table 3.2. The ranges and the number of classes can be determined by the
user or based on requirements of the algorithm. For example, to convert the actual temperature of
32ºF at an RWIS site, we calculate the projected temperature for that hour at the associated
AWOS site, say 30ºF, and the standard deviation of projected temperatures for the year, 5.06.
This yields a value of 0.395 as the number of standard deviations from the mean. Thus the
representation for 32ºF is assigned to be class 6. The advantage of determining classes in this
manner is that the effect of season and time of day is at least partially removed from the data.

 17

Table 3.2. RWIS Temperature Classes

Class Value Class Value

1 num_stdev < -2 6 0.25 < num_stddev ≤ 0.5

2 -2 ≤ num_stdev ≤ -1 7 0.5 < num_stddev ≤ 1

3 -1 < num_stdev ≤ -0.5 8 1 < num_stddev ≤ 2

4 -0.5 < num_stdev ≤ -0.25 9 num_stdev > 2

5 -0.25 < num_stdev ≤ 0.25

3.5 Feature Vectors

To build models that can predict values reported by an RWIS sensor, we require a training set
and a test set that contain data related to the weather conditions. Each member of these sets is
represented by a so-called feature vector for the dataset consisting of a set of input attributes and
an output attribute, with the output attribute corresponding to the RWIS sensor of interest. The
input attributes for a feature vector in the test set are applied to the model built from the training
set to predict the output attribute value. This predicted value is compared with the sensor’s actual
value to estimate model performance. The feature vector has the form

input1,, inputn, output

where inputi is an input attribute and output is the output attribute.

The performance of a model is evaluated using cross-validation. The data is divided repeatedly
into training and testing groups using 10-fold cross validation, repeated 10 times. In 10-fold
cross validation the data is randomly permuted and then divided into 10 equal sized groups. Each
group is then in turn used as test data while the other 9 groups are used to create a model (in this
way every data point is used as a test point exactly once). The results for the ten groups are
summed, and the overall result for the test data is reported.

Predicting a value for an RWIS sensor corresponds to predicting the weather condition being
reported by that sensor. Since variations in a weather condition, like air temperature, are
dependent to some degree on other weather conditions, such as wind, precipitation, and air
pressure, many different types of sensors are used to predict a single sensor’s value at a given
location. Earlier readings (such as those during the previous 24 hour period) from a sensor can be
used to predict present conditions, as changes in weather conditions follow a pattern and are not
totally random. In addition, as noted in Figure 3.1, we divided the RWIS-AWOS sites into
clusters. Any site within a single cluster is assumed to have climatic conditions similar to any
other site in the cluster. This assumption allows us to use both RWIS and AWOS data obtained
from the nearby sites (those in the same cluster) to predict variables at a given RWIS site in the
cluster.

 18

In Hidden Markov models the instance in a dataset used for predicting a class value of a variable
consists of a string of symbols that form the feature vector. The symbols that constitute the
feature vector are unique and are generated from the training set. Predicting a weather variable
value at an RWIS site that is based on hourly readings for a day yields a string of length 24. This
string forms the feature vector which is used in the dataset.

When information from a single site is used for predictions, the class values taken by the
variables form the symbol set. When the variable information from two or more sites is used
together, a class value is obtained by appending the variable's value from each site together. For
example, to predict a temperature class of site 19 using the Northeast cluster in Figure 3.1, we
include temperature data from sites 27 and 67. The combination of class values from these three
sites for a particular hour will form a class string. For example if the temperature class values at
sites 19, 27, and 67 are 3, 5, and 4, respectively, then the class string formed by appending the
class values is 354.

The sequence of hourly class strings for a day form an instance in the dataset. All unique class
strings that are seen in the training set are arranged in ascending order, if possible, and each class
string is assigned a symbol. For hourly readings taken during a day we arrive at a string which is
24 symbols long, which forms the feature vector used by the HMM.

