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Executive Summary 

In this report we investigate the use of Hidden Markov models to predict RWIS sensor values. 
The Hidden Markov model (HMM) is a technique used to model a sequence of temporal events. 
For example, suppose we have the sequence of values produced by a given sensor over a fixed 
time period. An HMM can be modeled to produce this sequence and then used to determine the 
probability of the occurrence of another sequence of values, such as that produced by the given 
sensor for a subsequent time period. If the actual values produced by the sensor deviate from the 
predicted sequence then a malfunction may have occurred.  

Hidden Markov Models performed well for classifying discretized temperature values but failed 
to predict precipitation type correctly in most cases. A threshold distance of 3 between the actual 
and the predicted temperature class value may be used to detect temperature sensor malfunctions. 
When predicting temperature, a single model from a group obtained from using the combined 
dataset yielded results similar to those obtained from predicting temperature at single sites over a 
group. This leads us to conclude that a single model built using datasets from all sites together 
can be effectively used to identity malfunctions at any site in the group. We find the models 
produced by HMM for precipitation type have a high error when classifying the presence or 
absence of precipitation and should not be used for precipitation predictions.  
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Chapter 1 
Introduction 

 The overall goal of this project (Phases I & II) was to develop computerized procedures that 
detect Road Weather Information System (RWIS) sensor malfunctions. In the first phase of the 
research we applied two classes of machine learning techniques to data generated by RWIS 
sensors in order to predict sensor malfunctions and thereby improve accuracy in forecasting 
temperature, precipitation, and other weather-related data. We built models using machine 
learning (ML) methods that employ data from nearby sensors in order to predict likely values of 
those sensor that are being monitored. A sensor deviating noticeably from values inferred from 
nearby sensors indicates that the sensor has begun to fail. We used both classification and 
regression algorithms in Phase I. In particular, we used three classification algorithms, namely, 
J48 decision trees, naïve Bayes, and Bayesian networks and six regression algorithms, that is, 
linear regression, least median squares (LMS), M5P, multilayer perceptron (MLP), radial basis 
function network (RBF), and the conjunctive rule algorithm (CR). We performed a series of 
experiments to determine which of these models could be used to detect malfunctions in RWIS 
sensors. We compared the values predicted by the various ML methods to the actual values 
observed at an RWIS sensor to detect sensor malfunction. Detailed information regarding our 
approach to solving the overall objective of this project is contained in the final report for Phase I 
[1]. 

Accuracy of an algorithm in predicting values plays a major role in determining the accuracy 
with which malfunctions can be identified. From the experiments performed to predict 
temperature at an RWIS sensor, we concluded that the classification algorithms LMS and M5P 
gave results accurate to ±1°F and had low standard deviation across sites. Both models were 
identified as able to detect sensor malfunctions accurately. RBF Networks and CR failed to 
predict temperature values. A threshold distance of 2°F between actual and predicted 
temperature values is sufficient to identify a sensor malfunction when J48 is used to predict 
temperature class values. The use of precipitation as an additional source of decision information 
produced no significant improvement with respect to the accuracy of these algorithms in 
predicting temperature. 

The J48, naïve Bayes, and Bayesian net exhibited mixed results when predicting the presence or 
absence of precipitation. However, a combination of J48 and Bayesian nets can be used to detect 
precipitation sensor malfunctions, with J48 being used to predict the absence of precipitation and 
Bayesian networks the presence of precipitation. Visibility was best classified using M5P. When 
the difference between prediction error and the mean absolute error for M5P is greater than 1.96 
standard deviations, one can reasonably conclude that the sensor is malfunctioning. 

In Phase II, we investigated the use of Hidden Markov models to predict RWIS sensor values. 
The Hidden Markov model (HMM) is a technique used to model a sequence of temporal events. 
For example, suppose we have the sequence of values produced by a given sensor over a fixed 
time period. An HMM can be modeled to produce this sequence and then used to determine the 
probability of occurrence of another sequence of values, such as that produced by the given 
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sensor for a subsequent time period. If the actual values produced by the sensor deviate from the 
predicted sequence then a malfunction may have occurred. 

 

 

 



 

 3

Chapter 2 
Hidden Markov Models 

A discrete process taking place in the real world generates what can be viewed as a symbol at 
each step. For example, the temperature at a given site is a result of existing weather conditions 
and the sensor’s location. Over a period of time the process generates a temporal sequence of 
symbols. Based on the outcome of the process, these symbols can be discrete (e.g., precipitation 
type) or continuous (e.g., temperature). Hidden Markov models may be used to analyze a 
sequence of observed symbols and to produce a statistical model that describes the workings of 
the process and the generation of symbols over time. Such a model can then be employed to 
identity or classify other sequences of the same process. 

Hidden Markov models capture temporal data in the form of a directed graph. Each node 
represents a state used in recognizing a sequence of events. The arcs between nodes represent a 
transition probability from one state to another; probabilities can be combined to determine the 
probability that a given sequence will be produced by the HMM. Transitions between states are 
triggered by events in the domain. HMM states are referred to as hidden because the system we 
wish to model may have underlying causes that cannot be observed. For example, factors that 
determine the position and velocity of an object when the only information available is its 
position are non-observable. The hidden process taking place in a system can be determined 
from the events that generate the sequence of observable events. 

State transition networks can be used to represent knowledge about a system. HMM state 
transition networks have an initial state and an accepting or end state. The network recognizes a 
sequence of events if these events start at the initial state and end in the accepting state. A 
Markov model is a probabilistic model over a finite set of states, where the probability of being 
in a state at a time t depends only on the previous state visited at time t-1. An HMM is a model 
where the system being modeled is assumed to be a Markovian process with unknown 
parameters. 

The components that constitute an HMM are a finite set of states, a set of transitions between 
these states and their corresponding probability values, and a set of output symbols emitted by 
the states. An initial state distribution gives the probability of being in a particular state at the 
start of the path. After each time interval a new state is entered depending on the transition 
probability from the previous state. This follows a simple Markov model in which the probability 
of entering a state depends only on the previous state. The state sequence obtained over time is 
called the path. The transition probability akm of moving from a state k to a state m is given by 
the probability of being in state m at time t when at time t-1 we were in state k 

akm = P(patht = m | patht-1 = k). 

After a transition is made to a new state, a symbol is emitted from the new state. Thus as the state 
path is followed we get a sequence of symbols (x1, x2, x3, ...). The symbol which is observed at a 
state is based on a probability distribution that depends on the state. The probability that a 
symbol b is emitted on transition to state k, called the emission probability (e), is determined by 
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eb(k) = P(xt = b | patht = k). 

Consider the HMM example in Figure 2.1 in which there are only three possible output symbols, 
p, q, and r, and four states, 1, 2, 3 and 4. In this case our state transition probability matrix will 
be of size 4x4 and the emission probability matrix will be of size 3 by 4. At each state we can 
observe any of the three symbols p, q and r based on their respective emission probabilities at 
that respective state. The transition from one state to another is associated with the transition 
probability between the respective states. The transition probability of moving from state 1 to 
state 2 is represented by a12. Assuming a sequence length of 24, we will observe 24 transitions, 
including a transition from the start state and an ending at the end state after the 24th symbol is 
seen. The HMM in Figure 2.1 allows all possible state transitions. 

