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EXECUTIVE SUMMARY

A study was undertaken to investigate stability of pile groups, with particular emphasis
on characteristic features found in bridge foundations. The result of this study is a fairly
general computer program, allowing to estimate loads that are critical from the point of
view of a given pile foundation. In broad tenné, the program allows to trace the large
deformation, equilibrium response of the soil/structure system until the critical load is
reached. The program is based on the finite element approach. It has been made

available to the bridge personnel in the Minnesota Department of Transportation.

There are two main features, distinguishing pile groups in bridge foundations, that had

to be incorporated in this study:

1. A possibility of scour. This is accounted for by permitting variations in the scoured
and embedded in the soil length of the piles.

2. Interaction of the piles with the remaining part of the structure and with one
another. This is included by treating the cap (connecting the piles at the top) as a
flexible and inherent part of the analyzed system, and by incorporating the stiffness
of the superstructure (which has to be evaluated independently) in the model. The
pile cap provides one way the piles interact with one another, the other way is
through the soil. To be able to analyze realistic pile groups, which are often large,
interaction through the soil is included only in a form of an “interaction factor”,

also obtained in this study but from a more refined, smaller, model.




There are several specific features included here, which are essential in all pile

foundations, including bridge foundations emphasized in this work. Those are:

1. Inclusion of stratified soil configurations. Here the arrangement of soil layers can be
specified independently for each pile in the group.

2. Adequate description of the constitutive properties of the soil in each layer. These
are included in the form of the force-displacement curves for normal and tangential
pile-soil interactions. The curves for the most common soil categories found in the
literature are available in the program.

3. Inclusion of thin-wall piles and the corresponding beam theory including warping.

4. Allowing for two types of loads in the systems: those whose critical value is to be
established and those that are kept fixed at a specified level during the search for

that critical value.

The program developed in the course of this study has been extensively tested.
However, considering the lack of the solutions incorporating all of the aspects
mentioned earlier, the tests performed had to be limited to some simpler situations. All
of them provided results that could be confirmed by an independent analysis. It is
therefore believed that the results rendered by the developed computer program are
correct. Nevertheless, in view of the uncertainties typically associated with the soil
properties, particularly in the severe environment of the bridge foundations, it is

advisable to follow the usual rules of a prudent engineering practice. That implies that,




- in analyzing critical load for a given foundation, the soil properties should be estimated
so as to provide a conservative value of that critical load. With that in mind the
program developed here should provide a useful tool, allowing to evaluate effects of
many different factors on the integrity of pile foundations. It should be of use both in

the analysis of new and in the evaluation of the existing bridges.







CHAPTER 1
INTRODUCTION

The research presented in this report involves practical and academic aspects.
From the practical point of view stability of pile groups has to do with design of new and
maintenance of the existing bridge structures, one example of which is shown in F ig. 1.
Academically, it represents an important part of nonlinear structural analysis,
incorporating geometric and material nonlinearities along with computational techniques
to trace nonlinear equilibrium path and to detect bifurcation and limit points on that path.
Those points relate to stability of the structure.

Stability analysis of pile groups is an inherent ingredient in the design of those

new

Bridge Springs _,__Pier Cap
Substructure 11 Pers
% Ll Pile Cap

Fig 1.1 Schematic diagram of a bridge structure

(After M.I. Hoit et al [26])




bridge structures in which supporting elements (piers) involve columns (or piles) erected
above the level of the soil. Stability of those piers has to be assured to preserve integrity
of the bridge.

Relevance of stability analysis in maintenance of the existing bridges has to do
with scour. Scour is the erosion of soil from the area surrounding foundation of the bridge
piers caused by water. In the case of the bridges whose piers contained columns erected
above the original level of the soil, scour changes the exposed length of those columns,
changing thereby stability properties of the piers. In the case of the bridges whose
original design did not contain columns above the soil level foundation piles can be (and
often are ) exposed to some extend by scour, which again changes the stability conditions
of the pier. Thus, in both cases, the evaluation of the current stability conditions of the
scoured bridge foundations must be an integral part of its maintenance.

Analysis of structural stability is nonlinear in its nature, even for problems
involving linear elasticity (the corresponding governing equations are obtained by
considering large deformation problems first). Stability of pile groups, however, involves
some aspects of analysis that go beyond the usual stability analysis of structures, although
linear elastic approximation may sometimes provide a valuable information. The main
source of the additional difficulties is the interaction of the pile group with the soil ( soil-
structure interaction), whose realistic description is strongly nonlinear. Not only
properties of the soil are nonlinear, but its interaction with the piles has independent
nonlinear characteristics, which may influence stability of the pile group even stronger

than those of the soil alone.




In view of the complexities outlined in the previous paragraph, which are
associated with a realistic description of pile group’s stability, analytical solution of the
problem seems impossible, unless drastic simplifying assumptions are made. Thus, the
present research is focused on numerical solution of the problem.

In this study, a finite element method for three-dimensional analysis of stability of
pile groups as a system will be developed. This rhethod will be subsequently used to
determine how pile configurations, soil and pile properties, interaction between
individual piles in the group and interaction of the piles with the soil affect the stability
properties of the pile group.

This report is organized as follows. Chapter 2 provides a review of previous work
on pile foundations. Chapter 3 addresses the issues related to computational aspect of
stability analysis. A continuum model is presented in chapter 4, and then a structural

model is proposed in chapter 5. Finally closure is given in chapter 6.







CHAPTER 2 |
REVIEW OF PREVIOUS RESEARCH ON PILE FOUNDATIONS

As far as stability of pile groups is concerned, no research done explicitly on that
topic has been found in the literature to the best knowledge of the authors.. The research
done so far seems to be only concerned with some aspects of stability of single piles. In
these studies, the beam resting on Winkler-type elastic foundation was usually adopted as

amodel of the pile partially embedded in the soil, which is shown in Fig. 2.1
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Fig. 2.1 Winkler-type elastic foundation

Brandtzaeg and Harboe [5] and Golder and Skipp [22] used Euler stability theory
with the analysis verified using a limited number of buckling tests. Davisson and
Robinson [12] presented solutions for buckling loads of partially embedded piles by

using the governing differential equation for buckling deflection with the assumptions of




constant axial load on the pile and constant and linearly increasing subgrade moduli. In
this case, partially embedded piles were treated as free-standing columns with fixed
bases.

Acknowledging the fact that the effect of axial load transfer was neglected in the
previous solution, Reddy and Valsangkar [38] investigated this effect by assuming
approximate linear and parabolic axial load distributions and by using the energy method.
They found that the buckling load was increaséd considerably due to the change in the
load transfer.

Based on a simple one-dimensional idealization of the pile in conjunction with the
soil represented by the Winkler-type elastic foundation, Budkowska and Szymczak [7, 8]
investigated the sensitivity of the buckling load and initial post buckling equilibrium path
of an axially loaded pile partially embedded in the soil. In their research, the effect of the
skin friction was neglected and the behavior of the pile-soil system was restricted to
linear elastic one.

Gabr and Wang [19] developed a model for estimating the buckling loads of piles
assuming uniform variation of the skin friction as a function of depth. In this study, the
distribution of the modulus of horizontal subgrade reaction was restricted to the case of
linearly increasing with depth. Later on, it was extended to the case of a general power
distribution with depth with the use of the minimum potential energy concept [20].