 19

Chapter 4
Hidden Markov Approach

To build an HMM model from a given number of states and symbols, the Baum-Welch
algorithm is first applied to the training set to determine the initial state, transmission
probabilities, and emission probabilities. Each symbol generated using the training set is emitted
by a state. Instances from the test set are then passed to the Viterbi algorithm which yields the
most probable state path.

To predict a variable’s class value, we need the symbol that would be observed across the most
probable state path found by the Viterbi algorithm. In order to obtain such symbols, we had to
modify the Viterbi algorithm. Table 4.1 contains the modified algorithm.

Table 4.1. Modified Viterbi Algorithm

Modified Viterbi Algorithm

Initialization (i = 0) : 0 0)0(,1)0(0 >== kforvv k

Iteration (i = 1 L) :

))((maxarg)(
))1((maxarg)(

))((max*))1((max)(
)(

smsi

klkki

smskmkkm

i

symbolsetembestsymbol
aivmptr

symbolseteaiviv
xesymbolsallpossiblsymbolset

=
−=

−=
=

Termination : P(x,path*) = maxk(vk(L)ak0)

 path*L = argmaxk(vk(L)ak0)

Traceback (i = L.....1) : path*i-1 = ptri(path*i)

Symbol Observed (i = 1 ... L): symbol(i) = bestsymboli (path*i)

vm(i) - probability of the most probable path obtained after observing the
 first I characters of the sequence and ending at state m

ptrm(i) - pointer that stores the state that leads to state m after
 observing i symbols

path*i - state visited at position i in the sequence

bestsymboli(m) - the most probable symbol seen at state m at position in
 the sequence

symbolsets – the set of all possible symbols that can be emitted from a state
 when a certain symbol is actually seen

allpossibesymbols(xi) – function that generates all possible symbols for the
 given symbol xi.

symbol(i) – symbol observed ith position in the string.

 20

The modified algorithm is similar to the original algorithm (Table 2.3). It calculates the
probability of the most probable path obtained after observing the first i characters of the given
sequence and ending at state m using

))1((max)()(kmkkimm aivxeiv −= ,

where em(xi) is the emission probability of the symbol at state m and akm is the transition
probability of moving from state k to state m. However, in the modified Viterbi algorithm, in
place of em(xi) we use the emission probability value that is the maximum of all of the possible
symbols that can be seen at state m when the symbol xi is present in the actual symbol sequence.
We calcualte vm(i) in the modified Viterbi algorithm as

))((max*))1((max)(smskmkkm symbolseteaiviv −= .

The actual symbol seen in the symbol string for that respective time is selected and all its
possible symbols are found. Of the possible symbols or class strings, only those that are seen in
the training instances are considered in the set of possible symbols. The symbol from the set of
possible symbols that has the highest emission probability is selected as the symbol observed for
the given state. To retain the symbol that was observed at a state, the modified Viterbi algorithm
uses the pointer bestsymboli(m) which contains the position of the selected symbol in the set of
possible symbols seen at state m for a position i in the sequence. It is given by

))((maxarg)(smsi symbolsetembestsymbol = .

The most probable path generated by the algorithm is visited from the start, and by retaining the
symbols that were observed at the state for a particular time, we can determine the symbols with
the highest emission probability at each state in the most probable state path. This new symbol
sequence gives the observed sequence for that given input sequence; in other words, it is the
predicted sequence for the given actual sequence.

To predict the class values for a variable at an RWIS site for a given instance, we pass the
instance through the modified Viterbi algorithm which then gives the symbols that have the
highest emission probabilities along the most probable path. The symbol found is then converted
back into a class string, and the class value for the RWIS site of interest is regarded as the
predicted value.

For example, to predict temperature class values at site 19 in Figure 3.1, we use the class string
for temperature class values from sites 27 and 67 appended to the value observed at site 19.
Suppose the class string sequence for a given day is

343, 323, 243, 544, … , 324

a feature vector of length of 24, one for each hour in a day. This sequence is passed to the
modified Viterbi algorithm which yields the observed sequence along with most probable state
path. Now suppose the output sequence for the given sequence is

433, 323, 343, 334, … , 324

 21

As we are interested in predicting the class values at site 19, taking only the first class value from
a class string we get for actual values

3, 3, 2, 5, … , 3.