Rabiner and Juang list three basic questions that have to be answered satisfactorily in order for 
an HHM model to be used effectively [2]: 

(1) What is the probability that an observed sequence is produced by the given model? 

A model can generate many sequences based on the transitions taking place and symbols 
emitted each time a state is visited. The probability of the observed sequence being 
reproduced by the model gives an estimate of how good the model is; a low probability 
indicates that this model probably did not produce it. Forward/Backward algorithms can be 
used to find the probability of observing a sequence in a given model [3]. 

Figure 2.1. An HMM with Four States and Three Possible Outputs 
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(2) How do we find an optimal state sequence (path) for a given observation sequence? 

HMMs may contain multiple paths that yield a given sequence of symbols. In order to 
select the optimal state path, we need to identify the path with the highest probability of 
occurrence. The Viterbi algorithm is a procedure that finds the single best path in the model 
for a given sequence of symbols [4,5].   

 (3) How do we adjust the model parameters, that is, the transition probabilities, emission 
probabilities, and the initial state probability, to generate a model that best represents the 
training set? 

Model parameters need to be adjusted so as to maximize the probability of the observed 
sequence. The Baum-Welch algorithm is a method that uses an iterative approach to solve 
this problem [2]. It starts with preassigned probabilities and adjusts them dynamically 
based on the observed sequences in the training set.  

The Forward/Backward algorithms, the Baum-Welch algorithm, and the Viterbi algorithm are 
used extensively in our development of HMM models. They are relatively efficient algorithms 
that have been proposed to solve these three problems [6]. We will describe these algorithms in 
detail in the following sections. 

2.1 Forward/Backward Algorithms 

A sequence of observations can be generated by taking different paths in an HMM model. To 
find the probability of a sequence we need to total the probabilities that are obtained for each 
possible path the sequence can take. The Forward/Backward algorithms use dynamic 
programming to calculate this probability; the major advantage of these algorithms is that all 
possible paths do not have to be enumerated. 

Since HMMs follow the Markov property, the probability of a path including a particular state 
depends only on the state that was entered before it. The Forward Algorithm uses this property to 
find the probability of the symbol sequence. Consider an HMM model in which i – 1 symbols in 
a sequence x of length L have been observed and the incoming symbol at position i in the 
sequence is xi. The probability that symbol xi is in state m can be determined by first summing 
over all possible states k the product of two probabilities, the probability of being at any state k 
when the last symbol was observed and the transition probability of moving from state k to state 
m, and then multiplying this summation result by the emission probability of xi at state m. If a 
transition is not possible, then the transition probability is taken as 0. This formula for 
calculating the probability of observing xi at position i in state m is referred to as the forward 
probability and is expressed as   

∑ −=
k

kmkimm aifxeif )1()()( . 

The pseudocode for the Forward Algorithm is given in Table 2.1 [7]. 

 



 

 6

Table 2.1. Forward Algorithm 

Forward Algorithm 

Initialization (i = 0) :        f0(0) =1; fk (0) = 0,k > 0. 

Iteration (i = 1 ... L) :      ∑ −=
k

kmkimm aifxeif )1()()(  

Termination :                   ∑=
k

kk aLfxP 0)()(  

 

fm(i) - probability of seeing the symbol at position i in state m 

em(xi) - probability of emitting the symbol xi by state m 

akm  - probability of transition from state k to state m 

P(x) - probability of observing the entire sequence x 

L - length of the sequence 

 

The Backward Algorithm can also be used to calculate the probability of an observed sequence. 
It works analogously to the Forward Algorithm; however, instead of calculating the probability 
values from the start state, the Backward Algorithm starts at the end state and moves towards the 
start state. In each backward step, it calculates the probability of being at that state taking into 
account that the sequence from the current state to the end state has already been observed. The 
backward probability bk(i), the probability of observing the remainder of the sequence given that 
the current state is k after observing i symbols, is defined as 

)|.....()( 1 kpathxxpib iLik == + . 

The pseudocode for the Backward Algorithm is given in Table 2.2 [7]. The final probability 
generated by either the Forward or Backward algorithm is the same.  

2.2 Viterbi Algorithm 

The Viterbi algorithm is used to find the most probable path taken across the states in an HMM. 
It uses dynamic programming and a recursive approach to find the path. The algorithm checks all 
possible paths leading to a state and selects the most probable one. Calculations are done using 
induction in an approach similar to the forward algorithm, but instead of using a summation, the 
Viterbi algorithm uses maximization.  

The probability of the most probable path ending at state m, that is, vm(i), after observing the first 
i characters of the sequence, is defined as 

))((max)1()1( kmkkmm aivieiv +=+ . 
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Table 2.2. Backward Algorithm 

Backward Algorithm 

Initialization (i = L) :            kallforaLb kk    )( 0=  

Iteration (i = L-1 ..... 1) :      ∑ += +
m

mimkmk ibxeaib )1()()( 1  

Termination :                       ∑=
m

mmm bxeaxP )1()()( 10  

 

 bk(i) -  probability of observing rest of the sequence when in state k and 

            having already seen i symbols 

em(xi) - probability of emitting the symbol xi by state m 

    akm - probability of transition from state k to state m 

 P(x) - probability of observing the entire sequence 

 

The pseudocode for the Viterbi Algorithm is shown in Table 2.3 [7].  

 

Table 2.3. Viterbi Algorithm 

Viterbi Algorithm 

Initialization (i = 0) :        0  0)0(,1)0(0 >== kforvv k  

Iteration (i = 1 ..... L) :     
))1((maxarg)(
))1((max)()(

klkki

klkkimm

aivmptr
aivxeiv

−=
−=

 

Termination :                   P(x,path*) = maxk(vk(L)ak0) 

                                         path*L = argmaxk(vk(L)ak0) 

Traceback ( i = L.....1) :   path*i-1 = ptri(path*i) 

 

 vm(i) -   probability of the most probable path obtained after observing the first i 

              characters of the sequence and ending at state m 

ptrm(i) - pointer that stores the state that leads to state m after observing i symbols 

path*i - state visited at position i in the sequence  
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It may be noted that v0(0) is initialized to 1. The algorithm uses pointers to keep track of the 
states during a transition. The pointer ptri(m) stores the state that leads to state m after observing 
i symbols in the given sequence. It is determined as follows: 

))((maxarg)( kmkki aivmptr =  . 

The most probable path is found by moving backwards through the pointers from the end state to 
the start state. By this method, it is possible to obtain more than one path as the most probable 
one; in this case, one of the paths is randomly selected. 

2.3 Baum-Welch Algorithm 

The Baum-Welch algorithm is used to adjust the HMM parameters when the path taken by each 
training sequence is not known. The algorithm counts the number of times each parameter is 
used when the observed set of symbols in the training sequence is input to the current HMM. The 
algorithm constitutes two steps: the Expectation Step (E Step) and the Maximization Step (M 
Step). In the E Step, the forward and backward probabilities at each position in the sequence are 
calculated. To determine the probability of the entire sequence, with symbol k being observed at 
state i, these probabilities are combined as follows:  

)(
)()(

)|(
Lf

ibif
xkpathP

N

kk
i == . 