In general, previous work on this subject was conducted in the way that the
behavior of the pile-soil system was assumed linear elastic and the effect of soil-pile

interaction was not accounted for appropriately.




Current practice of dealing with stability of pile groups is to make some
assumptions as to the distribution of the load between individual piles in the system and
as to the pile support conditions and then to check if each individual pile is stable or
unstable. While this approach provides an estimate of buckling load of the system, it is
difficult to establish both the load attributed to each pile and corresponding boundary
conditions with sufficient accuracy. Also, this type of modeling does not take into
account the fact that due to group action, the behavior of pile groups analyzed as a
system may be different from that emerging from independent analysis of individual
piles.

There is a substantial amount of publications dealing with other than stability
aspects of pile foundations. However, only some of them will be briefly described here.

Adachi and Kimura [1] carried out model pile tests to investigate the interaction
factor of the laterally loaded group piles. They found that the interaction factors between
each pile were not equal because of the difference in subgrade reaction in front of two
piles.

Chow [10] analyzed piles using the modulus of subgrade reaction to model soil
response and using the theory of elasticity to consider pile-soil-pile interaction. From his
research follows that the design of the piles ignoring group effects may be unduly
conservative.

Chen and Poulos [9] performed a simplified boundary-element analysis for piles
subjected to lateral soil movements. For their approach the group effect may need to be

preassessed via finite element analysis for pile groups.




Using the finite element method, Mugtadir and Desai [34], Selby and Arta [44],
Bhowmik [4], Trochanis, Bielak and Christiano [48], and Zaman [53] conducted three-
dimensional linear and nonlinear analysis of pile groups.

In dynamic analysis of piles, Dou and Byrne [16], and Kaynia and Mahzooni [29]
investigated pile response to earthquake loading. Poskitt [36] calculated the deflection of
piles during driving by the use of the theory of elasticity.

With regard to computer programs, Hoit, McVay and others [26] developed a
program, called Florida-Pier. This program was c{esigned for the static analysis of bridge
pier structures composed of pier columns and cap supported by a pile cap aﬁd nonlinear

piles with nonlinear soil.




CHAPTER 3

COMPUTATIONAL TECHNIQUE FOR STABILITY PROBLEMS

In stability of pile groups, three types of nonlinearities are involved - geometric
nonlinearity, material nonlinearity and nonlinearity due to soil-pile interfaces. In view of
the complexity of the problem, the finite element method will be used in the present
research. Computationally the key points are associated with the path-following method,
detection of stability points and a branch-switching technique between different paths.

These issues will be addressed in the sequel.

3.1 PATH-FOLLOWING METHOD
Development of the approximate equations will be followed starting with the

nonlinear form of the principle of virtual work

[s:6Eda- [pb-6uda- [t-5uds=0 (3.1.1)
0 Q o

where p is the mass density, b represents the body force, ¢ denotes the traction vector

specified on the part I', of the boundary 8Q, u is the displacement vector,

E = %(F T"F-1) isthe Green-Lagrange strain tensor with F = /+Vu being the

0
deformation gradient, S is the 2nd Piola-Kirchhoff stress tensor, Q represents the

domain of the problem, I, is the boundary with the prescribed traction and symbol &

denotes the variation. In the finite element discretization, we assume




u=Nd

5E = B sd (3.1.2)

in which N is the matrix of the shape functions, d is the nodal displacement, Bis the

strain-related matrix. The finite element procedure leads to the following form of the
basic nonlinear algebraic equilibrium equations

G(u,A) = R(w)~AP=0 (3.1.3)

where

(3.1.4)

R denotes the vector of the internal forces, P is the vector associated with the pattern of

the applied loads, A represents load parameter. In particular, for elastic processes one has

S = D:S where D is a matrix of elastic constants. For other forms of material behavior,
S(E) is more complex.

An arc-length, also called path-following or continuation method by some
investigators will be used to trace the equilibrium path described by Eq. (2) to follow
both the prebuckling and postbuckling branches. The main idea of continuation methods
is to add a single constraint equation to the nonlinear equations (2) [11, 37, 40]. To this

end, a special form of an augmented nonlinear system is used

(3.1.5)

- G(u, A
G-l

fu)

10




where f(% ,1) = 0 is a general form of the constraint equation. One example of the

constraint equations is given as
f@2) = (u-1)" (u-u)— (A= 1)} —* =0 (3.1.6)

where 1-4,/-1 are the values of u, A for the last converged solution, respectively. The

consistent linearization of the above given augmented system at a known state u, and A .

1

results in the following system of incremental equations

K:T _f Alf = C} 3.1.7
Vqu(zil,,l) V,{f(zf,/l) AL i——{f i 3.1.7)

where Ky is the tangent stiffness matrix, V,fand V, are the gradients of the constraint
equation (Eq. 3.6) with respect to u and A, respectively; subscript I represents the ith
iteration and Vu and VA are the increments within the ieration. These equations will be
solved by a bordering algorithm [30], which is stated as follows:

Step 1. Solve the two partial equations
_ -1 _ -1
Avp, =(Kp) P, Ave =—(Kpy) *G; (3.1.8)
Step 2. Calculate the load factor A

_ .fl +fviTAvGi

A= T
f,li +fvi AvPi

(3.1.9)

Step 3. Calculate the total displacement increment

Av; =Aﬂl-AvPi +AVG1' (3.1.10)

11




Necessary condition for quadratic convergence behavior is the consistent linearization of
the constraint equation [43].

It should be noted that the above augmented equations do not provide sufficient
information for the purpose of detecting limit and bifurcation points. This observation

motivates the use of the extended system of the type considered later.

3.2 COMPUTATION OF STABILITY POINT
3.2.1 Definition of stability points
An equilibrium point is a stability point if the following conditions hold
Ky (u, D) =0

T (3.2.1)
det K, (u,4) =0

where ¢ is the zero eigenvectors of K . There are two types of stability points: limit

point and bifurcation point. The condition distinguishing limit and bifurcation points is

stated as [47]

=0 simple bi tion point
¢)TP={ V' simple bifurcation poin (32.2)

#0  limit point
A main aspect of stability analysis is the detection of stability points. Basically
there exist two types of methods for the computation of stability points - indirect and
direct methods. With indirect methods [2, 45, 49], the stability points are detected by
monitoring a specially computed parameter while the equilibrium path is being traced in a

load incremental manner up to the vicinity of those stability points. For example, these

12




methods may inspect the determinant of the tangent stiffness matrix X r » the number of
negative diagonal elements of K. [49] or calculate the current stiffness parameter [2].

These methods do not provide any additional information about the stability points
beyond identifying their existence. More insight is obtained by using direct methods
[50,51,39,45]. In direct methods, a constraint condition which characterizes stability
points is included in the system of equations to be solved. These techniques, with a
consistent linearization of the extended system, lead to a Newton scheme with quadratic
convergence behavior, and the solution of the extended system yields directly the position
of the stability points and its associated eigenvector together with the load parameter. In
the present research, the following method will be used to directly compute stability

points.