The observed (or predicted) values for the day are

4, 3, 3, 3, … , 3.

The distance between these class values gives the accuracy of the predictions made by the model.

The performance of the HMM on the given test set, on precipitation type and discretized
temperature, can be evaluated using the same methods that were used in the general
classification approach used in Phase 1 [1].

 22

Chapter 5
Empirical Analysis

Based on the instance given, an HMM tries to predict the most probable path taken across its
states. For weather data, the path is the predicted values of the weather sensor using the
surrounding sensors for additional information. HMMs can be used to classify discrete attributes.
When data is present in the form of a time series, such as hourly precipitation, HMMs can be
used to identity the path of predicted values from which we can further obtain the values
observed through the path.

We use the modified Viterbi algorithm to predict the symbol observed when a state in the most
probable path is reached for the given instance. HMMs require a training dataset to build the
model, that is, to estimate the initial state, transition probabilities, and emission probabilities. The
test dataset is used to evaluate the model. Multiple n-fold cross-validation is used to estimate
model performance. As HMMs require the presence of all symbols in the symbol sequence, any
time sequence with missing data (due to a sensor not reporting or transmission problems) was
omitted from the dataset used for predictions.

HMMs require class value information. For the RWIS sites that were used for predictions, we
discretized the temperature following the method previously described; namely, the temperature
was broken down into nine classes based on the value obtained for the number of standard
deviations by which the actual temperature value differs from the predicted value (Table 3.2).
For nearby sites, we used a broader classification of temperature values, as shown in Table 5.1;
such sites required less precise differentiation since they are providing additional information for
making predictions. For example, to predict temperature values at site 19, we used temperature
values of the nearby sites 27 and 67 for additional information. Each temperature value at site 19
was represented as one of nine possible classes and temperatures at sites 27 and 67 were chosen
as one of five classes.

Table 5.1. RWIS Temperature Classes for Nearby Sites

Class Value Class Value

1 num_stdev < -1 4 0.5 < num_stdev ≤ 1

2 -1 ≤ num_stdev ≤ -0.5 5 num_stdev > 1

3 -0.5 < num_stdev ≤ -0.5

In the following experiments, we trained the Hidden Markov Model using the methods available
in the HMM Toolbox for MATLAB developed by Murphy [12]. The modified Viterbi algorithm
was used for testing. We performed ten iterations of the Baum-Welch algorithm during the
training of the HMM. We set the number of states in the model to 24 and each state was allowed

 23

to emit all possible symbols obtained from the training set. Since we are using hourly readings
for a day, each instance in the dataset is a string of symbols with a length of 24.

5.1 Training the HMM

Two different methods were devised to train the HMMs to predict the temperature class value
reported at an RWIS site. The temperature class information from the RWIS site and the other
RWIS sites in its group is used to form the feature symbols. The results obtained from predicting
temperature class value were used to compare the two methods.

 (1) Method A

In this approach we merged all the data from a group and trained the HMM using this data.
As noted earlier, the site being used for prediction has 9 temperature classes (Table 6) and
the other sites in the group have 5 temperature classes (Table 5.1). Thus, each site has its
own merged dataset.

We create the dataset in which each instance is a string of symbols representing hourly
readings per day, where a symbol for an hour was obtained from appending that hour's
temperature class value for all of the RWIS sites in a group together. For example to
predict temperature class values at site 19, we used the temperature classes from sites 27
and 67. If the temperature class values at time t seen at sites 19, 27 and 67 are 6, 3 and 2
then the class string generated for time t will be 632. We estimated the initial state,
transition, and emission probabilities by applying the Baum-Welch algorithm to this dataset
with combined class information.

 (2) Method B

In this approach the data from the sites used is not merged. Instead, data from each site is
used for training the model, and the emission probabilities of all sites in the group are
multiplied to obtain a single emission matrix for the final model.