Using the training set of sequences, the expected number of times a symbol c is emitted at state k 
is defined as 

( ) ( )∑ ∑ ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

=jx

j
k

cj
ix|i

j
kj

N
ck, ibif

Lf
=n

}{)(
1

. 

The number of times a transition from state k to m occurs is given by 

∑
∑ +

=
+

→
jx

j
N

i

j
ki

j
mkm

j
k

mk Lf

ibxeaif
n

)(

)1()()( 1

, 

where the superscript j refers to an instance in the training set.  

In order to maximize performance, the Maximization Step uses the number of times a symbol is 
seen at a state and the number of times a transition occurs between two states (in the E Step) to 
update the transition and emission probabilities. The updated emission probability is 

∑ +

+
=

'
,,

,,

)'(
'

)(

c
ckck

ckck
k nn

nn
ce , 
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and the transition probability is updated using 

∑ →→

→→

+
+

=

m
mkmk

mkmk
km nn

nn
a

)'(
'

. 

Pseudo-counts n'k,c and n'k→m  (emission and transition probabilities, respectively) are taken into 
account because it prevents the numerator or denominator from assuming a value of zero which 
happens when a particular state is not used in the given set of observed sequences or a transition 
does not take place. Table 2.4 contains the pseudocode of the Baum-Welch algorithm. 

In the next chapter, we describe the data transformation procedures we employed in order to use 
Hidden Markov models for weather data modeling. We then describe our approach to the use of 
HMMs to as a predictor of RWIS sensor values. 

 

Table 2.4. Baum-Welch Algorithm 

Baum-Welch Algorithm 

Initialize the parameters of HMM and pseudocounts n'k,c and n'k->l 

Iterate until convergence or for a fixed number of times 

 - E Step: for each training sequence j = 1 ... n 

● calculate the forward probability fk(i) for the sequence j 

● calculate the backward probability bk(i) for the sequence j 

● add the contribution of sequence j to  nk,c and nk->l 

 - M Step: update HMM parameters using the expected counts nk,c and nk->l and the 
pseudocounts n'k,c and n'k->l. 
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Chapter 3 
Weather Data Modeling 

Minnesota has 91 RWIS meteorological measurement stations positioned alongside major 
highways to collect local pavement and atmospheric data. The State is laid out in a fixed grid 
format and RWIS stations are located within each grid.  The stations themselves are positioned 
some 60 km apart. Each RWIS station utilizes various sensing devices, which are placed both 
below the highway surface and on towers above the roadway. The sensor data, that is, the 
variables that will be used in determining sensor malfunctions, are dependent on the particular 
type of sensor being evaluated. Each sensor data item consists of a site identifier, sensor 
identification, date, time, and the raw sensor values.  

As in Phase I, a set of 13 RWIS stations were chosen for the project. The selected sites are not 
subject to microclimatic conditions and are contained in the same or adjacent grids located in the 
Northern part of the State. Each RWIS station is located near one or more regional airports so 
that the data generated by their Automated Weather Observing System (AWOS) sensors can be 
compared with the data generated by the RWIS site. Airport AWOS sites are located no more 
than 30 miles from each of the selected RWIS sites (a distance ensuring that each RWIS site is 
linked to at least one regional airport yet keeping to a minimum the number of airports lying 
within the 30-mile radius of any given RWIS site). Figure 3.1 illustrates the location of each site 
and its adjacent airports.  

 

 

Figure 3.1. Location of RWIS/AWOS Sites 
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As may be noted, the 13 sites cluster naturally into three groups; this clustering was used to 
advantage as we refined our analysis of the sensor data. Grouping the sites enables us to prevent 
comparisons between two sites present in totally different climatological regions. Each set can be 
compared to a simple climatological regime, and the climatic changes at one site are reflected at 
nearby sites, not necessarily at that instant but after a certain duration of time. Clustering helps in 
predicting the weather condition at a site when that condition is known in other sites in the set. 

Along with the weather information from the RWIS sites, we use meteorological data gathered 
from the AWOS sites to help with the prediction of values at an RWIS site. The location of the 
RWIS sites with respect to the site's topography is variable, as these sensors sit near a roadway 
and are sometimes located on bridges. AWOS sites are located at airports on a flat surrounding 
topography, which makes it easier to compare weather data obtained from these sites. Including 
AWOS information generally proved beneficial in predicting values at an RWIS site. 

Our overall research project focuses on a subset of sensors that includes precipitation, air 
temperature and visibility. These sensors were identified by the Minnesota Department of 
Transportation as being of particular interest. However, data from other sensors are used to 
determine if these particular sensors are operating properly. For HMMs, we concentrated on 
precipitation and air temperature since the M5P algorithm performed so well in detecting 
visibility sensor malfunction [1]. 

3.1 RWIS Sensor Data 

RWIS sensors report observed values every 10 minutes, resulting in 6 records per hour. 
Greenwich Mean Time (GMT) is used for recording the values. The meteorological conditions 
reported by RWIS sensors are air temperature, surface temperature, dew point, visibility, 
precipitation, the amount of precipitation accumulation, wind speed and wind direction. 
Following is a short description of these variables along with the format they follow.   

 (1) Air Temperature 

Air temperature is recorded in Celsius in increments of one hundredth of a degree, with 
values ranging from -9999 to 9999 and a value of 32767 indicating an error. For example, a 
temperature of 10.5 degree Celsius is reported as 1050. 

 (2) Surface Temperature 

Surface temperature is the temperature measured near the road surface. It is recorded in the 
same format as air temperature. 

 (3) Dew Point  

Dew point is defined as the temperature at which dew forms. It is recorded in the same 
format as air temperature.  
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 (4) Visibility 

Visibility is the maximum distance that it is possible to see without any aid. Visibility 
reported is the horizontal visibility recorded in one tenth of a meter with values ranging 
from 00000 to 99999. A value of -1 indicates an error. For example, a visibility of 800.2 
meters is reported as 8002. 

 (5) Precipitation 

Precipitation is the amount of water in any form that falls to earth. Precipitation is reported 
using three different variables, precipitation type, precipitation intensity and precipitation 
rate. A coded approach is used for reporting precipitation type and intensity. The codes 
used and the information they convey are given in Table 3.1. 

The precipitation type gives the form of water that reaches the earth's surface. Precipitation 
type with a code of 0 indicates no precipitation, a code of 1 indicates the presence of some 
amount of precipitation but the sensor fails to detect the form of the water, a code of 2 
represents rain, and the codes 3, 41, and 42, respectively, represent snowfall with an 
increase in intensity. 