3.2.2 Direct computation of stability points

A solution strategy based on the use of following extended system [50]

: G 1)
Gu, 2,0) =K, (u,2)p=0 (3.2.3)
p-0-1

is to be used to compute directly stability points, and provide further information about
the nature of these points, which is not readily available in standard solution procedures.

The last equation in Eq. (3.10) excludes the trivial solution.

13




The linearization of the above equations yields the following system of equations

Ky 0 - P Au G(u, )
V. (K; 9) K, V. (K, @) fApr=—1 Kr(f‘ A1
, AL
] -1 |

(3.2.4)

Using a block elimination technique a solution scheme of the above equations can be -

developed which needs only one factorization of the tangent stiffness [50] and is shown

below.
Step 1. Solve
K, Av, =P, K, Av, =-G
Step 2. Compute within a loop over all elements
hp =Vy(Kr@)Avp +V , (K70),
he = Krp+V,, (KTgo)AvG
Step 3. Solve

Step 4. Compute new increments

T 2
— A _
N le|” +]e]

goTAvP

14

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)




3.3 CALCULATION OF SECONDARY BRANCHES
To calculate the number of existing branches, the associated eigenvalue problem

has to be solved near stability points. The number of possible branches in a bifurcation
point is determined by the number of zero eigenvalues o; The eigenvectors @, indicate the
direction of the solution to be followed for the calculation of a secondary branch
associated with ©=0.

A simple but effective engineering approach is to perturb the equilibrium state in a
singular point by these eigenvectors [49]. This perturbation is performed by addiﬁg the

scaled eigenvector to the deformed configuration in the following way

U; =z7+§j& (3.3.1)

J o,
y; denotes the perturbed deformed configuration which is used as starting vector for
branch switching. # is the displacement vector of the last converged solution and @; is the
J-th eigenvector. &; denotes a scaling factor which is critical for a successful branch
switching [49].
Once a secondary branch is reached a further path-following can be done using a

standard arc-length scheme.
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CHAPTER 4
CONTINUUM MODEL

In the formulation of the problem, the essential issues include modeling of
discontinuous behavior at the soil-pile interface and ‘modeling of far-field soil medium. In
the present study, a three-dimensional continuum model is proposed to conduct stability
analysis of pile groups. In this model, piles, cap, and near-field soil medium are modeled
using three-dimensional solid finite elements whereas far-field soil medium modeled
using mapped infinite elements. Particularly, three-dimensional thin-layer interface
elements are used to model soil-pile interaction. The related issues will be discussed in

the following.

4.1 NONLINEAR FINITE ELEMENT FORMULATION FOR SOLIDS
From the nonlinear form of the principle of virtual work, one can obtain the

tangent stiffness matrix:

OR

Ky=—=K + (4.11)

IQNII
!
oo

?

where R is the internal force vector, K is the material part and K . 1s the geometrical

part of the stiffness matrix K;. In more detail, the Green-Lagrange strain E can be

expressed as
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where

Further, one has
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Vector r can be expressed in terms of d if approximation given in Eq. 3.1.2 is taken into

account.
r=Gd

where G is a constant matrix. Consequently,

51:=G5c~i

Furthermore, since
(bAr=A46r

one obtains

SE, =(AG)5d = B, 5d

and

SE=8E,+5E, =(B,+B,)5d=B5d

B=B,+B,

Considering that G is a constant matrix, the following holds

OB, =5 AG

(416)

(4.1.7)

(418)

(419)

(4.1.10)

(4111)

(4.112)

With the proceeding notation the variation of the residual R of Eq. 3.1.4 can be

written as

19




SR= [(6B" S+B" 55)dQ
$=10OB5 4B 58

(4.1.13)

Recognizing the earlier expression defining & B and the fact that 5 S=DBdd,one

obtains
OR= (Km+Kg)§d=K5d

Therefore, the material part is given as

K, = [B"DBav
- Q

As for the geometrical part, one has

(4.1.14)

(4115)

T
K, 6d=[5B,7 SV = [G" 54 Sdv=[G" Mérav =([G" MGav)sd (4116)
~ B 14 ~ 7 v " - - v o~ T~ v ~ 77 -

This gives the expression of the geometrical part

K, = [G" MGay
~ 14

where

20
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4.2 SOIL-PILE INTERFACE MODEL
Soil-structure interaction plays an important role in the stability of pile groups. A
couple of interface models have been proposed in the literature to model discontinuous
behavior at the soil-structure interface. These include:
(a) Thin 2D finite elements with standard constitutive laws [24,35];
(b) Linkage elements in which only the opposite nodes are connected. Usually
opposite nodes are connected by discrete springs [18,25];
(c) Special interface elements of either zero or finite thickness [13,14,21,23,27,31,52];
(d) Hybrid methods where the soil and structure are modeled separately and linked via
constraint equations to maintain compatibility at the interface [28,32,42].
Among these methods, the interface element method has attracted considerable attention
and has been used to solve a lot of soil-structure interaction problems. There exist two
types of interface elements, that is, zero-thickness [13,21,23] and thin-layer elements
[14,52,27].
Zero-thickness elements are derived on the basis of relative nodal displacements
of the solid elements surrounding the interface element. For 2-D analysis, the stress-

relative displacement relation is expressed as

Interface t=thickness=0
\@V
o, K, 0 |fv, @21
— S = 2.

21




where K, and K are normal and shear stiffness, v, and u, are relative normal and shear
displacements. In most zero-thickness elements, the shear behavior is simulated as
nonlinear elastic, and a high value is assigned for the normal stiffoess based on the
assumption that the structural and geological media do not overlap at interfaces. However
the use of such arbitrarily high value may not be appropriate. Generally speaking, the
formulation can provide satisfactory solutions for the stick and slip deformation modes
for which the normal stress remains compressive. For other modes such as debonding, the
solutions are often unreliable. On the other hand, it is difficult to incorporate relative
dof’s into a finite element program. This formulation also causes problems at joint
interactions.

The thin-layer element is treated essentially like a solid element, but with different

constitutive properties

‘ Cnn Cns
do= de (42.2)
- C.s‘n CSS -

where C,, = normal component, C = shear component, C,, and C,; represent coupling
effects. A basic assumption is that the behavior near the interface involves a finite thin
zone, rather thaﬁ a zero thickness as in zero-thickness elements. The thin-layer interface
elements have been derived by assuming them to be linear elastic, nonlinear elastic or
elastic-plastic. Depending on the material models used, criteria such as Mohr-Columb
and Drucker-Prager were used to define the initiation of slip at the interface. For thin-

layer interface elements, choice of element thickness is very important. If it is too small,
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computational difficulties may arise. For example, solutions would lock up and there
would be stress oscillations in the interface elements, and therefore the stress in the
adjacent 2D elements is often adopted rather than the interface element stress itself. The
latter problem was also encountered by zero-thickness elements. Thus, one has to perform
parametric studies in which the predictions from various thickness are compared with
observations in order to resolve the question. It has been recommended [14] that the
aspec;t ratio /L should be in the range of 0.1 to 0.01. But they may vary with different
constitutive models. Another shortcoming of existing interface elements is that the
behavior of the element would be sensitive to the geometric distortion of the element.