We created a separate dataset for each RWIS site in which each instance is a string of
symbols representing hourly temperature class value per day. We applied the Baum-Welch
algorithm to the dataset for the RWIS sites to estimate the initial state, transition
probabilities, and emission probabilities. The emission probability matrices obtained for
each RWIS site in a group were then joined together by multiplying the respective values in
each cell in the matrix. The resultant emission matrix was made stochastic, that is, such the
sum of all rows and columns is 1. In order to increase probabilities with small values, we
applied the m-estimate to the probability values in the matrix, using a value of 20 for m and
the inverse of the number of classes as the value of p. In this case the number of classes
denotes the total number of class values taken by the variable we are trying to predict. By
applying the m-estimate, we get new values in each cell of the matrix as defined by

matrix(row.col) = (matrix(row,col) + mp) / (1 + m).

 24

We used the initial state and transition probabilities for the RWIS site whose temperature value
is to be predicted in the model. We used the temperature values at the RWIS sites for the years
2002 and 2003 in the training set, while the test set contained temperature information from
January 2004 to April 2004. We discretized the temperature values by allocating them into nine
classes. Training was done using the two methods mentioned above, and temperature class value
was predicted for instances in the test data using the modified Viterbi algorithm.

As a measure to estimate the performance of the algorithm, we used the absolute distance
between the actual and predicted class values for temperature. Figure 5.1 shows the percentage
of instances in the training set for each distance between the actual and predicted class averaged
across the results from different RWIS sites. The HMM was trained using Method A and Method
B. A distance of zero indicates a perfectly classified instance.

Smaller distances between the actual and predicted values indicate more accuracy in predictions.
From Figure 5.1 we can observe that Method A classified more instances with distance 1 or less,
whereas Methods 2 had comparatively fewer number of instances classified with distance below
2. This indicates that Method A outperforms Method B. Consequently, we elected to use Method
A for training the HMM to predict sensor malfunctions in the experiments that follow.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0 1 2 3 4 5 6 7 8

Distance

P
er

ce
nt

ag
e

of
 In

st
an

ce
s

Method A
Method B

Figure 5.1. Percentage of Instances in Test Set

5.2 Predicting Temperature

In this experiment we attempt to predict the temperature class value reported at an RWIS site.
The temperature class information from the RWIS site and the other RWIS sites in its group are
used to form the feature symbols.

 25

Using temperature data collected for each RWIS site, ranging from January 2002 to April 2004,
we created a dataset for each RWIS site to be used for predictions. In this dataset each instance is
a string of symbols representing hourly readings for a day, where a symbol for an hour was
obtained by appending that hour's temperature class value for all RWIS sites in a group. In each
class string the RWIS site predicted was listed first and the other sites in the group were added in
order of their nautical distance from the RWIS site of interest. This order is useful for finding the
closest symbol when a class string in the test set is missing from the training set used. We
estimated the performance of HMM in predicting the current hour's temperature class value at an
RWIS site using the dataset of the group this site belonged to and applied a single 10-fold cross-
validation to estimate the model evaluation.

We evaluated the performance of the HMM using the absolute distances between the actual and
predicted values. The respective distance values for all RWIS sites in a group were averaged so
as to reflect on the performance of the HMM in predicting temperature class values for that
respective set. We do not combine the results of different sets to reach an overall percentage
value, since the format of the symbol sequence in a dataset is different for each site. Figure 5.2
shows the percentage values for each distance for the three sets, with the percentage calculated as
the number of instances classified within a certain distance over the total instances present in the
dataset, with each instance being an hourly reading. The percentage for each distance across all
the RWIS sites used for prediction is detailed in Appendix A.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%

0 1 2 3 4 5 6 7
Distance

Pe
rc

en
ta

ge
 o

f
In

st
an

ce
s

Group 1: RWIS Sites 19 , 27 and 67
Group 2: RWIS Sites 14 , 20, 35, 49 and 62
Group 3 :RWIS Sites 25 , 56, 60, 68 and 78

Figure 5.2. Percentage of Instances with Differences between Actual and Predicted Values

It can be seen from Figure 5.2 that most temperature class values are predicted with a distance of
1 for all sets. This is also reflected in the results from individual sites shown in the Appendix.
The percentage of instances predicted with a distance of 3 or less in Groups 1, 2 and 3 are

 26

99.75%, 99.43% and 94.34%, respectively. Approximately 3% of the data in Group 3 is
predicted with a distance of 4; this result is due to the RWIS site 67 in which approximately 15%
of the data is predicted with distance 4. Ignoring the results for site 67, we can conclude that
when the distance between the actual temperature class and the predicted class is more than
three, then there is a malfunction in the RWIS temperature sensor. The erratic behavior of site 67
may be due to the presence of errors in it.