The precipitation intensity is used to indicate how strong the precipitation is when present. 
When no precipitation is present then intensity is given by code 0. Moving from codes 1 to 
4 indicates an increase in intensity of precipitation. Codes 5 and 6 are used to indicate an 
intensity that cannot be classified into any of previous codes and in cases when the sensor 
is unable to measure the intensity, respectively. A value of 255 for precipitation intensity 
indicates either an error or absence of this type of sensor.  

 

Table 3.1. RWIS Precipitation Codes 

Code  Precipitation Intensity Code  Precipitation Type 

0 No precipitation 0 None 

1 Precipitation detected, not identified 1 Light 

2 Rain 2 Slight 

3 Snow 3 Moderate 

41 Moderate Snow 4 Heavy 

42 Heavy Snow 5 Other 

  6 Unknown 
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Precipitation rate is measured in millimeters per hour with values ranging from 000 to 999 
except for a value of -1 that indicates either an error or absence of this type of sensor.  

 (6) Precipitation Accumulation  

Precipitation accumulation is used to report the amount of water falling in millimeters. 
Values reported range from 00000 to 99999 and a value of -1 indicating an error. 
Precipitation accumulation is reported for the last 1, 3, 6, 12 and 24 hours. 

 (7) Wind Speed 

Wind speed is recorded in tenths of meters per second with values ranging from 0000 to 
9999 and a value of -1 indicating an error. For example, a wind speed of 2.05 
meters/second is reported as 205. 

 (8) Wind Direction 

Wind direction is reported as an angle with values ranging from 0 to 360 degrees. A value 
of -1 indicates an error. 

 (9) Air Pressure  

Air pressure is defined as the force exerted by the atmosphere at a given point. The 
pressure reported is the pressure when reduced to sea level. It is measured in tenths of a 
millibar and the values reported range from 00000 to 99999. A value of -1 indicates an 
error. For example, air pressure of 1234.0 millibars is reported as 12340. 

3.2 AWOS Sensor Data 

AWOS is a collection of systems including meteorological sensors, a data collection system, a 
centralized server, and displays for human interaction which are used to observe and report 
weather conditions at airports in order to help pilots in maneuvering aircraft and airport 
authorities for proper working of airports and runways. AWOS sensors report values on an 
hourly basis. The local time is used in reporting. AWOS sensors report air temperature, dew 
point, visibility, weather conditions in a coded manner, air pressure and wind information. 
Following is a description of these variables.  

 (1) Air Temperature 

The air temperature value is reported as integer values ranging from -140o F to 140o F.  

 (2) Dew Point  

The dew point temperature is reported in the same format as air temperature. 
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 (3) Visibility 

The visibility is reported as a set of values ranging from 3/16 mile to 10 miles. These 
values can be converted into floating point numbers for simplicity. 

 (4) Weather Code  

AWOS uses a coded approach to represent the current weather condition. 80 different 
possible codes are listed to indicate various conditions. Detailed information about these 
codes is given in the document titled “Data Documentation of Data Set 3283: ASOS 
Surface Airways Hourly Observations” published by the National Climatic Data Center [8].  

 (5) Air Pressure  

The air pressure is reported in tenth of a millibar increments. For example, an air pressure 
of 123.4 millibars is reported as 1234.  

 (6) Wind Speed and Direction 

AWOS encodes wind speed and direction into a single variable. Wind speed is measured in 
knots ranging from 0 knots to 999 knots. Wind direction is measured in degrees ranging 
from 0 to 360 in increments of 10. The single variable for wind has five digits with the first 
two representing direction and the last three representing speed. For example, the value for 
a wind speed of 90 knots and direction of 80 degrees is 80090. 

As noted above, the data format used for reporting RWIS and AWOS sensor values differs. To 
make the data from these two sources compatible, the data must be transformed into a common 
format. In some cases, additional preprocessing is necessary in order to discretize the data. We 
will describe the data transformation that we utilized in the following section. 

3.3 Sensor Data Transformation 

RWIS sensors report data every 10 minutes, whereas AWOS provides hourly reports. Thus, 
RWIS data needs to be averaged when used in conjunction with AWOS data. The changes that 
were made to the RWIS data in order to produce a common format follows. 

● RWIS uses Greenwich Mean Time (GMT) and AWOS uses Central Time (CT). The 
reporting time in RWIS is changed from GMT to CT. 

● Variables, such as air temperature, surface temperature, and dew point, that are reported 
in Celsius by RWIS are converted to Fahrenheit, the format used by AWOS. To convert 
six readings per hour to a single hourly reading in RWIS, a simple average is taken. 

● Distance, which is measured in kilometers by RWIS for visibility and wind speed, is 
converted into miles, the format used by AWOS. A single hourly reading is obtained 
through a simple average in RWIS. 

● In order to obtain hourly averages for precipitation type and intensity reported by RWIS, 
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we use the most frequently reported code for that hour. For precipitation rate, a simple 
average is used. RWIS sites report precipitation type and intensity as separate variables, 
whereas AWOS combines them into a single weather code [8]. Mapping precipitation 
type and intensity reported by RWIS to the AWOS weather codes is not feasible and 
requires some compromises to be made. Thus we keep these variables in their original 
format. 

Of the three features selected for use in predictions, a direct comparison between RWIS and 
AWOS values cannot be done for precipitation type because each uses a different format for 
reporting. For broader comparison, we combine all the codes that report different forms of 
precipitation, in both RWIS and AWOS, into a single code, which indicates the presence of some 
form of precipitation. 

Apart from using the features obtained from the RWIS and AWOS sites, we also made use of 
historical information to represent our training data. This increases the amount of weather 
information we have for a given location or region. We collected hourly temperature values for 
the 14 AWOS sites in Figure 3.1 from the Weather Underground website for a duration of seven 
years, namely, 1997 to 2004 (http://www.wunderground.com). For many locations, the 
temperature was reported more than once an hour; in such cases the average of the temperature 
across the hour was taken. As we already have readings for temperature from two different 
sources, RWIS and AWOS, we use the information gathered from the website to adjust our 
dataset by deriving values such as the projected hourly temperature. To calculate the projected 
hourly temperatures for an AWOS site we use past temperature information obtained from the 
website for this location. The projected hourly temperature for an hour of a day is defined as the 
sum of the average temperature reported for that day in the year and the monthly average 
difference in temperature of that hour in the day for the respective month.  

The steps followed to calculate the projected hourly temperature for an AWOS site are as 
follows:  

● Obtain the hourly temperature for the respective AWOS site. 

● Calculate the average temperature for a day as the mean of the hourly readings across a 
day. 

● Calculate the hourly difference as the difference between the average daily temperature 
and actual temperature seen at that hour. 

● Calculate the average difference in temperature per hour for a particular month (monthly 
average difference) as the average of all hourly differences in a month for that hour 
obtained from all the years in the data collected. 

● Calculate the projected hourly temperature for a day from the sum of the average 
temperature for that day and the monthly average difference of that hour in the day. 