In comparison with zero-thickness elements, thin-layer elements are
computationally more reliable because it is capable of providing improved definition of
normal and shear behavior; they are easier to program and implement. In addition,
inclusion of a finite thickness for the interface can be realistic since there is very often a
thin layer of soil, which participates in the interaction behavior. To some degree a zero-
thickness element may be viewed as a limiting case of a thin-layer element as its
thickness approaches zero.

In the present study, thin-layer interface elements will be used based on the
constitutive model by Zaman et al [52]. The tangent shear modulus G, of the interface is

defined as
G,= 67°/ 80 42.3)
where 6 = u,%/t is the shear strain, u” is the relative shear displacement, t is the thickness

of the interface element. Further a polynomial form is used for t°
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=0, o,u’+ o ) (4.2.4)
where o, are interface parameters. For some soil types, these parameters have been
reported in [52].

With such interface elements various modes of deformation, including stick or no
slip, slip, debonding and rebonding, shown in Fig. 4.2.1, can be simulated by using

appropriate stress redistribution scheme as follows.

b
IR A /TAN
(a) Stick or no slip (b) Slip
YOS/ N
(c) Debonding (d) Rebonding

Fig.4.2.1 Deformation modes of an interface
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Assume that the previous mode is in stick mode and the values of ¢°, 1°,, and v’

are known at time t and trial response is Ac,, At and Au,. The element will stay in stick

mode if

(6’ +Ac) >0 (compressive), and

F(c’+Ac, t"+At) = (sgn) {(t° + At} - [C, +{c”, + Ac, }ana]< 0
where

C, = the activated adhesion,

a = the activated friction angle,

sgn=1if (*+A1)>0

=-1if (1" + A1) <0

F, is called a slip function and shown in Fig. 4.2.2.

<—Slip cone

(04 T
C >

a

Fig. 4.2.2 Graphical representation of Slip function F

)

The element goes into slip mode if
(6°,+Ac,) >0 (compressive), and

F(o+Ac, T+AT) >0
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In this case, iterations are performed within the time step, until F =~ 0 is satisfied. At each
iteration, the residual value of F, is converted into forces and applied to the system as
self-equilibrating nodal loads.
The element goes into debonding mode if
(6’ +Ac,) < 0 (tensile)
Assuming that for an element in the separation mode,
o', tAc, =R,
T+AT =R,
Iterations are performed in such a way that R, and R, are converted into self
-equilibrating nodal loads that are applied to the system during the iterative corrections.
The element is said to be in rebonding mode if
(6°,+Ac,) > 0 (compressive), and
F(c’+Ac,, T+AT) < 0

Approximately, full contact over an element is assumed during rebonding.
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4.3 MAPPED INFINITE ELEMENT

One of difficulties in the analysis of soil-structure interaction problems is caused
by the semi-infinite nature of the underlying soil media. Several techniques have been
used to treat unbounded domain problems with some success.

The boundary element method is very attractive in modeling the exterior of
unbounded problems [6, 54]. However, the boundary element method lacks the
bandedness and symmetry of the resulting coefficient matrices. In addition material and
geometric nonlinearities are difficult to handle using the boundary element method.

Use of the infinite element is another technique for the solution of the far-field
problems. For infinite elements in which an exponential and/or reciprocal decay function
was employed [3, 17], modified Gauss-Laguerre coordinates of integration points and
weights had to be used. In addition, since the exponential decay infinite elements used a
decay parameter whose selection is usually problem-dependent, they were not suitable for
implementation in general purpose code.

Recently a type of mapped infinite element has been widely used [55,33], based
on the mapping of an infinite region into a finite one using appropriate transformation.
The implementation of the elements is simple and they retain thé standard integration
points and weights, making it convenient for coupling with standard FE formulation and
for implementation in a general purpose code. This type of mapped infinite elements will
be applied to 3-D pile-soil interaction problems.

Consider first the one-dimensional three-node infinite element shown in F ig.
4.3.1, where node 3 is placed at infinity. On that figure h represents distance between

node 1 and 2 and x, location of the origin of the new coordinate r that, for convenience, is
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introduced in the sequel The transformation from the local coordinate € e (-1, 1) to the

global coordinate x

[+ T —
V)
0 4] (4] —pX -1
1 2
| | |
I h 1T h 1

Fig.4.3.1 Mapping of an one-dimensional infinite element

can be written as

x(z;):iM,(g)x,. ~1<é<1

where M, are the mapping functions,

__2%
MO ==
My(H)=1-M,(8)

4.3.1)

(4.3.2)

Note that £&=-1, 0 and 1 correspond to nodal positions, x = x,, x, and o, respectively in

the global coordinate system. The unknown variable displacement u in this case may be

interpolated through standard shape functions which, for the three-node element

discussed here, can be expressed as

w N, + N, =, S E14 8y (1-8)
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Considering that £=1-2h/r, which is obtained by solving Eq. (4.3.1) for & and introducing
a new coordinate r = x + 2h — X, (see Fig. 4.3.1), the above equation can be transformed
to

u = (4u, — u)(W/r) + 2(u, — 2u,)(/r)? (4.3.9)
which implies that u vanishes at infinity, which is the case for pile-soil interaction
problems.

For 3-D problems, the mapping is achieved by products of the shape functions.

For example, if the element is infinite in 1 direction, the one-dimensional mapping
functions discussed above are used in the direction () and the standard Lagrange shape
functions are used in the finite directions (£, and &). Thus, for a 16- node infinite element

(Fig.4.3.2) to be used for matching the 20-node elements used for soil, we have

x(é:a 779@ = ZA_ll (57 U:g)xl

(4.3.5)

ﬁ_ N:(é:Q*Ml(n) i=132>"'8
"TANLEO*M,(p)  i=9,0,.16

where N, are standard 8-node Serendipity shape functions.

7

NN N
N

/. % /

Eyf
X

Fig. 4.3.2 Three-dimensional infinite element with 1)

corresponding to infinite direction
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In deriving the infinite element equations, the unknown variables are expressed in terms

of the standard shape function N, ,

u(&,m1.0) =D N, (&n ), (4.3.6)

For an implementation of the mapped infinite element in an existing FE program, it is
necessary to compute only the transformations for mapping the infinite region into a
finite one and the corresponding Jacobean of these transformations. The remaining

procedure is similar to that followed in a standard FE program.
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4.4 CONSTITUTIVE MODELS FOR SOIL

Several advanced constitutive laws for soil have been developed [46]. In the present
study, the widely used linear elastic, Drucker-Prager, critical state and cap models is
implemented in three-dimensional analysis. Brief descriptions of these constitutive
models are presented in the following. For detailed information. The reader is referred to

the appropriate literature cited in the following.

4.4.1 Drucker-Prager Model [58]

The Drucker-Prager yield critirion is expressed as
F=\J,, —aJ,-K=0 (4.4.1)

where o and K are positive material parameters.

4.4.2 Critical State Model [41]

For both critical state and cap models, there are two yield surfaces associated with
material behavior. The failure surface, Fy, is fixed in position, whereas the cap surface F,
can expand or contract depending on the hardening behavior, which is shown in
Fig. 4.4.1.