5.3 Site Independent Prediction of Temperature

This experiment evaluates the use of HMMs to predict the temperature class value reported for a
site in a given RWIS grouping. A single dataset was generated for the group with the first class
value in the class string representing the class value to be predicted. The temperature class
information from the RWIS sites in a group are used to form the feature symbols.

In order to increase the size of data used for predictions and to perform site independent
predictions, we created a single dataset for each RWIS group. Each of the RWIS sites in a group
was taken as the predicted site, and the symbol strings obtained from it were appended to the
dataset. The class string was constructed using the predicted site's class value as the first
component followed by the class values of the other sites in the group. Ordering of the nearby
sites was done with respect to the distance from the predicted site; the site closest to the
predicted site was added first and so on. For example, to create a single dataset for RWIS Group
1, we first add data instances taking RWIS site 19 as the site to be predicted, with sites 27 and 67
as nearby sites, followed by taking site 27 to be the site predicted and then using site 67 as the
site predicted. This process yields a single large dataset whose size is equal to the sum of the
sizes of the datasets generated for each site in an RWIS group. By predicting the first class seen
in the dataset, we perform a site independent evaluation of the HMM that focuses on prediction
accuracy within a group.

A dataset was generated for each group using the temperature data from the years 2002 and
2003. It was used to predict the first class value (the predicted site) seen in the class string using
HMMs, and the model was evaluated using ten 10-fold cross validation runs. The distance
between actual and predicted class value was used to evaluate the performance of the model.

Figure 5.3 shows the percentage of instances (with an instance being an hourly reading) having a
given distance between each of the three RWIS sets. The percentage values were obtained after
averaging the values reported for each cross-validation run. Comparing the results of the
previous experiment with these results, we observe from Figures 5.1 and 5.2 that the percentage
of instances with a given distance is almost the same. In other words, the results obtained for a
group using a combined dataset and for averaging results from within a group where each site
was trained using its dataset are almost identical. Thus we can conclude that using a single
model built from the combined dataset values for any site in a group can be can be predicted with
accuracy comparable to that of the overall group.

 27

0.00%

20.00%

40.00%

60.00%

80.00%

0 1 2 3 4 5 6 7
Distance

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es

Group 1: RWIS S ites 19, 27 and 67
Group 2: RWIS S ites 14, 20, 35, 49 and 62
Group 3: RWIS S ites 25, 56, 60, 68 and 78

Figure 5.3. Difference between Actual and Site Independent Predicted Values

The percentage of instances predicted with a distance of 3 or less in the groups 1, 2 and 3 were
99.76%, 99.71%, and 97.88% respectively, which covers almost the entire data. Thus, when the
distance between the actual temperature class and the predicted class is more than three, there is
in all likelihood a malfunction in the RWIS temperature sensor.

5.4 Predicting Precipitation Type

In this experiment we predict the precipitation type reported at an RWIS site using 10-fold cross
validations. The precipitation information from the RWIS sites within a group is used to form the
feature symbols. RWIS data from years 2002 and 2003 were selected for generation of the data
as these where the most recent years for which we had entire yearly data for the RWIS sensors.
The dataset used for prediction contained hourly class strings for each day. Each class string was
obtained by appending the precipitation types of the RWIS site used for prediction and its nearby
sites, arranged according to distance from the site used for predictions.

We cannot use the distance between actual and predicted values for performance evaluation,
since each precipitation type reported is unique and has a specific meaning. We observed that
some RWIS sites report precipitation type as present or not present, while other sites indicate the
type of precipitation present. In order to compare the performance across all sites, any form of
precipitation occurring was taken as precipitation present, averaged over all sites present in a set.