For example, suppose the temperature value at the AWOS site KORB for the first hour for 
January 1st for year 1997 is 32ºF. The temperature values for all 24 hours on January 1st are 
averaged; assume this value is 30ºF. The hourly difference for this day for the first hour will be 
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2ºF. Now assume the average of all the first hourly differncee values for the month of January 
for KORB from years 1997 to 2004 is 5ºF. Then the projected temperature value for the first 
hour in January 1st, 1997 will be 35ºF, which is the sum of the average temperature seen on 
January 1st 1997 and the monthly average difference for the first hour in the month of January.  

The projected hourly temperature is used (1) as a feature in the datasets used for predicting 
weather variables at an RWIS site, and (2) in the process of discretizing temperature. 

3.4 Discretization of the Data 

Hidden Markov Models require discrete data. If the data is continuous, discretization of the data 
involves finding a set of values that split the continuous sequence into intervals; each interval is 
then assigned a single discrete value.  

Discretization can be accomplished using unsupervised or supervised methods. In unsupervised 
discretization, the data is divided into a fixed number of equal intervals, without any prior 
knowledge of the target class values of instances in the given dataset. In supervised 
discretization, the splitting point is determined at a location that increases the information gain 
with respect to the given training dataset [9]. Dougherty gives a brief description of the process 
and a comparison of unsupervised and supervised discretization [10]. WEKA provides a wide 
range of options to discretize any continuous variable, using supervised and unsupervised 
mechanisms [11].   

We propose a new method for discretization of RWIS temperature sensor values that uses data 
obtained from other sources. Namely, using the projected hourly temperature for an AWOS site 
along with the current reported temperature for the closest RWIS site, we determine a class value 
for the current RWIS temperature value. The actual reported temperature at an RWIS site is 
subtracted from the projected hourly temperature for the AWOS site closest to it for that specific 
hour. This difference is then divided by the standard deviation of the projected hourly 
temperature for that AWOS site. The result indicates how much the actual value deviates from 
the projected value, that is, the number of standard deviations from the projected value (or the 
mean): 

num_stdev = (actual_temp – proj_temp) / std_dev 

The number of standard deviations determines the class to which the temperature value is 
assigned, as shown in Table 3.2. The ranges and the number of classes can be determined by the 
user or based on requirements of the algorithm. For example, to convert the actual temperature of 
32ºF at an RWIS site, we calculate the projected temperature for that hour at the associated 
AWOS site, say 30ºF, and the standard deviation of projected temperatures for the year, 5.06. 
This yields a value of 0.395 as the number of standard deviations from the mean. Thus the 
representation for 32ºF is assigned to be class 6. The advantage of determining classes in this 
manner is that the effect of season and time of day is at least partially removed from the data. 
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Table 3.2. RWIS Temperature Classes 

Class Value  Class Value  

1 num_stdev < -2 6 0.25 < num_stddev  ≤ 0.5 

2 -2 ≤ num_stdev  ≤ -1 7 0.5 < num_stddev  ≤ 1 

3 -1 < num_stdev  ≤ -0.5 8 1 < num_stddev  ≤ 2 

4 -0.5 < num_stdev  ≤ -0.25 9 num_stdev > 2 

5 -0.25 < num_stdev  ≤ 0.25   

 

3.5 Feature Vectors 

To build models that can predict values reported by an RWIS sensor, we require a training set 
and a test set that contain data related to the weather conditions. Each member of these sets is 
represented by a so-called feature vector for the dataset consisting of a set of input attributes and 
an output attribute, with the output attribute corresponding to the RWIS sensor of interest. The 
input attributes for a feature vector in the test set are applied to the model built from the training 
set to predict the output attribute value. This predicted value is compared with the sensor’s actual 
value to estimate model performance. The feature vector has the form 

input1, ...., inputn, output 

where inputi is an input attribute and output is the output attribute.  

The performance of a model is evaluated using cross-validation. The data is divided repeatedly 
into training and testing groups using 10-fold cross validation, repeated 10 times. In 10-fold 
cross validation the data is randomly permuted and then divided into 10 equal sized groups. Each 
group is then in turn used as test data while the other 9 groups are used to create a model (in this 
way every data point is used as a test point exactly once). The results for the ten groups are 
summed, and the overall result for the test data is reported. 

Predicting a value for an RWIS sensor corresponds to predicting the weather condition being 
reported by that sensor. Since variations in a weather condition, like air temperature, are 
dependent to some degree on other weather conditions, such as wind, precipitation, and air 
pressure, many different types of sensors are used to predict a single sensor’s value at a given 
location. Earlier readings (such as those during the previous 24 hour period) from a sensor can be 
used to predict present conditions, as changes in weather conditions follow a pattern and are not 
totally random. In addition, as noted in Figure 3.1, we divided the RWIS-AWOS sites into 
clusters. Any site within a single cluster is assumed to have climatic conditions similar to any 
other site in the cluster. This assumption allows us to use both RWIS and AWOS data obtained 
from the nearby sites (those in the same cluster) to predict variables at a given RWIS site in the 
cluster.  
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In Hidden Markov models the instance in a dataset used for predicting a class value of a variable 
consists of a string of symbols that form the feature vector. The symbols that constitute the 
feature vector are unique and are generated from the training set. Predicting a weather variable 
value at an RWIS site that is based on hourly readings for a day yields a string of length 24. This 
string forms the feature vector which is used in the dataset.  

When information from a single site is used for predictions, the class values taken by the 
variables form the symbol set. When the variable information from two or more sites is used 
together, a class value is obtained by appending the variable's value from each site together. For 
example, to predict a temperature class of site 19 using the Northeast cluster in Figure 3.1, we 
include temperature data from sites 27 and 67. The combination of class values from these three 
sites for a particular hour will form a class string. For example if the temperature class values at 
sites 19, 27, and 67 are 3, 5, and 4, respectively, then the class string formed by appending the 
class values is 354.  

The sequence of hourly class strings for a day form an instance in the dataset. All unique class 
strings that are seen in the training set are arranged in ascending order, if possible, and each class 
string is assigned a symbol. For hourly readings taken during a day we arrive at a string which is 
24 symbols long, which forms the feature vector used by the HMM. 
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Chapter 4 
Hidden Markov Approach 

To build an HMM model from a given number of states and symbols, the Baum-Welch 
algorithm is first applied to the training set to determine the initial state, transmission 
probabilities, and emission probabilities. Each symbol generated using the training set is emitted 
by a state. Instances from the test set are then passed to the Viterbi algorithm which yields the 
most probable state path. 

To predict a variable’s class value, we need the symbol that would be observed across the most 
probable state path found by the Viterbi algorithm. In order to obtain such symbols, we had to 
modify the Viterbi algorithm. Table 4.1 contains the modified algorithm.  