For the modified cam clay model which is one of the critical models, the failure
surface F; and the cap surface F, have been obtained as

Fi=q-Mp (4.4.2)

and

F.=q*- M’pp,+M’ p’ (4.4.3)




4
, .
.7 Drucker-Prager-Surface

. von Mises Surface

e e s e e s o g e e e s e s v e e

7 ud X(eD) i
Fig.4.4.1 Failure and cap surfaces

where q= (0, - 0,) =\/§; ,andp= (o, +20;)3=(0,+0, +0,)3=1/3,and p,
is the hardening parameter, which is the intercept of current yield surface with mean
pressure axis. The quantities q and p are defined with respect to a cylindrical triaxial
device where 6,= o, The plastic stress-strain behavior can be described with three
parameters, M, A, and k where M is the slope of critical state line on g-p plot, A, is the

slope of loading path on e-Inp plot and x is the slope of unloading-reloading path on the

same plot.

4.4.3 Cap Model [15]

In this model the failure surface and cap surface are given as

F(J1:op) = Top —[@ -y exp(=RJ,)] = 0 (4.4.4)
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and
F J1ylJ2p58,7) = B2, = (X = 1)* +(J, = L)* =0 (4.4.5)
where a, B, and y are material parameters, X(&,” ) and L(&,” ) refer to geometric

properties of the elliptic yield surface, Fig. 4.4.1. It is assumed that the ratio R, of major

to minor axes remains the same for all ellipses. The quantity X can be related to the
hardening parameter * as

e,” =W[1-exp(-DX)] (4.4.6)
and

X(e,") = L(&,”) + Rla - y exp{-pL(¢,")}] (4.4.7)

where D and W are material parameters.

33




4. 5 RESULTS AND DISCUSSIONS FOR CONTINUUM MODEL

The continuum model for stability of pile groups developed in the previous
sections has been implemented and used to solve several example problems in which the
section of the piles is a square of 0.4(in.)x0.4(in.) or 0.8 (in.)x0.8 (in.). In the following
computations, pile cap, piles and near-field soil medium are modeled by three-
dimensional 20-noded elements, whereas the far-field soil medium is modeled by 16-
noded mapped infinite elements. Three-dimensional 20-noded interface elements are used
for the modeling of the soil-pile interaction. The bo:;:havior of piles and pile cap is assumed
linearly elastic. The values of the elastic modulus and Possion ratio used are E,=10"(Psi),
vp = 0.2 for pile cap and piles. The material parameters for soil are Eg= 7x10%(Psi), v
=0.3, cohesion ¢= 3.5 psi and friction angle ® = 30°. For the soil-pile interface, the
following interface parameters: o, = 0.0, 0,,=1300.0, and o, = -2500.0 are used in Eq.

4.2.4. All the units are in 1b. and in.

4.5.1 Single Pile

This problem was used to verify the FE model by comparing with the well-known
Euler’s buckling load for a free-fixed column shown in Fig. 4.5.1. The details of the
single pile and schematic diagram of the finite element mesh for the section A-A are
given in Fig. 4.5.2 and 4.5.3, respectively. The buckling loads obtained by assuming a
very stiff soil to model fixed end is P,, = 8508 (Ib), which is very close to the Euler’s
solution P, = n’EI/4L,2 = 8422 (Ib) for the free-fixed column. The difference is due to the

approximation error of the finite element method. When the reasonable property of soil
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given above was used, the finite element solutions were obtained as P_ = 6228 (Ib)
(without the use of interface elements) and P,, =5112 (Ib) ( with the use of interface

elements). It is seen that the effect of interface is significant.

cr

|

L, =20" !

Fig. 4.5.1 Free-fixed column

& [
A—— 5153 =,/
—
A X.=20” A
X LV
A 437 50”
L.=20”
Y L o

Infinite zone

Fig. 4.5.2 Description of the single pile
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cr

l Pile element
(

Interface element

| Infinite element

~

Fig. 4.5.3 Schematic diagram of finite element mesh for the

section A-A of the single pile problem

4.5.2 Three-Pile Group

The description of the problem and the finite element mesh for the section A-A
are given in Fig. 4.5.4 and 4.5.5. The buckling load for the three-pile group obtained
using the present model is P, = 288 (Ib ) whereas the buckling load for a single-pile with

free head is P, =132 (Ib). Thus the buckling load for the three-pile group is less than the
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sum of buckling loads of three individual free standing piles due to the interaction

between the piles in the group.

PCl’
< 78 7
2.4” & & 7 -5.5.4”
A
\
307
Ay A
A
- 20 ™~
Yy yoow Infinite zone

Fig. 4.5.4 Description of the three-pile group problem
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Pile element [ — —— Pile cap

\_ 1 Interface element

Infinite element

Fig. 4.5.5 Finite element mesh for the section A-A of the three-pile group problem

4.5.3 Six-Pile Group

For this problem shown in Fig. 4.5.6, 177 twenty-node elements and 3874 dof’s
were used. The finite element solution was obtained as P, = 2592 (Ib) for the group of six
piles with the length of unembedded part L, =20 and the length of embedded part L, =20.
To see the effect of scouring, the problem with L,=25 also was solved and the buckling

load in this case is decreased to 1728 (Ib) as expected.
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Fig. 4.5.6 Description of the six-pile group
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To see how buckling load changes when non-vertical piles are used, the six-pile
group shown in Fig. 4.5.7 was analyzed where the inclination angle of the non-vertical
piles o is equal to 82.9°. The buckling load obtained is equal to 2616 (Ib), which is little

higher than that of the previous 6-pile group. This is because the non-vertical piles are in

X-z plane whereas buckling occurs in y-z plane.

cr

T AN

~

Infinite zone

e,

X

Fig. 4.5.7 Description of the six-pile group with non-vertical piles
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Additional elastic support of the pile cap was considered in the finite element
model to simulate the part of the bridge not present in the model. The spring has the
stiffness k,=10'. For this value of the spring stiffness, it is found that the change in
buckling load is negligibly small. However, this is likely to change if the stiffness of the

spring reflects the properties of the structure more realistically.

»l
g
B
S
=

\

Fig. 4.5.8 Description of the six-pile group with an additional

elastic support on the pile cap
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CHAPTER 5
STRUCTURAL MODEL

For the continuum model developed in the previous chapter, the soil-pile
interaction, pile-cap interaction and pile-soil-pile interaction are accounted for in an
appropriate way. It is also capable to deal with any type of soil and pile groups. However,
there is a problem with the continuum model. It is not feasible for a group with many
piles due to the limitation of memory and disc space of the computer. So a new model
needs to be developed for use in practice, which is called structural model. In this model,
piles are modeled using beam-column elements undergoing large-deflection, and pile-soil
interaction is modeled using nonlinear springs whose properties are expressed by p-y
curves, t-z curves and end bearing curves. These curves are described in the existing
literature (cited later in this report). Since it is difficult for the structural model to include
precisely pile-soil-pile interaction for groups of closely spaced piles in which the spacing
of the piles is less than six diameters, the continuum model is used together with the
structural model to obtain the group-reduction factor to address the problem of pile

interaction.