Figure 5.4 shows the percentage of instances in the dataset that were correctly predicted as
precipitation present or as not present, along with the percentage of instances where no
precipitation and precipitation present were reported in the actual data. The actual values for
each of the 13 RWIS sites for which prediction was made are included in the Appendix A.

 28

From the percentage values in Figure 5.4 and Appendix A, it is apparent that HMMs fail to
predict the presence of precipitation accurately. Furthermore, for most sites, fewer than half of
the instances predict precipitation type correctly. Appendix A reveals that prediction
performance varies widely with respect to a site. These results lead us to conclude that HMMs
trained using the methodology described is not a good option for predicting precipitation and
thus cannot be used for detection of RWIS precipitation sensor malfunctions.

Group 1: RWIS Sites19, 27
and 67

Group 2: RWIS Sites14, 20,
35, 49 and 62

Group 3: RWIS Sites 25, 56,
60, 68 and 78

0

10

20

30

40

50

60

70

80

90

No Precipitation
Present in Actual Data

Precipitation Present
in Actual Data

No Precipitation
Predicted Correctly

Precipitation Predicted
Correctly

RWIS Groups

P
er

ce
nt

ag
e

of
 In

st
an

ce
s

Figure 5.4. Correctness of Prediction of Precipitation Type and Presence

 29

Chapter 6
Conclusions

Hidden Markov Models performed well for classifying discretized temperature values but failed
to predict precipitation type correctly in most cases. A threshold distance of 3 between the actual
and the predicted temperature class value may be used to detect temperature sensor malfunctions.
When predicting temperature, a single model of a group obtained from using the combined
dataset yielded results similar to those obtained from predicting temperature at single sites over a
group. This leads us to conclude that a single model built using datasets of all sites together can
be effectively used to identity malfunctions at any site in the group. We find the models
produced by HMM for precipitation type have a high error when classifying the presence or
absence of precipitation and should not be used for precipitation predictions. However, as
concluded in Phase I of this project, a combination of the machine learning methods J48 and
Bayes Nets can be used to detect precipitation sensor malfunctions, with J48 being used to
predict the absence of precipitation and Bayesian networks, the presence of precipitation.

 30

References

1. C. Crouch, D. Crouch, R. Maclin and A. Polumeetal, Automatic Detection of RWIS Sensor
Malfunction (Phase I), Final Report, NATSRL, University of Minnesota, Duluth, MN
(2007).

2. L. Rabiner and B. Juang, “An Introduction to Hidden Markov Models,” IEEE ASSP
Magazine, (January 1986), 4-15.

3. L. Baum and T. Petrie, “Statistical Inference for Probabilistic Functions of Finite State
Markov Chains,” Annals of Mathematical Statistics, vol. 37 (1966).

4. A. Viterbi, “Error Bounds for Convolutional Codes and Asymptotically Optimum Decoding
Algorithm,” IEEE Transactions on Information Theory, vol. IT-13, no. 2 (April 1967), 260–
269.

5. J. Forney, “The Viterbi Algorithm,” Proceedings of the IEEE, vol. 61, no. 3 (March 1973),
268–278.

6. M. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall, New York, NY
(2003).

7. R. Durbin, S. Eddy, A. Krogh and G. Mitchison, Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, New York,
NY (1998).

8. National Climatic Data Center, Data Documentation for Data Set 3282 (DSI-3282): ASOS
Surface Airways Hourly Observations, National Climatic Data Center, Asheville, NC (May
2005).

9. R. Quinlan, “Induction of Decision Trees,” Machine Learning, vol. 1 (1986), 81-106.

10. J. Dougherty, R. Kohavi and M. Sahami, “Supervised and Unsupervised Discretization of
Continuous Features,” Proceedings of the Twelfth International Conference on Machine
Learning, Tahoe City, CA (1995), 94-202.