 

Table 4.1. Modified Viterbi Algorithm 

Modified Viterbi Algorithm 

Initialization (i = 0) :                       0  0)0(,1)0(0 >== kforvv k  

Iteration (i = 1 ..... L) :                    

))((maxarg)(
))1((maxarg)(

))((max*))1((max)(
)(

smsi

klkki

smskmkkm

i

symbolsetembestsymbol
aivmptr

symbolseteaiviv
xesymbolsallpossiblsymbolset

=
−=

−=
=

 

Termination :                                   P(x,path*) = maxk(vk(L)ak0) 

                                                         path*L = argmaxk(vk(L)ak0) 

Traceback ( i = L.....1) :                   path*i-1 = ptri(path*i) 

Symbol Observed ( i = 1 ... L):       symbol(i) = bestsymboli ( path*i  )   

 

vm(i) -                             probability of the most probable path obtained after observing the  
                                      first I characters of the sequence and ending at state m 

ptrm(i) -                          pointer that stores the state that leads to state m after  
                                      observing i symbols 

path*i -                           state visited at position i in the sequence  

bestsymboli(m) -             the most probable symbol seen at state m at position in  
                                       the sequence   

symbolsets –                   the set of all possible symbols that can be emitted from a state  
                                       when a certain symbol is actually seen 

allpossibesymbols(xi) – function that generates all possible symbols for the  
                                      given symbol xi. 

symbol(i) –                     symbol observed ith position in the string. 



 

 20

The modified algorithm is similar to the original algorithm (Table 2.3). It calculates the 
probability of the most probable path obtained after observing the first i characters of the given 
sequence and ending at state m using 

))1((max)()( kmkkimm aivxeiv −= , 

where em(xi) is the emission probability of the symbol at state m and akm is the transition 
probability of moving from state k to state m. However, in the modified Viterbi algorithm, in 
place of em(xi) we use the emission probability value that is the maximum of all of the possible 
symbols that can be seen at state m when the symbol xi is present in the actual symbol sequence. 
We calcualte vm(i) in the modified Viterbi algorithm as 

))((max*))1((max)( smskmkkm symbolseteaiviv −= . 

The actual symbol seen in the symbol string for that respective time is selected and all its 
possible symbols are found. Of the possible symbols or class strings, only those that are seen in 
the training instances are considered in the set of possible symbols. The symbol from the set of 
possible symbols that has the highest emission probability is selected as the symbol observed for 
the given state. To retain the symbol that was observed at a state, the modified Viterbi algorithm 
uses the pointer bestsymboli(m) which contains the position of the selected symbol in the set of 
possible symbols seen at state m for a position i in the sequence. It is given by 

))((maxarg)( smsi symbolsetembestsymbol = . 

The most probable path generated by the algorithm is visited from the start, and by retaining the 
symbols that were observed at the state for a particular time, we can determine the symbols with 
the highest emission probability at each state in the most probable state path. This new symbol 
sequence gives the observed sequence for that given input sequence; in other words, it is the 
predicted sequence for the given actual sequence.  

To predict the class values for a variable at an RWIS site for a given instance, we pass the 
instance through the modified Viterbi algorithm which then gives the symbols that have the 
highest emission probabilities along the most probable path. The symbol found is then converted 
back into a class string, and the class value for the RWIS site of interest is regarded as the 
predicted value.  

For example, to predict temperature class values at site 19 in Figure 3.1, we use the class string 
for temperature class values from sites 27 and 67 appended to the value observed at site 19. 
Suppose the class string sequence for a given day is  

343, 323, 243, 544, … , 324  

a feature vector of length of 24, one for each hour in a day. This sequence is passed to the 
modified Viterbi algorithm which yields the observed sequence along with most probable state 
path. Now suppose the output sequence for the given sequence is  

433, 323, 343, 334, … , 324 
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As we are interested in predicting the class values at site 19, taking only the first class value from 
a class string we get for actual values  

3, 3, 2, 5, … , 3. 

The observed (or predicted) values for the day are  

4, 3, 3, 3, … , 3. 

The distance between these class values gives the accuracy of the predictions made by the model. 

The performance of the HMM on the given test set, on precipitation type and discretized 
temperature, can be evaluated using the same methods that were used in the general 
classification approach used in Phase 1 [1]. 
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Chapter 5 
Empirical Analysis 

Based on the instance given, an HMM tries to predict the most probable path taken across its 
states. For weather data, the path is the predicted values of the weather sensor using the 
surrounding sensors for additional information. HMMs can be used to classify discrete attributes. 
When data is present in the form of a time series, such as hourly precipitation, HMMs can be 
used to identity the path of predicted values from which we can further obtain the values 
observed through the path. 

We use the modified Viterbi algorithm to predict the symbol observed when a state in the most 
probable path is reached for the given instance. HMMs require a training dataset to build the 
model, that is, to estimate the initial state, transition probabilities, and emission probabilities. The 
test dataset is used to evaluate the model. Multiple n-fold cross-validation is used to estimate 
model performance. As HMMs require the presence of all symbols in the symbol sequence, any 
time sequence with missing data (due to a sensor not reporting or transmission problems) was 
omitted from the dataset used for predictions.  

HMMs require class value information. For the RWIS sites that were used for predictions, we 
discretized the temperature following the method previously described; namely, the temperature 
was broken down into nine classes based on the value obtained for the number of standard 
deviations by which the actual temperature value differs from the predicted value (Table 3.2). 
For nearby sites, we used a broader classification of temperature values, as shown in Table 5.1; 
such sites required less precise differentiation since they are providing additional information for 
making predictions. For example, to predict temperature values at site 19, we used temperature 
values of the nearby sites 27 and 67 for additional information. Each temperature value at site 19 
was represented as one of nine possible classes and temperatures  at sites 27 and 67 were chosen 
as one of five classes. 

 

Table 5.1. RWIS Temperature Classes for Nearby Sites 

Class Value  Class Value  

1 num_stdev < -1 4 0.5 < num_stdev  ≤ 1 

2 -1 ≤ num_stdev  ≤ -0.5  5  num_stdev > 1 

3 -0.5 < num_stdev  ≤ -0.5   

 
 
In the following experiments, we trained the Hidden Markov Model using the methods available 
in the HMM Toolbox for MATLAB developed by Murphy [12]. The modified Viterbi algorithm 
was used for testing. We performed ten iterations of the Baum-Welch algorithm during the 
training of the HMM. We set the number of states in the model to 24 and each state was allowed 
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to emit all possible symbols obtained from the training set. Since we are using hourly readings 
for a day, each instance in the dataset is a string of symbols with a length of 24.  

5.1 Training the HMM 

Two different methods were devised to train the HMMs to predict the temperature class value 
reported at an RWIS site. The temperature class information from the RWIS site and the other 
RWIS sites in its group is used to form the feature symbols. The results obtained from predicting 
temperature class value were used to compare the two methods. 

 (1) Method A 

In this approach we merged all the data from a group and trained the HMM using this data. 
As noted earlier, the site being used for prediction has 9 temperature classes (Table 6) and 
the other sites in the group have 5 temperature classes (Table 5.1). Thus, each site has its 
own merged dataset.  

We create the dataset in which each instance is a string of symbols representing hourly 
readings per day, where a symbol for an hour was obtained from appending that hour's 
temperature class value for all of the RWIS sites in a group together. For example to 
predict temperature class values at site 19, we used the temperature classes from sites 27 
and 67.  If the temperature class values at time t seen at sites 19, 27 and 67 are 6, 3 and 2 
then the class string generated for time t will be 632. We estimated the initial state, 
transition, and emission probabilities by applying the Baum-Welch algorithm to this dataset 
with combined class information. 