5.1 NONLINEAR FINITE ELEMENT FORMULATION FOR THIN-WALLED

BEAMS
y
A S - $(Xps Yo)
—]
N—"1
n
C > X

Fig. 5.1.1 Open, thin walled section
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Fig. 5.1.1 represents a general open, thin-walled cross section. For small but
finite deformation, the displacements of an arbitrary point on the cross section in the x, y
and z directions may be expressed in terms of axial displacement of the centroid, the

shear center displacements and the angle of rotation about the shear center axis,

U=u~y-y)®
V=v+(x-x,) ©
W=w—xu’z—yv,z+(w0-wd>,z) (5.1.1)

where x, and y, are the coordinates of the shear center, o is the sectorial coordinate, u, v,

w are displacements of the shear center while U, V, W are displacements of any point

within the cross section.

In the present case, the components of the strain tensor are zero except the

following
e=W,+05U,)’+05(V,)
Vs~ 20D (5.1.2)

where n is the normal distance from the shear center to a point of the cross section

(Fig. 5.1.1).

Since the axial force due to warping is equal to zero, one has

[EGr,, — 0@ ydd = Edw,, - E([odayo . =0 (513)
A A
or
1
W, = (= [0d)® (514)
4 A4
Consequently, thefollowingequationsresultfromtheEq.5.1.1
1
VV,Z = w,: - xu,zz - yv,:z + (Z _[a) dA - a))®,22
A

=W, o Xxu ;- W, to, q),z:
U,z = u,z - (y - yo)q),z
Vo=v, +(x—x,)D (5.15)
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Thus, one has

1 1
e=(w,—xu_ -y _ +o,0 ) +5[u’z -(y-y)®,T +5[v7z +(x—x,)® ]

y=2n®, (5.16)

Allowing only linear across thickness distribution of normal strain results in

€=g,+Xg +tye, + o, g, _ (5.1.7)

where

g=W,+0.5u +y,u,®,+05y D 2+0.5v - x,v,D,+0.5x D 2
g =-u,’+v,0, —x,® 2

— 2 2
&= 'V,u -u,z (D,Z_YO ®,z

g, =D (5.1.8)

From the above expressions combined with the FE discretization, one can obtain

c

. (B
¢ Sz, 0
0€, Bi‘
16 r=1B2 54 ' (519)
o€, B,
| 5&‘7 , J

The use of the principle of virtual work leads to

j(aé‘e + r&y).dV = JI[O’(580 +x6¢ +yd¢, +w,0¢, +t(2nde, )|dAdz
14 L A
=5d" < [ [(o(B] +x B +y Bl +w, BT)+22n. B ldAd:
LA ~ ~ -~ ~ ~
=5d" < [(NB{- M, BT+ M, Bl + M, B])+T,, B ldz
_o N (5110)

where
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N = [odd = [Esda = Ee,

M, =A | O'ya’AAz [Eeyaa=EI ¢,

M, = ijam’A :-ngdi =-El ¢,

M, = Ji,— ®,dA = IAEew,,dA = El e,
; ,

Ty = [2ndd = [Gy2nda = GUe, (51.11)
A

A

The above equations define the meaning of A, Ix; I, 1, and J. Finally,
f™=[(NBI-M, B+ M, BT+ M, BT+T, BN)dz (5.112)
-~ h - : N K

and the material part and geometrical part of the tangent stiffness matrix can be found to
be

K, = j [By (EA) B,+ B/ (EI,) B+ B! (EI,) B, + B' (EI,)B,+B](GJ) B, ]dz

ng_[HT(NRO——My R+ M, Rz]{{dz (5113)
A - - -
where
0 0 0 0 0 0 0]
0 1 0 0 o Yo 0
0 0 0 0 o 0 0
y =10 0 0 1 0 - X, 0 (5.1.14)
h 0 0 0 0 o0 0 0
0 yo 0 -x5 0 x°+yp,> 0
o0 0 0 o 0 0]
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[0 0000 0 O]

01000 0 0

00000 0 O
R=[0000O0 1 0 (5.1.15)
T ]J00 000 0 0

00010 -2x, 0

00000 0 0

0 0 000 0 0]

01 000 -1 0

000 000 0 O
,=/0 0 01 0 0 0 (5.116)
00000 0 o0

0 -1 000 -2y, 0

00 000 0 O]

5.2 SOIL-PILE INTERACTION MODEL
In the structural model, nonlinear springs are used to model soil-pile interaction
and p-y curves, t-z curves and end bearing curves are employed to express the properties

of the springs. Typical curves for different types of soil and under different conditions are

available in the references.
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3.2.1 p-y Curves for Lateral Soil-Pile Interaction
p-y curve is the curve used to define the relationship between the lateral soil
resistance p and the lateral pile deflection y- The two typical p-y curves are given in the

following.

5.2.1a p-y curve for soft clay in the presence of free water

The procedure used to determine the p-y curve for short-term static loading of soft
clay in the presence of free water is described in the following. The procedure resulted
from experimental investigations [56].

1. Obtain the best possible estimate of the variation of undrained shear strength ¢
and submerged unit weight y with depth. Also obtain the value of €50, the
strain corresponding to one-half of the maximum principal stress difference.
Typical values of g, are as follows,

gso= 0.02 for soft clay;
0.01for medium clay and
0.005 for stiff clay. (5.2.1)
2. Compute the ultimate soil resistance per unit length of pile, using the smaller

of the values given by the equation below.

P, =[B+(v/o)x + (J/b) x ]Icb (5.2.2)
P,=9cb , (5.2.3)
where

Y = average effective unit weight over the distance from ground surface to
the location where p-y curve is to be determined,

X =depth from the ground surface to the location where p-y curve is to be
found,

¢ = shear strength at depth x,

b = width of pile.

J=05
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. Compute y,, at one-half the maximum soil resistance from the

following equation:

Vs = 2.5 b (5.2.4)

. Points describing the p-y curve at depth x are computed from the relationship:

p/p, = 0.5(y/y5)"” (3.2.5)

The value of p remains constant beyond y = 8y,

5.2.1b p-y curve for sand above and below the water table

The procedure used to obtain the p-y curve for short-term static loading of sand

above and below water table is described below. It follows the development reported in

[56]

. Obtain values for the angle of internal friction @, the soil unit weight y, and

pile diameter b.

. Make the following preliminary computations:

a=D/2; B =45+ D/2; K, = 0.4; K, = tan’(45 - D/2), (5.2.6)

. Compute the ultimate soil resistance per unit length of pile using the smaller

of the values given by the following equations:
P =vx[(K, x tan @ sinp) / (tan(P - D) cosa) + tanP (b +
X tanp tan®) / tan(p - O)+
K, x tanf (tan @ sinf - tana) — K b] (5.2.7)
P, = K bxy[( tan8f)-1] + K by x tan ® tan4f (5.2.8)

. In making the computation in step 3, find the depth x, at which these two

equations provide the same value. Above this depth use Eq. (5.2.7).
Below this depth use Eq. (5.2.8).

. Select a depth at which a p-y curve is desired.