11. I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques,
2nd Edition, Morgan Kaufmann, San Francisco (2005).

12. K. Murphy, Hidden Markov Model (HMM) Toolbox for MATLAB, 1998,
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html (cited June 2006).

Appendix A

Experimental Results

A-1

 Set 1 Set 2
 19 27 67 14 20 35 49 62

Distance 0 18.48% 16.18% 19.30% 21.94% 27.37% 22.86% 18.55% 22.37%

1 68.31% 28.67% 67.63% 73.11% 59.03% 65.06% 60.16% 70.88%

2 12.08% 49.85% 12.19% 4.83% 12.24% 11.09% 16.17% 4.38%

3 1.09% 4.59% 0.88% 0.11% 1.32% 0.95% 3.57% 1.15%

4 0.04% 0.71% 0.00% 0.00% 0.04% 0.04% 1.12% 0.53%

5 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.35% 0.67%

6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00%

7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01%

 Set 3

 25 56 60 68 78

Distance 0 42.65% 44.42% 39.60% 20.11% 39.69%

1 52.82% 49.00% 53.09% 27.20% 39.26%

2 4.33% 6.14% 6.96% 18.24% 16.86%

3 0.20% 0.42% 0.35% 8.36% 1.99%

4 0.01% 0.02% 0.00% 14.59% 0.51%

5 0.00% 0.00% 0.00% 7.17% 1.20%

6 0.00% 0.00% 0.00% 3.83% 0.49%

7 0.00% 0.00% 0.00% 0.46% 0.00%

8 0.00% 0.00% 0.00% 0.02% 0.00%

Percentage of instances with a certain distance between the actual and predicted temperature
class value, obtained by using HMM to predict temperature class.

A-2

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 1 2 3 4 5 6 7 8
Distance |actual-predicted|

P
er

ce
nt

ag
e

of
 In

st
an

ce
s

19 27 67 14 20 35 49 62 25 56 60 68 78

Percentage of instances with a certain distance between the actual and predicted temperature
class value, obtained by using HMM to predict temperature class.

A-3

 Set 1 Set 2 Set 3

Distance 0 17.03% 19.29% 34.54%

 1 59.30% 67.05% 47.84%

 2 20.16% 11.40% 12.89%

 3 3.27% 1.97% 2.61%

 4 0.24% 0.17% 0.95%

 5 0.00% 0.13% 0.83%

 6 0.00% 0.00% 0.29%

 7 0.00% 0.00% 0.05%

Set 1: RWIS Sites 19, 27 and 67

Set 2: RWIS Sites 14, 20, 35, 49, 62

Set 3: RWIS Sites 25, 56, 60, 68, 78

Percentage of instances with a certain distance between the actual and predicted temperature
class value, obtained by using extended dataset focusing on predicting value for an RWIS set
rather than for an RWIS site, and applying ten 10-fold cross validations using HMM to predict
temperature class.

A-4

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

0 1 2 3 4 5 6 7

Distance |actuial - predicted|

Pe
rc

en
ta

ge
 o

f I
ns

ta
nc

es

Set 1
Set 2

Set 3

Percentage of instances with a certain distance between the actual and predicted temperature
class value, obtained by using HMM to predict temperature class with training done using the
extended dataset.

A-5

RWIS

Site

% of instance
with no

precipitation
reported in data

% of instance
with

precipitation
reported in

data

% of instances
where no

precipitation is
predicted
correctly

% of instances
where

precipitation is
predicted correctly

Set 1 19 85.71 14.28 55.22 4.79

 27 77.23 22.77 13.33 18.72

 67 67.3 32.69 5.36 28.35

Set 2 14 74.61 24.38 27.22 18.08

 20 72.74 27.25 16.96 21.43

 35 83.58 16.41 71.19 6.85

 49 84.66 15.33 71.24 7.34

Set 3 62 85.82 14.17 80.8 6.38

 25 83.1 16.9 73.4 7.7

 56 85.25 14.74 74.25 4.27

 60 78 20 53.64 9.39

 68 86.41 13.59 73.69 5.15

 78 83.89 16.11 55.91 7.73

Results obtained from predicting precipitation type using HMM.