 (2) Method B 

In this approach the data from the sites used is not merged. Instead, data from each site is 
used for training the model, and the emission probabilities of all sites in the group are 
multiplied to obtain a single emission matrix for the final model.  

We created a separate dataset for each RWIS site in which each instance is a string of 
symbols representing hourly temperature class value per day. We applied the Baum-Welch 
algorithm to the dataset for the RWIS sites to estimate the initial state, transition 
probabilities, and emission probabilities. The emission probability matrices obtained for 
each RWIS site in a group were then joined together by multiplying the respective values in 
each cell in the matrix. The resultant emission matrix was made stochastic, that is, such the 
sum of all rows and columns is 1. In order to increase probabilities with small values, we 
applied the m-estimate to the probability values in the matrix, using a value of 20 for m and 
the inverse of the number of classes as the value of p. In this case the number of classes 
denotes the total number of class values taken by the variable we are trying to predict. By 
applying the m-estimate, we get new values in each cell of the matrix as defined by  

matrix(row.col) =  (matrix(row,col) + mp) / (1 + m). 
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We used the initial state and transition probabilities for the RWIS site whose temperature value 
is to be predicted in the model. We used the temperature values at the RWIS sites for the years 
2002 and 2003 in the training set, while the test set contained temperature information from 
January 2004 to April 2004. We discretized the temperature values by allocating them into nine 
classes. Training was done using the two methods mentioned above, and temperature class value 
was predicted for instances in the test data using the modified Viterbi algorithm. 

As a measure to estimate the performance of the algorithm, we used the absolute distance 
between the actual and predicted class values for temperature. Figure 5.1 shows the percentage 
of instances in the training set for each distance between the actual and predicted class averaged 
across the results from different RWIS sites. The HMM was trained using Method A and Method 
B. A distance of zero indicates a perfectly classified instance.  

Smaller distances between the actual and predicted values indicate more accuracy in predictions. 
From Figure 5.1 we can observe that Method A classified more instances with distance 1 or less, 
whereas Methods 2 had comparatively fewer number of instances classified with distance below 
2. This indicates that Method A outperforms Method B. Consequently, we elected to use Method 
A for training the HMM to predict sensor malfunctions in the experiments that follow.  
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Figure 5.1. Percentage of Instances in Test Set 
 

5.2 Predicting Temperature 

In this experiment we attempt to predict the temperature class value reported at an RWIS site. 
The temperature class information from the RWIS site and the other RWIS sites in its group are 
used to form the feature symbols.  
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Using temperature data collected for each RWIS site, ranging from January 2002 to April 2004, 
we created a dataset for each RWIS site to be used for predictions. In this dataset each instance is 
a string of symbols representing hourly readings for a day, where a symbol for an hour was 
obtained by appending that hour's temperature class value for all RWIS sites in a group. In each 
class string the RWIS site predicted was listed first and the other sites in the group were added in 
order of their nautical distance from the RWIS site of interest. This order is useful for finding the 
closest symbol when a class string in the test set is missing from the training set used. We 
estimated the performance of HMM in predicting the current hour's temperature class value at an 
RWIS site using the dataset of the group this site belonged to and applied a single 10-fold cross-
validation to estimate the model evaluation. 

We evaluated the performance of the HMM using the absolute distances between the actual and 
predicted values. The respective distance values for all RWIS sites in a group were averaged so 
as to reflect on the performance of the HMM in predicting temperature class values for that 
respective set. We do not combine the results of different sets to reach an overall percentage 
value, since the format of the symbol sequence in a dataset is different for each site. Figure 5.2 
shows the percentage values for each distance for the three sets, with the percentage calculated as 
the number of instances classified within a certain distance over the total instances present in the 
dataset, with each instance being an hourly reading. The percentage for each distance across all 
the RWIS sites used for prediction is detailed in Appendix A.  
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Figure 5.2. Percentage of Instances with Differences between Actual and Predicted Values 

 

It can be seen from Figure 5.2 that most temperature class values are predicted with a distance of 
1 for all sets. This is also reflected in the results from individual sites shown in the Appendix. 
The percentage of instances predicted with a distance of 3 or less in Groups 1, 2 and 3 are 
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99.75%, 99.43% and 94.34%, respectively. Approximately 3% of the data in Group 3 is 
predicted with a distance of 4; this result is due to the RWIS site 67 in which approximately 15% 
of the data is predicted with distance 4. Ignoring the results for site 67, we can conclude that 
when the distance between the actual temperature class and the predicted class is more than 
three, then there is a malfunction in the RWIS temperature sensor. The erratic behavior of site 67 
may be due to the presence of errors in it.  

5.3 Site Independent Prediction of Temperature 

This experiment evaluates the use of HMMs to predict the temperature class value reported for a 
site in a given RWIS grouping. A single dataset was generated for the group with the first class 
value in the class string representing the class value to be predicted. The temperature class 
information from the RWIS sites in a group are used to form the feature symbols.  

In order to increase the size of data used for predictions and to perform site independent 
predictions, we created a single dataset for each RWIS group. Each of the RWIS sites in a group 
was taken as the predicted site, and the symbol strings obtained from it were appended to the 
dataset. The class string was constructed using the predicted site's class value as the first 
component followed by the class values of the other sites in the group. Ordering of the nearby 
sites was done with respect to the distance from the predicted site; the site closest to the 
predicted site was added first and so on.  For example, to create a single dataset for RWIS Group 
1, we first add data instances taking RWIS site 19 as the site to be predicted, with sites 27 and 67 
as nearby sites, followed by taking site 27 to be the site predicted and then using site 67 as the 
site predicted. This process yields a single large dataset whose size is equal to the sum of the 
sizes of the datasets generated for each site in an RWIS group. By predicting the first class seen 
in the dataset, we perform a site independent evaluation of the HMM that focuses on prediction 
accuracy within a group. 

A dataset was generated for each group using the temperature data from the years 2002 and 
2003. It was used to predict the first class value (the predicted site) seen in the class string using 
HMMs, and the model was evaluated using ten 10-fold cross validation runs.  The distance 
between actual and predicted class value was used to evaluate the performance of the model.  

Figure 5.3 shows the percentage of instances (with an instance being an hourly reading) having a 
given distance between each of the three RWIS sets. The percentage values were obtained after 
averaging the values reported for each cross-validation run. Comparing the results of the 
previous experiment with these results, we observe from Figures 5.1 and 5.2 that the percentage 
of instances with a given distance is almost the same. In other words, the results obtained for a 
group using a combined dataset and for averaging results from within a group where each site 
was trained using its dataset are almost identical.  Thus we can conclude that using a single 
model built from the combined dataset values for any site in a group can be can be predicted with 
accuracy comparable to that of the overall group. 
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Figure 5.3. Difference between Actual and Site Independent Predicted Values 
 

The percentage of instances predicted with a distance of 3 or less in the groups 1, 2 and 3 were 
99.76%, 99.71%, and 97.88% respectively, which covers almost the entire data. Thus, when the 
distance between the actual temperature class and the predicted class is more than three, there is 
in all likelihood a malfunction in the RWIS temperature sensor. 