. Establish y, as 3b/80. Compute p , by the following equation:

Pu = A, 01 = A, (5.2.9)
Use the appropriate value of A or A, from Fig. 5.2.1 for the particular non-
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Fig. 5.2.2 Values of B for soil resistance versus depth
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dimensional depth, and for the static or cyclic case. Use the appropriate
equation for p,, Eq. 5.2.7 or Eq. 5.2.8 by referring to the computation in
Step 4.
7. Establish y,, as b/60. Compute p,, by the following equation:
Pm = BD, or p,, = B.p.. (5.2.10)
Use the appropriate value of B or B, from Fig. 5.2.2 for the particular non-
dimensional depth, and for either the static or cyclic case. Use the appropriate
equation for p,. The two stright portions of the p-y curve, beyond the point
where y is equal to b/60, can now be established.
8. Establish the initial straight-line portion of the p-y curve,
p=(kx)y (5.2.11)
Use the appropriate value of k as follows:

For submerged sand

Relative density Loose Medium Dense
Recommended k 20 60 125
(Ib/in’)

For sand above water table

Relative density Loose Medium Dense
Recommended k 25 90 225
(Ib/in®)

9. Establish the parabolic section of the p-y curve,
p=Cy" (5.2.12)
Fit the parabola between points k and m as follows:

a. Get the slope of line between points m and u by

mz(pu_pm)/(YU—Ym) (5213)
b. Obtain the power of the parabolic section by,
n=p,/my, (5.2.14)
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c. Obtain the coefficient C as follows:

C=pn/¥Yn"
d. Determine point k as,

%= (C/ kg

(5.2.15)

(5.2.16)

e. Compute appropriate number of points on the parabola by using Eq. 5.2.12.

5.2.2 t-z Curves for Vertical Soil-Pile Interaction

t-z curve is used to define the relationship between the shear load t on the surface

of the pile and the pile shaft movement z. The typical t-z curves are for cohesive soil and

cohesionless soil.

5.2.2a t-z Curve for Cohesive Soil

A t-z curve for cohesive soil is presented by the following table [56]

Table 5.2.1 Sample points for t-z curve for cohesive soil

Ratio of Load Transfer to Max. Load transfer Pile Movement (in.)
0 0
0.18 0.01
0.38 0.02
0.79 0.04
0.97 0.06
1.00 0.08
0.97 0.12
0.93 0.16
0.93 0.20
0.93 >0.20

5.2.2b t-z Curve for Cohesionless soil [56]

A t-z curve for cohesionless soil is described by the use of the following equation:

w

fe—1—

—+
E

R

1

max
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where
f = unit load transfer
w = pile movement
f,. = maximum unit load transfer

E, = soil mudulus
5.2.3. End Bearing Curves
The end bearing curves are for predicting the load in end bearing of a pile as a

function of the movement of the tip of the pile.

5.2.3a End Bearing Curve for Cohesive Soil

The equations describing the curve are as follows [56],
q, =N, (c¢/2) (5.2.18)
W, = 285, (5.2.19)
where

qy, = failure stress in bearing at the base of footing.

o; = failure compressive stress in the laboratory unconfined compressive

or
quick triaxial test.

N, = bearing capacity factor.

B = diameter of footing or eqivalent length of a side for a square or
rectangular shape.

€50 = strain measures from unconfined compression or quick triaxial test

w, = settlement of footing or base of pile

5.2.3b End Bearing Curve for Cohesionless Soil

An equation for computing the load versus tip settlement for piles in sand is given

as
q=(42)""q, (5.2.20)

where
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z = tip settlement
Omax = Maximum bearing capacity
= o,N,
o, = the effective vertical stress which is equal to overburden pressure

N, =e™tan’(45+d/2)

5.3 GROUP EFFECT

The problem of closely-spaced piles in a group can be characterized as one of
soil-pile interaction. A way to solve the problem is to introduce the p-factor and apply it
to the p-y curves for a single pile, thus generating a new set of p-y curves that include the
group effect. The p-factor is less than one and the magnitude depends on the
configuration of piles in a group.

In the present study, both of these models were used to solve a number of
identical problems to estimate the group factor. These factors should be used when
structural model is employed. This would be the case in most practical situations since
here the size of the problem prevents use of the continuum model. The result is shown in

the following table.

Table 5.3.1 Group-reduction factor

p-factor S/b
0.6 1
0.72 2
0.85 3
0.96 4
1.0 5
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In the table, S is the center-to-center spacing of piles and b is the diameter of piles. A
simple equation can be used for obtaining the p-factor:

0.5+ 0.1*(S/b) 1<S/b<5

p_fac"”:{ 10 S/b>5

5.4 RESULTS AND DISCUSSIONS RELATED TO STRUCTURAL MODEL

A computer program named MN_PILE_GROUP for stability analysis of threé-
dimensional pile groups has been developed based on the structural model presented in
this chapter. The program has the capacity to deal with the plastic hinge formation and
elastic support at the cap level. The problems in this chapter were solved using

MN_PILE GROUP.

5.4.1 Verification

Several examples were designed to verify agreement of the results obtained in this
study with the existing available analytical solutions. They were also designed to address
some comments voiced during our meeting with Mn/DOT personnel. The following

particular cases were considered.

Casel

For a fully embedded simply supported pile (HP12x53) with lateral soil-pile
interaction modeled by constant spring stiffness K., analytical solution is available and
given by Timoshenko [57]. Our finite element solution is very close to Timoshenko’s

solution and shown in Fig. 5.4.1.

Case 2

To see how side friction affects buckling load, a fully embedded pile (HP12x53)

supported by a roller located at the top, elastic support at the bottom, and by side friction
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modeled as axial spring of stiffness K, is considered and the results are given in Fig.
5.4.2. Tt can be seen that side friction makes buckling load higher. The reason for this is
that side friction affects load transfer mechanism and the axial force in the pile decreases
with the depth due to this effect. Therefore the upper part of the pile plays a dominant
role in the process of buckling. This is somewhat equivalent to reducing the effective

length of the pile.

Case 3

In this case, buckling of a single pile for various value of both side friction and lateral
soil resistance is considered. A fully embedded simply supported pile (HP12x53) is
solved for different values of K, and K, and the result is shown in Fig. 5.4. 3, where K,
and K, represent the initial values of K, and K,. As expected, buckling load is increased

with the increase of K, and K.

Cased

A fully embedded pile (HP12x53) without side friction is considered to see the
effect of the stiffness K, of the end bearing on buckling load. The result is shown in Fig.
5.4.4. It turns out that the buckling load is independent of K, when side friction is absent,

which is in agreement with both analysis and intuition.

Case 5

To show how buckling load varies with the stiffness K, for lateral soil resistance
when side friction is present a fully embedded pile (HP12x53) is solved and the result is
plotted in Fig. 5.4.5. It can be seen that buckling load increases faster with increasing K,
when K is small. These calculations have been conducted in response to some comments
from the Mn/DOT personnel indicating that small lateral resistance significantly changes
the buckling load. The results obtained here show that this is indeed the case if

comparison is made with buckling load corresponding to no lateral support (K, = 0).
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However, even for larger values of K, the buckling load increases with increasing K, ( as

it should).

Case 6

This final example is solved to see how buckling load varies with pile length for
different values of stiffness K, for lateral soil resistance. The pile is fully embedded
supported by a roller at the top, end bearing at the bottom and, lateral support K. The
results in Figs. 5.4.6 — 5.4.11 show that buckling load decreases quickly with pile length
when the value of K, is smaller and buckling load changes little when pile length goes
beyond a certain value, especially for bigger K,. In all cases, an asymptotic value of the
buckling load seems to be approached which is in agreement with expectations voiced by
the Mn/DOT personnel during the meeting. However, for very large values of K the
buckling load exhibits a different variation — at some point it increases with the length.

This is in agreement with other results reported in literature.
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5.4.2. Effect of Various Parameters

The effect of important parameters on buckling loads is illustrated through the
following examples, in which an embedded CIP concrete pile with the diameter of 16
inches and the length of 540 inches is considered and modeled using ten elements. The

elastic modulus of the pile is 3640 ksi.

5.4.2a For p-y curve

Consider soft clay in the presence of free water. Two values of the shear strength

of soil are taken and the result is shown here:

Shear strength ¢ =500 (Ib/ft’) : P_ =480.5 (kips)
Shear strength ¢ =800 (Ib/ft?) : P, =532.6 (kips)

5.4.2b For t-z Curve

(a) Cohesionless soil
Maximum load transfer f,,, =2095.0 (Ib/ft): P, = 648.5 (kips)
Maximum load transfer f,,, =2509.0 (Ib/ft): P, = 789.2 (kips)
(b) Sand below the water table
Angle of internal friction ®=30": P, = 648.5 (kips)
Angle of internal friction ®=35%  P_=714.2 (kips)

5.4.2¢ For end bearing curve

Consider conhesionless soil. The effect of variation of angle of internal friction is
shown in the following:
Angle of internal friction ® =30 P_ = 789.2 (kips)
Angle of internal friction ® = 35% P_ = 726.1 (kips)
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5.4.3 Comparison of the Continuum model and Structural Model
A six-pile group described in section 4.5.3 is analyzed using the continuum and
structural model, respectively. The result is as follows:

(a) Continuum model

L, =20 (in): P, =2592 (Ib)
L, =25 (in): P.=1728 (Ib)

(b) Structural model (no pile-soil-pile interaction considered)
L, =20 (in): P,.=2914 (Ib)
L, =25 (in): P, =2035 (Ib)

(¢) Structural model (Group-reduction p-factor = 0.7 used)
L, =20 (in): P, =2650 (Ib)
L,=25 (in): P,.=1763 (Ib)

It can be seen that for the continuum model one has
6*Pinge > Pyrowp  (Piinge=495 Ib for L =20 in.)
whereas for the structural model without the use of p-factor
6*Poingte = Pyrop  (Pyingie=481 1b for L =20 in.)
The reason for this is that group effect is included in the continuum model. When the
structural model is used in combination with the group-reduction p-factor, the result is

very close to that obtained using the continuum model, which is expected.

70




5.4.4 Results for the Three Pile-Groups

Data for the bridge piers described in this section was provided by Mn/DOT.
Drawings describing these bridges are quite involved and provided data used here. These
drawings should be consulted for details; here only scheches of the piers are given to
describe the problem schematically. The piers were analyzed using structural model

described in Chapter 5.

(a) Bridge # 08003

The description of a group of 24 HP12x53 piles with length 45 (ft) is given in Fig.
5.4.12. The elastic modulus of the piles is 29,000 ksi, and the cohesion and shear
strength of the soil are taken as 830 (psf) and 500 (Ib/ft?), respectively. The pile cap is

f——28 —>]

O0O0OO0O0O0OO0O0
O0O0O0O0O0O0O0 6
O0O0O0O0O0O0O0

S/

/17 /17

Fig. 5.4.12 Description of a pile-group for the bridge # 08003
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set free to move and a single concentrated load applied at the center of the cap is

considered to cause buckling. The result is shown in Table 5.4.1.

Table 5.4.1 Critical load of a pile-group for the bridge # 08003

Critical load.
L, =10 (ft), L =35 (ft) | 8216 (kips)
L, =14 (ft), L =31 (ff) 6704 (Kips)
L, =20 (f), L =25 (ft) 4518 (kips)
L, =30(R), L,= 15 (f) 2630 (kips)

(b) Bridge # 80004

Fig. 5.4.13 shows a pile-group composed of 8 CIP concrete 16°° piles with the cap
free to move. The elastic modulus of the piles is 3,640 ksi, the soil cohesion is 4500

pst and shear strength is 2000 1b/ft%. The result is given in Table 5.4.2.

Table 5.4.2 Critical load of a pile-group for the bridge # 80004

Critical load
L=45t),L,=0 3960 (kips)
L =45 (ft), L, =20 (ft) 2570 (kips)
L =45 (ft), L, =30 (ft) ' 1250 (kips)
L=55(t),L,=0 3610 (kips)
L =55 (ft), L, =20 (ft) 2440 (kips)
L =55 (ft), L, =30 (ft) 1130 (kips)

72




< ah N

O O O 0O O 0O O O 3
L,
/// VL4
L. 12
S
LS U U U u - -

Fig. 5.4.13 Description of a pile-group for the bridge # 80004

(c) Bridge # 5930
Fig. 5.4.14 shows a pile-group for the bridge # 5930, in which 16 CIP concrete 16
piles are used. The elastic modulus of the pile is 3,640 ksi and the pile length is 72 ft.

The value of internal friction angle of the soil is taken as 35°. The result is ahown in

Table 5.4.3.
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Fig. 5.4.14 Description of a pile-group for the bridge # 5930

Table 5.4.3 Critical load of a pile-group for the bridge # 5930

Critical load
Lu=0 4980 (kips)
L,=10 (ft) 4740 (kips)
L,=30(ft) 2610 (kips)
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CHAPTER 6
CLOSURE

A continuum model and a structural rhodel are proposed and implemented for
stability of pile groups in the present study. The continuum model accounts for pile-soil
interaction, pile-cap interaction and pile-soil-pile interaction in an appropriate way. It is
also capable to deal with any type of soil and pile groups (layered soil, battered piles,
etc.). However, the continuum model is not feasible for practical use because of the
limitation of memory and disc space of the computer. In contrast, the structural model is
efficient and simple to implement, but it is difficult to include pile-soil-pile interaction.
Both of these models were used to solve a number of identical problems to estimate the
group factor. These factors, which depend on the configuration of the pile group, should
be used when structural model is employed. This would be the case in most practical
situations since here the size of the problem prevents use of the continuum model.

The structural model has been incorporated in the computer program
MN_PILE_GROUP. Since it can run efficiently on a personal computer, it is easily
accessible to all bridge engineers for analysis related to design or maintenance purpose.

It needs to be remembered that the accuracy of the predicted buckling load
depends on the adequate description of the problem, particularly on accurate description
of the properties of the soil. The program MN_PILE_GROUP includes soil models found
in the literature, which are considered to be appropriate for most common types of the
soil. At the same time this part of the model is perhaps one that is the most difficult to
quantify and is likely to be the most significant source of the errors in the predicted
buckling load. In this context, the benefits of having a computer code
MN_PILE_GROUP can only be realized by considering a range of the soil properties that
can possibly characterize specific site and computation of the corresponding range of
buckling loads. This would require several runs of the program (for several possible data-

representing a given site), but efficiency of MN_PILE GROUP should easily allow for
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that. The resulting range of buckling loads should then give a good conservative value of

the buckling load.
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