5.4 Predicting Precipitation Type 

In this experiment we predict the precipitation type reported at an RWIS site using 10-fold cross 
validations. The precipitation information from the RWIS sites within a group is used to form the 
feature symbols. RWIS data from years 2002 and 2003 were selected for generation of the data 
as these where the most recent years for which we had entire yearly data for the RWIS sensors. 
The dataset used for prediction contained hourly class strings for each day. Each class string was 
obtained by appending the precipitation types of the RWIS site used for prediction and its nearby 
sites, arranged according to distance from the site used for predictions. 

We cannot use the distance between actual and predicted values for performance evaluation, 
since each precipitation type reported is unique and has a specific meaning. We observed that 
some RWIS sites report precipitation type as present or not present, while other sites indicate the 
type of precipitation present. In order to compare the performance across all sites, any form of 
precipitation occurring was taken as precipitation present, averaged over all sites present in a set.  

Figure 5.4 shows the percentage of instances in the dataset that were correctly predicted as 
precipitation present or as not present, along with the percentage of instances where no 
precipitation and precipitation present were reported in the actual data. The actual values for 
each of the 13 RWIS sites for which prediction was made are included in the Appendix A.  
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From the percentage values in Figure 5.4 and Appendix A, it is apparent that HMMs fail to 
predict the presence of precipitation accurately. Furthermore, for most sites, fewer than half of 
the instances predict precipitation type correctly. Appendix A reveals that prediction 
performance varies widely with respect to a site. These results lead us to conclude that HMMs 
trained using the methodology described is not a good option for predicting precipitation and 
thus cannot be used for detection of RWIS precipitation sensor malfunctions.  

 

Group 1: RWIS Sites19, 27 
and 67

Group 2: RWIS Sites14, 20, 
35, 49 and 62

Group 3: RWIS Sites 25, 56, 
60, 68 and 78

0

10

20

30

40

50

60

70

80

90

No Precipitation 
Present in Actual Data

Precipitation Present 
in Actual Data

No Precipitation 
Predicted Correctly

Precipitation Predicted
Correctly

RWIS Groups

P
er

ce
nt

ag
e 

of
 In

st
an

ce
s

 
Figure 5.4. Correctness of Prediction of Precipitation Type and Presence 
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Chapter 6 
Conclusions 

Hidden Markov Models performed well for classifying discretized temperature values but failed 
to predict precipitation type correctly in most cases. A threshold distance of 3 between the actual 
and the predicted temperature class value may be used to detect temperature sensor malfunctions. 
When predicting temperature, a single model of a group obtained from using the combined 
dataset yielded results similar to those obtained from predicting temperature at single sites over a 
group. This leads us to conclude that a single model built using datasets of all sites together can 
be effectively used to identity malfunctions at any site in the group. We find the models 
produced by HMM for precipitation type have a high error when classifying the presence or 
absence of precipitation and should not be used for precipitation predictions.  However, as 
concluded in Phase I of this project, a combination of the machine learning methods J48 and 
Bayes Nets can be used to detect precipitation sensor malfunctions, with J48 being used to 
predict the absence of precipitation and Bayesian networks, the presence of precipitation. 
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Appendix A 
 

Experimental Results  
 



 

A-1 

 Set 1 Set 2 
 19 27 67 14 20 35 49 62 

Distance 0  18.48% 16.18% 19.30% 21.94% 27.37% 22.86% 18.55% 22.37%

1 68.31% 28.67% 67.63% 73.11% 59.03% 65.06% 60.16% 70.88%

2 12.08% 49.85% 12.19% 4.83% 12.24% 11.09% 16.17% 4.38% 

3 1.09% 4.59% 0.88% 0.11% 1.32% 0.95% 3.57% 1.15% 

4 0.04% 0.71% 0.00% 0.00% 0.04% 0.04% 1.12% 0.53% 

5 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.35% 0.67% 

6 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.08% 0.00% 

7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 
         

 Set 3    

 25 56 60 68 78    

Distance 0 42.65% 44.42% 39.60% 20.11% 39.69% 

1 52.82% 49.00% 53.09% 27.20% 39.26% 

2 4.33% 6.14% 6.96% 18.24% 16.86% 

3 0.20% 0.42% 0.35% 8.36% 1.99% 

4 0.01% 0.02% 0.00% 14.59% 0.51% 

5 0.00% 0.00% 0.00% 7.17% 1.20% 

6 0.00% 0.00% 0.00% 3.83% 0.49% 

7 0.00% 0.00% 0.00% 0.46% 0.00% 

8 0.00% 0.00% 0.00% 0.02% 0.00% 

 

 

 

 

 

 

Percentage of instances with a certain distance between the actual and predicted temperature 
class value, obtained by using HMM to predict temperature class. 
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Percentage of instances with a certain distance between the actual and predicted temperature 
class value, obtained by using HMM to predict temperature class. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

A-3 

 Set 1 Set 2 Set 3 

Distance  0 17.03% 19.29% 34.54% 

                1 59.30% 67.05% 47.84% 

               2 20.16% 11.40% 12.89% 

               3 3.27% 1.97% 2.61% 

               4 0.24% 0.17% 0.95% 

               5 0.00% 0.13% 0.83% 

              6 0.00% 0.00% 0.29% 

              7 0.00% 0.00% 0.05% 

Set 1: RWIS Sites 19, 27 and 67  

Set 2: RWIS Sites 14, 20, 35, 49, 62  

Set 3: RWIS Sites 25, 56, 60, 68, 78 

 

Percentage of instances with a certain distance between the actual and predicted temperature 
class value, obtained by using extended dataset focusing on predicting value for an RWIS set 
rather than for an RWIS site, and applying ten 10-fold cross validations using HMM to predict 
temperature class. 
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Percentage of instances with a certain distance between the actual and predicted temperature 
class value, obtained by using HMM to predict temperature class with training done using the 
extended dataset. 

 

 

 

 

 

 

 

 

 

 

 

  



 

A-5 

 
RWIS 

Site 

% of instance 
with no 

precipitation 
reported in data 

% of instance 
with 

precipitation 
reported in 

data 

% of instances 
where no 

precipitation is 
predicted 
correctly  

% of instances 
where 

precipitation is 
predicted correctly 

Set 1 19 85.71 14.28 55.22 4.79 

 27 77.23 22.77 13.33 18.72 

 67 67.3 32.69 5.36 28.35 

Set 2 14 74.61 24.38 27.22 18.08 

 20 72.74 27.25 16.96 21.43 

 35 83.58 16.41 71.19 6.85 

 49 84.66 15.33 71.24 7.34 

Set 3 62 85.82 14.17 80.8 6.38 

 25 83.1 16.9 73.4 7.7 

 56 85.25 14.74 74.25 4.27 

 60 78 20 53.64 9.39 

 68 86.41 13.59 73.69 5.15 

 78 83.89 16.11 55.91 7.73 

 

Results obtained from predicting precipitation type using HMM. 

 




